Displaying publications 41 - 60 of 116 in total

Abstract:
Sort:
  1. Chan KY, Lau CL, Adeeb SM, Somasundaram S, Nasir-Zahari M
    Plast Reconstr Surg, 2005 Sep 15;116(4):1013-20; discussion 1021-2.
    PMID: 16163087
    BACKGROUND: Hypertrophic scarring caused by sternotomy is prevalent among Asians. The effectiveness of silicone gel in scar prevention may influence the decision of surgeons and patients regarding its routine use during the postoperative period.

    METHODS: The authors conducted a randomized, placebo-controlled, double-blind, prospective clinical trial. The susceptibility to scar development varied among patients; therefore, sternal wounds were divided into the upper half and the lower half. Two types of coded gel prepared by an independent pharmacist were used on either half. Thus, selection and assessment biases and confounders were eliminated.

    RESULTS: One hundred wounds in 50 patients were randomized into two arms, 50 control and 50 silicone gels. The median age was 61 years and there were 34 men and 16 women. Ethnic distribution was 28 Malays, 18 Chinese, and four Indians. No side effect caused by the silicone gel was noted. Ninety-eight percent of patients had moderate to good compliance. The incidence of sternotomy scar was 94 percent. At the third month postoperatively, the silicone gel wounds were scored lower when compared with the control wounds. The differences were statistically significant in all parameters, including pigmentation (p = 0.02), vascularity (p = 0.001), pliability (p = 0.001), height (p = 0.001), pain (p = 0.001), and itchiness (p = 0.02).

    CONCLUSIONS: The effect of silicone gel in prevention of hypertrophic scar development in sternotomy wounds is promising. There are no side effects and patients' compliance is satisfactory. This study may popularize the use of silicone gel in all types of surgery to minimize the formation of hypertrophic scars in the early postoperative period.

    Matched MeSH terms: Silicone Gels/therapeutic use*
  2. Fong Yen W, Basri M, Ahmad M, Ismail M
    ScientificWorldJournal, 2015;2015:495271.
    PMID: 25853145 DOI: 10.1155/2015/495271
    Galantamine hydrobromide is formulated in tablets and capsules prescribed through oral delivery for the treatment of Alzheimer's disease. However, oral delivery of drugs can cause severe side effects such as nausea, vomiting, and gastrointestinal disturbance. Transdermal delivery of galantamine hydrobromide could avoid these unwanted side effects. In this work, galantamine hydrobromide was formulated in gel drug reservoir which was then fabricated in the transdermal patch. The in vitro drug release studies revealed that the drug release from the donor chamber to receptor chamber of Franz diffusion cell was affected by the amount of polymer, amount of neutralizer, amount of drug, types of permeation enhancer, and amount of permeation enhancer. Visual observations of the gels showed that all formulated gels are translucent, homogeneous, smooth, and stable. These gels have pH in the suitable range for skin. The gel also showed high drug content uniformity. Hence, this formulation can be further used in the preparation of transdermal patch drug delivery system.
    Matched MeSH terms: Gels*
  3. Tan YT, Peh KK, Al-Hanbali O
    AAPS PharmSciTech, 2000;1(3):E24.
    PMID: 14727910
    This study examined the mechanical (hardness, compressibility, adhesiveness, and cohesiveness) and rheological (zero-rate viscosity and thixotropy) properties of polyethylene glycol (PEG) gels that contain different ratios of Carbopol 934P (CP) and polyvinylpyrrolidone K90 (PVP). Mechanical properties were examined using a texture analyzer (TA-XT2), and rheological properties were examined using a rheometer (Rheomat 115A). In addition, lidocaine release from gels was evaluated using a release apparatus simulating the buccal condition. The results indicated that an increase in CP concentration significantly increased gel compressibility, hardness, and adhesiveness, factors that affect ease of gel removal from container, ease of gel application onto mucosal membrane, and gel bioadhesion. However, CP concentration was negatively correlated with gel cohesiveness, a factor representing structural reformation. In contrast, PVP concentration was negatively correlated with gel hardness and compressibility, but positively correlated with gel cohesiveness. All PEG gels exhibited pseudoplastic flow with thixotropy, indicating a general loss of consistency with increased shearing stress. Drug release T50% was affected by the flow rate of the simulated saliva solution. A reduction in the flow rate caused a slower drug release and hence a higher T50% value. In addition, drug release was significantly reduced as the concentrations of CP and PVP increased because of the increase in zero-rate viscosity of the gels. Response surfaces and contour plots of the dependent variables further substantiated that various combinations of CP and PVP in the PEG gels offered a wide range of mechanical, rheological, and drug-release characteristics. A combination of CP and PVP with complementary physical properties resulted in a prolonged buccal drug delivery.
    Matched MeSH terms: Gels/chemistry*
  4. Shi W, Ching YC, Chuah CH
    Int J Biol Macromol, 2021 Feb 15;170:751-767.
    PMID: 33412201 DOI: 10.1016/j.ijbiomac.2020.12.214
    Spherical aerogels are not easily broken during use and are easier to transport and store which can be used as templates for drug delivery. This review summarizes the possible approaches for the preparation of aerogel beads and microspheres based on chitosan and cellulose, an overview to the methods of manufacturing droplets is presented, afterwards, the transition mechanisms from sol to a spherical gel are reviewed in detail followed by different drying processes to obtain spherical aerogels with porous structures. Additionally, a specific focus is given to aerogel beads and microspheres to be regarded as drug delivery carriers. Furthermore, a core/shell architecture of aerogel beads and microspheres for controlled drug release is described and subjected to inspire readers to create novel drug release system. Finally, the conclusions and outlooks of aerogel beads and microspheres for drug delivery are summarized.
    Matched MeSH terms: Gels/chemistry*
  5. Ojukwu M, Tan JS, Easa AM
    J Food Sci, 2020 Sep;85(9):2720-2727.
    PMID: 32776580 DOI: 10.1111/1750-3841.15357
    A process for enhancing textural and cooking properties of fresh rice flour-soy protein isolate noodles (RNS) to match those of yellow alkaline noodles (YAN) was developed by incorporating microbial transglutaminase (RNS-MTG), glucono-δ-lactone (RNS-GDL), and both MTG and GDL into the RNS noodles (RNS-COM). The formation of γ-glutamyl-lysine bonds in RNS-COM and RNS-MTG was shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Scanning electron microscope showed that compared to others, the structure of RNS-COM was denser, smoother with extensive apparent interconnectivity of aggregates. The optimum cooking time was in the order: YAN > RNS-COM > RNS-MTG > RNS-GDL > RN (rice flour noodles); tensile strength was in the order: YAN > RNS-COM > RNS-MTG > RNS-GDL > RN; and elasticity were in the order: YAN > RNS-COM > RNS-MTG, RNS-GDL > RN. Overall, RNS-COM showed similar textural and structural breakdown parameters as compared to those of YAN. Changes in microstructures and improvement of RNS-COM in certain properties were likely due to enhanced crosslinking of proteins attributed to MTG- and GDL-induced cold gelation of proteins at reduced pH value. It is possible to use the combination of MTG and GDL to improve textural and mechanical properties of RNS comparable to those of YAN. PRACTICAL APPLICATION: Combined MTG and GDL yield rice flour noodles with improved textural properties. The restructured rice flour noodles have the potential to replace yellow alkaline noodles.
    Matched MeSH terms: Gels/chemistry
  6. Ahmad AL, Abd Shukor SR, Leo CP
    J Nanosci Nanotechnol, 2006 Dec;6(12):3910-4.
    PMID: 17256351
    Polymeric vanadium pentoxide gel was formed via the reaction of V2O5 powder with hydrogen peroxide. The polymeric vanadium pentoxide gel was then dispersed in alumina gel. Different vanadium loading composites were coated on alumina support and calcined at 500 degrees C for 1 hr. These composite layers were characterized using TGA, FT-IR, XRD, SEM, and Autosorb. It was found that the lamellar structure of polymerized vanadium pentoxide was retained in the inorganic matrix. Crystalline alumina in gamma phase was formed after calcinations. However, the vanadium-alumina mixed oxides are lack of the well defined PXRD peaks for polycrystalline V2O5. This is possibly because the vanadia species are highly dispersed in the alumina matrix or the vanadia species are dispersed as crystalline which is smaller than 4 nm. In addition, the imbedded polymeric vanadium oxide improved the specific area and average pore diameter of the composite layer.
    Matched MeSH terms: Gels/chemistry
  7. Veloo KV, Ibrahim NAS
    J Sep Sci, 2020 Aug;43(15):3027-3035.
    PMID: 32386268 DOI: 10.1002/jssc.201901237
    A new sol-gel hybrid methyltrimethoxysilane-chloropropyltriethoxysilane was prepared as sorbent for solid-phase extraction. The extraction efficiency of the prepared sol-gel hybrid methyltrimethoxysilane-chloropropyltriethoxysilane was assessed by using three selected organophosphorus pesticides, namely, chlorpyrifos, profenofos, and malathion. Gas chromatography-mass spectrometry was used for detection of organophosphorus pesticides. Several vital parameters were optimized to identify the best extraction conditions. Under the optimum extraction conditions, solid-phase extraction-methyltrimethoxysilane-chloropropyltriethoxysilane method showed good linearity range (0.05-1 μg/mL) with coefficient of determination more than 0.995. The limits of detection obtained were in the range of 0.01-0.07 μg/mL and limits of quantification ranging from 0.03 to 0.21 μg/mL. The limits of detection obtained for the developed method were 2.3-6.5× lower than the limits of detection of commercial octadecyl silica sorbent. Real samples analysis was carried out by applying the developed method on red apple and purple grape samples. The developed method exhibited good recoveries (88.33-120.7%) with low relative standard deviations ranging from 1.6 to 3.3% compared to commercial octadecyl silica sorbent, which showed acceptable recoveries (70.3-100.2%) and relative standard deviations (6.3-8.8%). The solid-phase extraction-methyltrimethoxysilane-chloropropyltriethoxysilane method is presented as an alternative extraction method for determination of organophosphorus pesticides.
    Matched MeSH terms: Gels/chemistry
  8. Abrami M, Golob S, Pontelli F, Chiarappa G, Grassi G, Perissutti B, et al.
    Int J Pharm, 2019 Mar 25;559:373-381.
    PMID: 30716402 DOI: 10.1016/j.ijpharm.2019.01.055
    Bacterial infections represent an important drawback in the orthopaedic field, as they can develop either immediately after surgery procedures or after some years. Specifically, in case of implants, they are alleged to be troublesome as their elimination often compels a surgical removal of the infected implant. A possible solution strategy could involve a local coating of the implant by an antibacterial system, which requires to be easily applicable, biocompatible and able to provide the desired release kinetics for the selected antibacterial drug. Thus, this work focusses on a biphasic system made up by a thermo-reversible gel matrix (Poloxamer 407/water system) hosting a dispersed phase (PLGA micro-particles), containing a model antibacterial drug (vancomycin hydrochloride). In order to understand the key parameters ruling the performance of this delivery system, we developed a mathematical model able to discriminate the drug diffusion inside micro-particles and within the gel phase, eventually providing to predict the drug release kinetics. The model reliability was confirmed by fitting to experimental data, proposing as a powerful theoretical approach to design and optimize such in situ delivery systems.
    Matched MeSH terms: Gels/chemistry*
  9. Seow EK, Tan TC, Lee LK, Easa AM
    J Texture Stud, 2020 12;51(6):909-916.
    PMID: 32537814 DOI: 10.1111/jtxs.12544
    Hardening issue in starch-based products that arises during storage, is ascribed to the long-term starch retrogradation which involves the recrystallisation of amylopectin. Present study aimed to delay storage hardening with the addition of high diastase honey bee honey (HBH) and low diastase kelulut bee honey (KBH) into glutinous rice flour (GRF) gels. As compared to KBH, retardation of texture deterioration by HBH was more prominent as evidenced by the significantly (p 
    Matched MeSH terms: Gels/chemistry*
  10. Abdulbaqi IM, Darwis Y, Assi RA, Khan NAK
    Drug Des Devel Ther, 2018;12:795-813.
    PMID: 29670336 DOI: 10.2147/DDDT.S158018
    Introduction: Colchicine is used for the treatment of gout, pseudo-gout, familial Mediterranean fever, and many other illnesses. Its oral administration is associated with poor bioavailability and severe gastrointestinal side effects. The drug is also known to have a low therapeutic index. Thus to overcome these drawbacks, the transdermal delivery of colchicine was investigated using transethosomal gels as potential carriers.

    Methods: Colchicine-loaded transethosomes (TEs) were prepared by the cold method and statistically optimized using three sets of 24 factorial design experiments. The optimized formulations were incorporated into Carbopol 940® gel base. The prepared colchicine-loaded transethosomal gels were further characterized for vesicular size, dispersity, zeta potential, drug content, pH, viscosity, yield, rheological behavior, and ex vivo skin permeation through Sprague Dawley rats' back skin.

    Results: The results showed that the colchicine-loaded TEs had aspherical irregular shape, nanometric size range, and high entrapment efficiency. All the formulated gels exhibited non-Newtonian plastic flow without thixotropy. Colchicine-loaded transethosomal gels were able to significantly enhance the skin permeation parameters of the drug in comparison to the non-ethosomal gel.

    Conclusion: These findings suggested that the transethosomal gels are promising carriers for the transdermal delivery of colchicine, providing an alternative route for drug administration.

    Matched MeSH terms: Gels/chemistry
  11. Gan CY, Cheng LH, Azahari B, Easa AM
    Int J Food Sci Nutr, 2009;60 Suppl 7:99-108.
    PMID: 19194813 DOI: 10.1080/09637480802635090
    Cross-linked soy protein isolate (SPI) gels were produced via single-treatment of SPI with microbial transglutaminase (MTG) for 5 h or 24 h, or with ribose for 2 h, or via combined-treatments of SPI with MTG followed by heating with ribose. Assessment of gel strength and solubility concluded that measures which increased protein cross-links resulted in improved gel strength; however, in most cases the digestibility and amino acid content of the gels were reduced. The combined treated gel of SPI/MTG for 24 h/ribose was more easily digested by digestive enzymes and retained higher amounts of amino acids compared with the control Maillard gels of SPI with ribose. MTG consumed lysine and glutamine and reduced the availability of amino acids for the Maillard reaction with ribose. MTG was able to preserve the nutritional value of SPI against the destructive effect of the Maillard reaction and cross-links.
    Matched MeSH terms: Gels/metabolism; Gels/chemistry
  12. Djaeni M, Prasetyaningrum A, Sasongko SB, Widayat W, Hii CL
    J Food Sci Technol, 2015 Feb;52(2):1170-5.
    PMID: 25694735 DOI: 10.1007/s13197-013-1081-0
    Drying is a significant step in the production of carrageenan. However, current drying process still deals with too long drying time and carrageenan quality degradation. The foam mat drying is an option to speed up drying process as well as retaining carrageenan quality. In this case, the carrageenan was mixed with egg white (albumin) as foaming agent and methyl cellulose for foam stabilizer. The foam will break the carrageenan gels and creates the porous structure resulting higher surface area for water transfer. This research studied the effect of egg white and methyl cellulose on carrageenan drying at various air temperature, and thickness. As a response, the water content versus time was observed and the drying rate was estimated. Meanwhile, the carrageenan texture was verified by X-RD (X-Ray Diffraction) and TEM (Transmission Electron Microscopy). Results showed that the presence of egg white stablized by methyl cellulose can speed up drying rate as well as retaining the crystalline structure of carrageenan. The higher albumin content, the faster drying rate. However, the addition of albumin and methyl cellulose restricted not more than 30 % in the mixture for keeping carrageenan quality and purity. By adding egg white 20 % and methyl cellulose 10 %, the water diffusion and drying rate can be two fold compared with carrageenan drying without foam. The improvement can be higher at the higher temperature and thinner carrageenan sheets.
    Matched MeSH terms: Gels
  13. See SF, Ghassem M, Mamot S, Babji AS
    J Food Sci Technol, 2015 Feb;52(2):753-62.
    PMID: 25694683 DOI: 10.1007/s13197-013-1043-6
    Pretreatments with different types of alkali and acid were compared to determine their effects on gelatin extraction from African catfish (Clarias gariepinus) skin. The study was divided into three parts. In the first part, the skins were only treated with alkaline (Ca(OH)2 or NaOH) solution or pretreated with acetic acid solution. For second part, combination of alkali and acid pretreatment was carried out. For the third part, the skins were first treated with NaOH solution, followed by the treatment with acetic acid, citric acid or sulfuric acid solution. Functional properties including the yield of protein recovery, gel strength, viscosity, pH and viscoelastic properties were determined on gelatins obtained with different pretreatment conditions. Pretreatment with alkali removed noncollagenous proteins effectively, whilst acid pretreatment induced some loss of collagenous proteins. Combination of alkali and acid pretreatment not only removed the noncollagenous proteins and caused a significant amount of swelling, but also provided the proper pH condition for extraction, during which some cross-linkages could be further destroyed but with less breakage of intramolecular peptide chains. Pretreatment of catfish skins with 0.2 N NaOH followed by 0.05 M acetic acid improved yield of protein recovery, gel strength, viscosity, melting temperature and gelling temperature of gelatin extract.
    Matched MeSH terms: Gels
  14. Yusof NA, Kadir WA
    PMID: 19010723 DOI: 10.1016/j.saa.2008.07.019
    Optical test strip based on the use of Br-PADAP as a sensitive reagent immobilised into sol-gel thin film for detection of Hg(II) in aqueous solution had been thoroughly carried out. It has a square-sensing zone (1.0 cm x 1.0 cm) containing the sensitive reagent necessary to produce response to trace level of mercury. This method offer sensitivity and simplicity in detecting Hg(II) as no prior treatment or extraction is required. A linear response was attained in the Hg(II) concentration in the range of 0.5-2.5 ppm with calculated limit of detection of 6.63 ppb. This method also showed a reproducible result with relative standard deviation (R.S.D.) of 2.15% and response time of approximately 5 min. Interference studies showed that Al(III), Co(II) and Ni(II) significantly interfered during the determination. The developed sensor has been validated against Atomic Absorption Spectroscopy method and proven comparable.
    Matched MeSH terms: Gels
  15. Leong LH, Kandaiya S, Seng NB
    Australas Phys Eng Sci Med, 2007 Jun;30(2):135-40.
    PMID: 17682403
    The oxidation of ferrous to ferric ions due to ionizing radiation has been used for chemical dosimetry since 1927. The introduction of metal indicator dye xylenol orange (XO) sensitises the measurement of ferric ion yield. A ferrous sulphate- agarose- xylenol orange (FAX) gel was prepared and the gel then exposed to dose ranging from 0.2 to 10 Gy using various high energy photon and electron beams from a linear accelerator. Some general characteristics of FAX such as energy dependence, optical density (OD)-dose relationship, reproducibility and auto-oxidation of ferrous ions were analysed. The radiation yield G of the gel was calculated for gels prepared in oxygen and in air and the values were 46.3 +/- 2.1 and 40.9 +/- 1.4 Fe3+ per 100 eV for photons respectively. However for stock gel which was kept for 5 days pre-irradiation the G value decreased to 36.6 +/- 1.1. The gel shows linearity in OD-dose relationship, energy independence and reproducibility over the dose range investigated. Auto-oxidation of ferrous ions resulted in optical density changes of less than 1.5% per day.
    Matched MeSH terms: Gels
  16. Pandurangan DK, Bodagala P, Palanirajan VK, Govindaraj S
    Int J Pharm Investig, 2016 Jan-Mar;6(1):56-62.
    PMID: 27014620 DOI: 10.4103/2230-973X.176488
    In the present investigation, solid lipid nanoparticles (SLNs)-loaded in situ gel with voriconazole drug was formulated. Further, the formulation was characterized for pH, gelling capacity, entrapment efficiency, in vitro drug release, drug content, and viscosity. Voriconazole is an antifungal drug used to treat various infections caused by yeast or other types of fungi. Film hydration technique was used to prepared SLNs from lecithin and cholesterol. Based on the entrapment efficiency 67.2-97.3% and drug release, the optimized formulation NF1 of SLNs was incorporated into in situ gels. The in situ gels were prepared using viscosity-enhancing polymers such as Carbopol and (hydroxypropyl)methyl cellulose (HPMC). Formulated SLN in situ gel formulations were characterized, which showed pH 4.9-7.1, drug content 65.69-96.3%, and viscosity (100 rpm) 120-620 cps. From the characterizations given above, F6 was optimized and evaluated for microbial assay and ocular irritation studies. Microbial assay was conducted by the cup-plate method using Candida albicans as the test organism. An ocular irritation study was conducted on albino rabbits. The results revealed that there was no ocular damage to the cornea, conjunctiva, or iris. Stability studies were carried out on the F6 formulation for 3 months, which showed that the formulation had good stability. These results indicate that the studied SLNs-loaded in situ gel is a promising vehicle for ocular delivery.
    Matched MeSH terms: Gels
  17. Abdullah BJ, Mohd Yusof MY, Khoo BH
    Clin Radiol, 1998 Mar;53(3):212-4.
    PMID: 9528873
    Nosocomial infections are posing an increasingly serious problem in the hospital setting. With the increasing use of ultrasound in medical diagnosis, there is the potential for transmission of nosocomial infections via the ultrasound transducer and coupling gel. We evaluated the use of different membranes (three types of commercially available household cling film, condom, surgical glove and Opsite) applied over the ultrasound probe to determine if these were safe, convenient, cost-effective and did not impair the performance parameters of the ultrasound probe. None of the membranes impaired the physical scanning parameters using a Multi-Purpose Tissue/Cyst Phantom. The cling film was ideal for general use in terms of cost and convenience as well as safety. For sterile use the Opsite was better overall compared to the surgical glove, though it costs significantly more. The condom and surgical glove, though safe, were not very convenient to use for scanning.
    Matched MeSH terms: Gels
  18. Nami Y, Haghshenas B, Yari Khosroushahi A
    Food Sci Nutr, 2017 05;5(3):554-563.
    PMID: 28572941 DOI: 10.1002/fsn3.430
    Different herbal biopolymers were used to encapsulate Enterococcus durans IW3 to enhance its storage stability in yogurt and subsequently its endurance in gastrointestinal condition. Nine formulations of encapsulation were performed using alginate (ALG), ALG-psyllium (PSY), and ALG-gum Arabic (GA) blends. The encapsulation efficiency of all formulations, tolerance of encapsulated E. durans IW3 against low pH/high bile salt concentration, storage lifetime, and release profile of cells in natural condition of yogurt were evaluated. Result revealed 98.6% encapsulation efficiency and 76% survival rate for all formulation compared with the unencapsulated formulation cells (43%). The ALG-PSY and ALG-GA formulations have slightly higher survival rates at low pH and bile salt condition (i.e., 76-93% and 81-95%, respectively) compared with the ALG formulation. All encapsulated E. durans IW3 was released from the prepared beads of ALG after 90 min, whereas both probiotics encapsulated in ALG-GA and ALG-PSY were released after 60 min. Enterococcus durans IW3 was successfully encapsulated in ALG, ALG-GA, and ALG-PSY beads prepared by extrusion method. ALG-GA and ALG-PSY beads are suitable delivery carriers for the oral administration of bioactive compounds like probiotics. The GA and PSY gels exhibited better potential for encapsulation of probiotic bacteria cells because of the amendment of ALG difficulties and utilization of therapeutic and prebiotic potentials of these herbal biopolymers.
    Matched MeSH terms: Gels
  19. Kurniawansyah IS, Rusdiana T, Sopyan I, Ramoko H, Wahab HA, Subarnas A
    Heliyon, 2020 Nov;6(11):e05365.
    PMID: 33251348 DOI: 10.1016/j.heliyon.2020.e05365
    Background: Conventional drug delivery systems have some major drawbacks such as low bioavailability, short residence time and rapid precorneal drainage. An in situ gel drug delivery system provides several benefits, such as prolonged pharmacological duration of action, simpler production techniques, and low cost of manufacturing. This research aims to get the optimum formula of chloramphenicol in situ gel based on the physical evaluation.

    Methods: The effects of independent variables (poloxamer 407 and hydroxypropyl methyl cellulose (HPMC) concentration) on various dependent variables (gelling capacity, pH and viscosity) were investigated by using 32 factorial design and organoleptic evaluation was done with descriptive analysis.

    Results: The optimized formula of chloramphenicol in situ gel yielded 9 variations of poloxamer 407 and HPMC bases composition in % w/v as follows, F1 (5; 0.45), F2 (7.5; 0.45), F3 (10; 0.45), F4 (5; 0.725), F5 (7.5; 0.725), F6 (10; 0.725), F7 (5; 1), F8 (7.5; 1), F9 (10; 1). The results indicated that the organoleptic, pH, and gelling capacity parameters matched all formulas (F1-F9), however, the viscosity parameter only matched F3, F6, F8, and F9. Based on factorial design, F6 had the best formula with desirability value of 0.54, but the design recommended that formula with the composition bases of poloxamer 407 and HPMC at the ratio of 8.16 % w/v and 0.77 % w/v, respectively, was the optimum formula with a desirability value of 0.69.

    Conclusion: All formulas have met the Indonesian pharmacopoeia requirements based on the physical evaluation, especially formula 6 (F6), which was supported by the result of factorial design analysis.

    Matched MeSH terms: Gels
  20. Roberts AD, Brackley CA
    J Dent, 1996 Sep;24(5):339-43.
    PMID: 8916648
    OBJECTIVES: A survey of general dental practitioners and dental surgery assistants was carried out to ascertain their preferences and opinions on powder-free hydrogel-coated gloves compared with starch-powdered gloves. The aim was to relate the survey findings to laboratory measurements of the frictional characteristics of glove inner surfaces and their water absorptive capability.

    METHODS: The survey was carried out using a questionnaire given to local dental practitioners. Glove friction and water absorption measurements were made using specially designed equipment.

    RESULTS: The survey showed that a selected group of dentist and dental surgery assistants preferred hydrogel-coated gloves, particularly for damp donning, durability and long-term wear comfort. Laboratory measurements showed that the hydrogel coating gave a low friction coefficient against damp skin. The coating was durable, and absorbed water more readily than other treatments.

    CONCLUSION: A survey of dental practitioners and dental surgery assistants and laboratory measurements indicates that hydrogel-coated gloves have superior properties, and are preferred to other non-sterile glove types.

    Matched MeSH terms: Gels
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links