Displaying publications 41 - 60 of 112 in total

Abstract:
Sort:
  1. Safaei M, A Sundararajan E, Asadi S, Nilashi M, Ab Aziz MJ, Saravanan MS, et al.
    Int J Environ Res Public Health, 2022 Nov 22;19(23).
    PMID: 36497509 DOI: 10.3390/ijerph192315432
    Obesity and its complications is one of the main issues in today's world and is increasing rapidly. A wide range of non-contagious diseases, for instance, diabetes type 2, cardiovascular, high blood pressure and stroke, numerous types of cancer, and mental health issues are formed following obesity. According to the WHO, Malaysia is the sixth Asian country with an adult population suffering from obesity. Therefore, identifying risk factors associated with obesity among Malaysian adults is necessary. For this purpose, this study strives to investigate and assess the risk factors related to obesity and overweight in this country. A quantitative approach was employed by surveying 26 healthcare professionals by questionnaire. Collected data were analyzed with the DEMATEL and Fuzzy Rule-Based methods. We found that lack of physical activity, insufficient sleep, unhealthy diet, genetics, and perceived stress were the most significant risk factors for obesity.
    Matched MeSH terms: Fuzzy Logic
  2. Allawi MF, Aidan IA, El-Shafie A
    Environ Sci Pollut Res Int, 2021 Feb;28(7):8281-8295.
    PMID: 33052565 DOI: 10.1007/s11356-020-11062-x
    The accuracy level for reservoir evaporation prediction is an important issue for decision making in the water resources field. The traditional methods for evaporation prediction could encounter numerous obstacles owing to the effect of several parameters on the shape of the evaporation pattern. The current research presented modern model called the Coactive Neuro-Fuzzy Inference System (CANFIS). Modification for such model has been achieved for enhancing the evaporation prediction accuracy. Genetic algorithm was utilized to select the effective input combination. The efficiency of the proposed model has been compared with popular artificial intelligence models according to several statistical indicators. Two different case studies Aswan High Dam (AHD) and Timah Tasoh Dam (TTD) have been considered to explore the performance of the proposed models. It is concluded that the modified GA-CANFIS model is better than GA-ANFIS, GA-SVR, and GA-RBFNN for evaporation prediction for both case studies. GA-CANFIS attained minimum RMSE (15.22 mm month-1 for AHD, 8.78 mm month-1 for TTD), minimum MAE (12.48 mm month-1 for AHD, 5.11 mm month-1 for TTD), and maximum determination coefficient (0.98 for AHD, 0.95 for TTD).
    Matched MeSH terms: Fuzzy Logic
  3. Kushwaha OS, Uthayakumar H, Kumaresan K
    Environ Sci Pollut Res Int, 2023 Feb;30(10):24927-24948.
    PMID: 35349067 DOI: 10.1007/s11356-022-19683-0
    In this study, we are reporting a novel prediction model for forecasting the carbon dioxide (CO2) fixation of microalgae which is based on the hybrid approach of adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA). The CO2 fixation rate of various algal strains was collected and the cultivation conditions of the microalgae such as temperature, pH, CO2 %, and amount of nitrogen and phosphorous (mg/L) were taken as the input variables, while the CO2 fixation rate was taken as the output variable. The optimization of ANFIS parameters and the formation of the optimized fuzzy model structure were performed by genetic algorithm (GA) using MATLAB in order to achieve optimum prediction capability and industrial applicability. The best-fitting model was figured out using statistical analysis parameters such as root mean square error (RMSE), coefficient of regression (R2), and average absolute relative deviation (AARD). According to the analysis, GA-ANFIS model depicted a greater prediction capability over ANFIS model. The RMSE, R2, and AARD for GA-ANFIS were observed to be 0.000431, 0.97865, and 0.044354 in the training phase and 0.00056, 0.98457, and 0.032156 in the testing phase, respectively, for the GA-ANFIS Model. As a result, it can be concluded that the proposed GA-ANFIS model is an efficient technique having a very high potential to accurately predict the CO2 fixation rate.
    Matched MeSH terms: Fuzzy Logic
  4. Jeon J, Krishnan S, Manirathinam T, Narayanamoorthy S, Nazir Ahmad M, Ferrara M, et al.
    Sci Rep, 2023 Jun 23;13(1):10206.
    PMID: 37353615 DOI: 10.1038/s41598-023-37200-2
    The probabilistic hesitant elements (PHFEs) are a beneficial augmentation to the hesitant fuzzy element (HFE), which is intended to give decision-makers more flexibility in expressing their biases while using hesitant fuzzy information. To extrapolate a more accurate interpretation of the decision documentation, it is sufficient to standardize the organization of the elements in PHFEs without introducing fictional elements. Several processes for unifying and arranging components in PHFEs have been proposed so far, but most of them result in various disadvantages that are critically explored in this paper. The primary objective of this research is to recommend a PHFE unification procedure that avoids the deficiencies of operational practices while maintaining the inherent properties of PHFE probabilities. The prevailing study advances the hypothesis of permutation on PHFEs by suggesting a new sort of PHFS division and subtraction compared with the existing unification procedure. Eventually, the proposed PHFE-unification process will be used in this study, an innovative PHFEs based on the Weighted Aggregated Sum Product Assessment Method-Analytic Hierarchy Process (WASPAS-AHP) perspective for selecting flexible packaging bags after the prohibition on single-use plastics. As a result, we have included the PHFEs-WASPAS in our selection of the most effective fuzzy environment for bio-plastic bags. The ranking results for the suggested PHFEs-MCDM techniques surpassed the existing AHP methods in the research study by providing the best solution. Our solutions offer the best bio-plastic bag alternative strategy for mitigating environmental impacts.
    Matched MeSH terms: Fuzzy Logic
  5. Mirhassani SM, Zourmand A, Ting HN
    ScientificWorldJournal, 2014;2014:534064.
    PMID: 25006595 DOI: 10.1155/2014/534064
    Automatic estimation of a speaker's age is a challenging research topic in the area of speech analysis. In this paper, a novel approach to estimate a speaker's age is presented. The method features a "divide and conquer" strategy wherein the speech data are divided into six groups based on the vowel classes. There are two reasons behind this strategy. First, reduction in the complicated distribution of the processing data improves the classifier's learning performance. Second, different vowel classes contain complementary information for age estimation. Mel-frequency cepstral coefficients are computed for each group and single layer feed-forward neural networks based on self-adaptive extreme learning machine are applied to the features to make a primary decision. Subsequently, fuzzy data fusion is employed to provide an overall decision by aggregating the classifier's outputs. The results are then compared with a number of state-of-the-art age estimation methods. Experiments conducted based on six age groups including children aged between 7 and 12 years revealed that fuzzy fusion of the classifier's outputs resulted in considerable improvement of up to 53.33% in age estimation accuracy. Moreover, the fuzzy fusion of decisions aggregated the complementary information of a speaker's age from various speech sources.
    Matched MeSH terms: Fuzzy Logic*
  6. Yousefi B, Loo CK
    ScientificWorldJournal, 2014;2014:238234.
    PMID: 24883361 DOI: 10.1155/2014/238234
    Following the study on computational neuroscience through functional magnetic resonance imaging claimed that human action recognition in the brain of mammalian pursues two separated streams, that is, dorsal and ventral streams. It follows up by two pathways in the bioinspired model, which are specialized for motion and form information analysis (Giese and Poggio 2003). Active basis model is used to form information which is different from orientations and scales of Gabor wavelets to form a dictionary regarding object recognition (human). Also biologically movement optic-flow patterns utilized. As motion information guides share sketch algorithm in form pathway for adjustment plus it helps to prevent wrong recognition. A synergetic neural network is utilized to generate prototype templates, representing general characteristic form of every class. Having predefined templates, classifying performs based on multitemplate matching. As every human action has one action prototype, there are some overlapping and consistency among these templates. Using fuzzy optical flow division scoring can prevent motivation for misrecognition. We successfully apply proposed model on the human action video obtained from KTH human action database. Proposed approach follows the interaction between dorsal and ventral processing streams in the original model of the biological movement recognition. The attained results indicate promising outcome and improvement in robustness using proposed approach.
    Matched MeSH terms: Fuzzy Logic*
  7. Gangeh MJ, Hanmandlu M, Bister M
    Biomed Sci Instrum, 2002;38:369-74.
    PMID: 12085634
    The specific texture on B-scan images is believed to be related to both ultrasound machine characteristics and tissue properties, i.e., the pathological states of the soft tissue. Therefore, for classification, features can be extracted with the use of image texture analysis techniques. In this paper a novel fuzzy approach for texture characterization is used for classification of normal liver and diffused liver diseases, here fatty liver, liver cirrhosis, and hepatitis are emphasized. The texture analysis techniques are diversified by the existence of several approaches. We propose fuzzy features for the analysis of the texture image. For this, a membership function is constructed to represent the effect of the neighboring pixels on the current pixel in a window. Using these membership function values, we find a feature by weighted average method for the current pixel. This is repeated for all pixels in the window treating each time one pixel as the current pixel. Using these fuzzy based features, we derive three descriptors: maximum, entropy, and energy as used in co-occurrence method, for each window.
    Matched MeSH terms: Fuzzy Logic*
  8. Majeed Alneamy JS, A Hameed Alnaish Z, Mohd Hashim SZ, Hamed Alnaish RA
    Comput Biol Med, 2019 09;112:103348.
    PMID: 31356992 DOI: 10.1016/j.compbiomed.2019.103348
    Accurate medical disease diagnosis is considered to be an important classification problem. The main goal of the classification process is to determine the class to which a certain pattern belongs. In this article, a new classification technique based on a combination of The Teaching Learning-Based Optimization (TLBO) algorithm and Fuzzy Wavelet Neural Network (FWNN) with Functional Link Neural Network (FLNN) is proposed. In addition, the TLBO algorithm is utilized for training the new hybrid Functional Fuzzy Wavelet Neural Network (FFWNN) and optimizing the learning parameters, which are weights, dilation and translation. To evaluate the performance of the proposed method, five standard medical datasets were used: Breast Cancer, Heart Disease, Hepatitis, Pima-Indian diabetes and Appendicitis. The efficiency of the proposed method is evaluated using 5-fold cross-validation and 10-fold cross-validation in terms of mean square error (MSE), classification accuracy, running time, sensitivity, specificity and kappa. The experimental results show that the efficiency of the proposed method for the medical classification problems is 98.309%, 91.1%, 91.39%, 88.67% and 93.51% for the Breast Cancer, Heart Disease, Hepatitis, Pima-Indian diabetes and Appendicitis datasets, respectively, in terms of accuracy after 30 runs for each dataset with low computational complexity. In addition, it has been observed that the proposed method has efficient performance compared with the performance of other methods found in the related previous studies.
    Matched MeSH terms: Fuzzy Logic*
  9. Alakbari FS, Mohyaldinn ME, Ayoub MA, Muhsan AS, Hussein IA
    PLoS One, 2021;16(4):e0250466.
    PMID: 33901240 DOI: 10.1371/journal.pone.0250466
    Sand management is essential for enhancing the production in oil and gas reservoirs. The critical total drawdown (CTD) is used as a reliable indicator of the onset of sand production; hence, its accurate prediction is very important. There are many published CTD prediction correlations in literature. However, the accuracy of most of these models is questionable. Therefore, further improvement in CTD prediction is needed for more effective and successful sand control. This article presents a robust and accurate fuzzy logic (FL) model for predicting the CTD. Literature on 23 wells of the North Adriatic Sea was used to develop the model. The used data were split into 70% training sets and 30% testing sets. Trend analysis was conducted to verify that the developed model follows the correct physical behavior trends of the input parameters. Some statistical analyses were performed to check the model's reliability and accuracy as compared to the published correlations. The results demonstrated that the proposed FL model substantially outperforms the current published correlations and shows higher prediction accuracy. These results were verified using the highest correlation coefficient, the lowest average absolute percent relative error (AAPRE), the lowest maximum error (max. AAPRE), the lowest standard deviation (SD), and the lowest root mean square error (RMSE). Results showed that the lowest AAPRE is 8.6%, whereas the highest correlation coefficient is 0.9947. These values of AAPRE (<10%) indicate that the FL model could predicts the CTD more accurately than other published models (>20% AAPRE). Moreover, further analysis indicated the robustness of the FL model, because it follows the trends of all physical parameters affecting the CTD.
    Matched MeSH terms: Fuzzy Logic*
  10. Mostafa SA, Mustapha A, Mohammed MA, Ahmad MS, Mahmoud MA
    Int J Med Inform, 2018 04;112:173-184.
    PMID: 29500017 DOI: 10.1016/j.ijmedinf.2018.02.001
    Autonomous agents are being widely used in many systems, such as ambient assisted-living systems, to perform tasks on behalf of humans. However, these systems usually operate in complex environments that entail uncertain, highly dynamic, or irregular workload. In such environments, autonomous agents tend to make decisions that lead to undesirable outcomes. In this paper, we propose a fuzzy-logic-based adjustable autonomy (FLAA) model to manage the autonomy of multi-agent systems that are operating in complex environments. This model aims to facilitate the autonomy management of agents and help them make competent autonomous decisions. The FLAA model employs fuzzy logic to quantitatively measure and distribute autonomy among several agents based on their performance. We implement and test this model in the Automated Elderly Movements Monitoring (AEMM-Care) system, which uses agents to monitor the daily movement activities of elderly users and perform fall detection and prevention tasks in a complex environment. The test results show that the FLAA model improves the accuracy and performance of these agents in detecting and preventing falls.
    Matched MeSH terms: Fuzzy Logic*
  11. Palaniappan R, Sundaraj K, Sundaraj S
    Comput Methods Programs Biomed, 2017 Jul;145:67-72.
    PMID: 28552127 DOI: 10.1016/j.cmpb.2017.04.013
    BACKGROUND: The monitoring of the respiratory rate is vital in several medical conditions, including sleep apnea because patients with sleep apnea exhibit an irregular respiratory rate compared with controls. Therefore, monitoring the respiratory rate by detecting the different breath phases is crucial.

    OBJECTIVES: This study aimed to segment the breath cycles from pulmonary acoustic signals using the newly developed adaptive neuro-fuzzy inference system (ANFIS) based on breath phase detection and to subsequently evaluate the performance of the system.

    METHODS: The normalised averaged power spectral density for each segment was fuzzified, and a set of fuzzy rules was formulated. The ANFIS was developed to detect the breath phases and subsequently perform breath cycle segmentation. To evaluate the performance of the proposed method, the root mean square error (RMSE) and correlation coefficient values were calculated and analysed, and the proposed method was then validated using data collected at KIMS Hospital and the RALE standard dataset.

    RESULTS: The analysis of the correlation coefficient of the neuro-fuzzy model, which was performed to evaluate its performance, revealed a correlation strength of r = 0.9925, and the RMSE for the neuro-fuzzy model was found to equal 0.0069.

    CONCLUSION: The proposed neuro-fuzzy model performs better than the fuzzy inference system (FIS) in detecting the breath phases and segmenting the breath cycles and requires less rules than FIS.

    Matched MeSH terms: Fuzzy Logic*
  12. Peng P, Wu D, Huang LJ, Wang J, Zhang L, Wu Y, et al.
    Interdiscip Sci, 2024 Mar;16(1):39-57.
    PMID: 37486420 DOI: 10.1007/s12539-023-00580-0
    Breast cancer is commonly diagnosed with mammography. Using image segmentation algorithms to separate lesion areas in mammography can facilitate diagnosis by doctors and reduce their workload, which has important clinical significance. Because large, accurately labeled medical image datasets are difficult to obtain, traditional clustering algorithms are widely used in medical image segmentation as an unsupervised model. Traditional unsupervised clustering algorithms have limited learning knowledge. Moreover, some semi-supervised fuzzy clustering algorithms cannot fully mine the information of labeled samples, which results in insufficient supervision. When faced with complex mammography images, the above algorithms cannot accurately segment lesion areas. To address this, a semi-supervised fuzzy clustering based on knowledge weighting and cluster center learning (WSFCM_V) is presented. According to prior knowledge, three learning modes are proposed: a knowledge weighting method for cluster centers, Euclidean distance weights for unlabeled samples, and learning from the cluster centers of labeled sample sets. These strategies improve the clustering performance. On real breast molybdenum target images, the WSFCM_V algorithm is compared with currently popular semi-supervised and unsupervised clustering algorithms. WSFCM_V has the best evaluation index values. Experimental results demonstrate that compared with the existing clustering algorithms, WSFCM_V has a higher segmentation accuracy than other clustering algorithms, both for larger lesion regions like tumor areas and for smaller lesion areas like calcification point areas.
    Matched MeSH terms: Fuzzy Logic*
  13. Senanayake C, Senanayake SM
    Comput Methods Biomech Biomed Engin, 2011 Oct;14(10):863-74.
    PMID: 20924859 DOI: 10.1080/10255842.2010.499866
    In this paper, a gait event detection algorithm is presented that uses computer intelligence (fuzzy logic) to identify seven gait phases in walking gait. Two inertial measurement units and four force-sensitive resistors were used to obtain knee angle and foot pressure patterns, respectively. Fuzzy logic is used to address the complexity in distinguishing gait phases based on discrete events. A novel application of the seven-dimensional vector analysis method to estimate the amount of abnormalities detected was also investigated based on the two gait parameters. Experiments were carried out to validate the application of the two proposed algorithms to provide accurate feedback in rehabilitation. The algorithm responses were tested for two cases, normal and abnormal gait. The large amount of data required for reliable gait-phase detection necessitate the utilisation of computer methods to store and manage the data. Therefore, a database management system and an interactive graphical user interface were developed for the utilisation of the overall system in a clinical environment.
    Matched MeSH terms: Fuzzy Logic
  14. Shamshirband S, Banjanovic-Mehmedovic L, Bosankic I, Kasapovic S, Abdul Wahab AW
    PLoS One, 2016;11(5):e0155697.
    PMID: 27219539 DOI: 10.1371/journal.pone.0155697
    Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder.
    Matched MeSH terms: Fuzzy Logic
  15. Hoque MA, Pradhan B, Ahmed N, Sohel MSI
    Sci Total Environ, 2020 Nov 17.
    PMID: 33248778 DOI: 10.1016/j.scitotenv.2020.143600
    Droughts are recurring events in Australia and cause a severe effect on agricultural and water resources. However, the studies about agricultural drought risk mapping are very limited in Australia. Therefore, a comprehensive agricultural drought risk assessment approach that incorporates all the risk components with their influencing criteria is essential to generate detailed drought risk information for operational drought management. A comprehensive agricultural drought risk assessment approach was prepared in this work incorporating all components of risk (hazard, vulnerability, exposure, and mitigation capacity) with their relevant criteria using geospatial techniques. The prepared approach is then applied to identify the spatial pattern of agricultural drought risk for Northern New South Wales region of Australia. A total of 16 relevant criteria under each risk component were considered, and fuzzy logic aided geospatial techniques were used to prepare vulnerability, exposure, hazard, and mitigation capacity indices. These indices were then incorporated to quantify agricultural drought risk comprehensively in the study area. The outputs depicted that about 19.2% and 41.7% areas are under very-high and moderate to high risk to agricultural droughts, respectively. The efficiency of the results is successfully evaluated using a drought inventory map. The generated spatial drought risk information produced by this study can assist relevant authorities in formulating proactive agricultural drought mitigation strategies.
    Matched MeSH terms: Fuzzy Logic
  16. Hossain M, Mekhilef S, Afifi F, Halabi LM, Olatomiwa L, Seyedmahmoudian M, et al.
    PLoS One, 2018;13(4):e0193772.
    PMID: 29702645 DOI: 10.1371/journal.pone.0193772
    In this paper, the suitability and performance of ANFIS (adaptive neuro-fuzzy inference system), ANFIS-PSO (particle swarm optimization), ANFIS-GA (genetic algorithm) and ANFIS-DE (differential evolution) has been investigated for the prediction of monthly and weekly wind power density (WPD) of four different locations named Mersing, Kuala Terengganu, Pulau Langkawi and Bayan Lepas all in Malaysia. For this aim, standalone ANFIS, ANFIS-PSO, ANFIS-GA and ANFIS-DE prediction algorithm are developed in MATLAB platform. The performance of the proposed hybrid ANFIS models is determined by computing different statistical parameters such as mean absolute bias error (MABE), mean absolute percentage error (MAPE), root mean square error (RMSE) and coefficient of determination (R2). The results obtained from ANFIS-PSO and ANFIS-GA enjoy higher performance and accuracy than other models, and they can be suggested for practical application to predict monthly and weekly mean wind power density. Besides, the capability of the proposed hybrid ANFIS models is examined to predict the wind data for the locations where measured wind data are not available, and the results are compared with the measured wind data from nearby stations.
    Matched MeSH terms: Fuzzy Logic
  17. Alyousifi Y, Othman M, Husin A, Rathnayake U
    Ecotoxicol Environ Saf, 2021 Dec 20;227:112875.
    PMID: 34717219 DOI: 10.1016/j.ecoenv.2021.112875
    Fuzzy time series (FTS) forecasting models show a great performance in predicting time series, such as air pollution time series. However, they have caused major issues by utilizing random partitioning of the universe of discourse and ignoring repeated fuzzy sets. In this study, a novel hybrid forecasting model by integrating fuzzy time series to Markov chain and C-Means clustering techniques with an optimal number of clusters is presented. This hybridization contributes to generating effective lengths of intervals and thus, improving the model accuracy. The proposed model was verified and validated with real time series data sets, which are the benchmark data of actual trading of Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and PM10 concentration data from Melaka, Malaysia. In addition, a comparison was made with some existing fuzzy time series models. Furthermore, the mean absolute percentage error, mean squared error and Theil's U statistic were calculated as evaluation criteria to illustrate the performance of the proposed model. The empirical analysis shows that the proposed model handles the time series data sets more efficiently and provides better overall forecasting results than existing FTS models. The results prove that the proposed model has greatly improved the prediction accuracy, for which it outperforms several fuzzy time series models. Therefore, it can be concluded that the proposed model is a better option for forecasting air pollution parameters and any kind of random parameters.
    Matched MeSH terms: Fuzzy Logic
  18. S C, M V P, S V, M N, K P, Panda B, et al.
    Environ Res, 2022 03;204(Pt A):111729.
    PMID: 34478727 DOI: 10.1016/j.envres.2021.111729
    This study was focused on identifying the region suitable for agriculture-based, using new irrigation groundwater quality plot and its spatio-temporal variation with fuzzy logic technique in a geographic information system (GIS) platform. Six hundred and eighty groundwater samples were collected during pre, southwest, northeast, and post monsoon periods. A new ternary plot was also attempted to determine the irrigation suitability of water by considering four essential parameters such as sodium adsorption ratio (SAR), permeability index (PI), Sodium percentage (Na %), and electrical conductivity (EC). The derived ternary plot was the most beneficial over other available plots, as it incorporated four parameters, and it differs from the US Salinity Laboratory (USSL) plot, such that the groundwater with higher EC could also be used for irrigation purposes, depending on the Na%. The ternary plot revealed that the groundwater predominantly manifested good to moderate category during post, northeast, and southwest monsoons. The assessment with the amount of fertilizer used during the study period showed that the NPK fertilizers were effectively used for irrigation during monsoon periods. Spatial maps on EC, Kelly's ratio, Mg hazard, Na%, PI, potential salinity (PS), SAR, residual sodium carbonate (RSC), and soluble sodium percentage (SSP) were prepared for each season using fuzzy membership values, integrated for each season. A final suitability map derived by an overlay of all the seasonal outputs has identified that the groundwater in the western and the eastern part of the study area are suitable for agriculture. The study recommends cultivation of groundwater-dependent short-term crops, along the western and northern regions of the study area during the pre-monsoon season.
    Matched MeSH terms: Fuzzy Logic
  19. Mohammed N, Palaniandy P, Shaik F, Mewada H, Balakrishnan D
    Chemosphere, 2023 Feb;314:137665.
    PMID: 36581118 DOI: 10.1016/j.chemosphere.2022.137665
    In this approach, a batch reactor was employed to study the degradation of pollutants under natural sunlight using TiO2 as a photocatalyst. The effects of photocatalyst dosage, reaction time and pH were investigated by evaluating the percentage removal efficiencies of total organic carbon (TOC), chemical oxygen demand (COD), biological oxygen demand (BOD) and biodegradability (BOD/COD). Design Expert-Response Surface Methodology Box Behnken Design (BBD) and MATLAB Artificial Neural Network - Adaptive Neuro Fuzzy Inference system (ANN-ANFIS) methods were employed to perform the statistical modelling. The experimental values of maximum percentage removal efficiencies were found to be TOC = 82.4, COD = 85.9, BOD = 30.9% and biodegradability was 0.070. According to RSM-BBD and ANFIS analysis, the maximum percentage removal efficiencies were found to be TOC = 90.3, 82.4; COD = 85.4, 85.9; BOD = 28.9, 30.9% and the biodegradability = 0.074, 0.080 respectively at the pH 7.5, reaction time 300 min and photocatalyst dosage of 4 g L-1. The study reveals both models found to be well predicted as compared with experimental values. The values of R2 for RSM-BBD (0.920) and for ANFIS (0.990) models were almost close to 1. The ANFIS model was found to be marginally better than that of RSM-BBD.
    Matched MeSH terms: Fuzzy Logic
  20. Chong JWR, Tang DYY, Leong HY, Khoo KS, Show PL, Chew KW
    Bioengineered, 2023 Dec;14(1):2244232.
    PMID: 37578162 DOI: 10.1080/21655979.2023.2244232
    Fucoxanthin is a carotenoid that possesses various beneficial medicinal properties for human well-being. However, the current extraction technologies and quantification techniques are still lacking in terms of cost validation, high energy consumption, long extraction time, and low yield production. To date, artificial intelligence (AI) models can assist and improvise the bottleneck of fucoxanthin extraction and quantification process by establishing new technologies and processes which involve big data, digitalization, and automation for efficiency fucoxanthin production. This review highlights the application of AI models such as artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS), capable of learning patterns and relationships from large datasets, capturing non-linearity, and predicting optimal conditions that significantly impact the fucoxanthin extraction yield. On top of that, combining metaheuristic algorithm such as genetic algorithm (GA) can further improve the parameter space and discovery of optimal conditions of ANN and ANFIS models, which results in high R2 accuracy ranging from 98.28% to 99.60% after optimization. Besides, AI models such as support vector machine (SVM), convolutional neural networks (CNNs), and ANN have been leveraged for the quantification of fucoxanthin, either computer vision based on color space of images or regression analysis based on statistical data. The findings are reliable when modeling for the concentration of pigments with high R2 accuracy ranging from 66.0% - 99.2%. This review paper has reviewed the feasibility and potential of AI for the extraction and quantification purposes, which can reduce the cost, accelerate the fucoxanthin yields, and development of fucoxanthin-based products.
    Matched MeSH terms: Fuzzy Logic
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links