Displaying publications 41 - 60 of 68 in total

Abstract:
Sort:
  1. Ali F, Khan KM, Salar U, Taha M, Ismail NH, Wadood A, et al.
    Eur J Med Chem, 2017 Sep 29;138:255-272.
    PMID: 28672278 DOI: 10.1016/j.ejmech.2017.06.041
    Acarbose, miglitol, and voglibose are the inhibitors of α-glucosidase enzyme and being clinically used for the management of type-II diabetes mellitus. However, many adverse effects are also associated with them. So, the development of new therapeutic agents is an utmost interest in medicinal chemistry research. Current study is based on the identification of new α-glucosidase inhibitors. For that purpose, hydrazinyl arylthiazole based pyridine derivatives 1-39 were synthesized via two step reaction and fully characterized by spectroscopic techniques EI-MS, HREI-MS, (1)H-, and (13)C NMR. However, stereochemistry of the iminic bond was confirmed by NOESY. All compounds were subjected to in vitro α-glucosidase inhibitory activity and found many folds active (IC50 = 1.40 ± 0.01-236.10 ± 2.20 μM) as compared to the standard acarbose having IC50 value of 856.45 ± 5.60 μM. A limited structure-activity relationship was carried out in order to make a presumption about the substituent's effect on inhibitory activity which predicted that substituents of more negative inductive effect played important role in the activity as compared to the substituents of less negative inductive effect. However, in order to have a good understanding of ligand enzyme interactions, molecular docking study was also conducted. In silico study was confirmed that substituents like halogens (Cl) and nitro (NO2) which have negative inductive effect were found to make important interactions with active site residues.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  2. Adegboye AA, Khan KM, Salar U, Aboaba SA, Kanwal, Chigurupati S, et al.
    Eur J Med Chem, 2018 Apr 25;150:248-260.
    PMID: 29533872 DOI: 10.1016/j.ejmech.2018.03.011
    Despite of many diverse biological activities exhibited by benzimidazole scaffold, it is rarely explored for the α-amylase inhibitory activity. For that purpose, 2-aryl benzimidazole derivatives 1-45 were synthesized and screened for in vitro α-amylase inhibitory activity. Structures of all synthetic compounds were deduced by various spectroscopic techniques. All compounds revealed inhibition potential with IC50 values of 1.48 ± 0.38-2.99 ± 0.14 μM, when compared to the standard acarbose (IC50 = 1.46 ± 0.26 μM). Limited SAR suggested that the variation in the inhibitory activities of the compounds are the result of different substitutions on aryl ring. In order to rationalize the binding interactions of most active compounds with the active site of α-amylase enzyme, in silico study was conducted.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  3. Barakat A, Islam MS, Al-Majid AM, Ghabbour HA, Fun HK, Javed K, et al.
    Bioorg Med Chem, 2015 Oct 15;23(20):6740-8.
    PMID: 26381063 DOI: 10.1016/j.bmc.2015.09.001
    We describe here the synthesis of dihydropyrimidines derivatives 3a-p, and evaluation of their α-glucosidase enzyme inhibition activities. Compounds 3b (IC50=62.4±1.5 μM), 3c (IC50=25.3±1.26 μM), 3d (IC50=12.4±0.15 μM), 3e (IC50=22.9±0.25 μM), 3g (IC50=23.8±0.17 μM), 3h (IC50=163.3±5.1 μM), 3i (IC50=30.6±0.6 μM), 3m (IC50=26.4±0.34 μM), and 3o (IC50=136.1±6.63 μM) were found to be potent α-glucosidase inhibitors in comparison to the standard drug acarbose (IC50=840±1.73 μM). The compounds were also evaluated for their in vitro cytotoxic activity against PC-3, HeLa, and MCF-3 cancer cell lines, and 3T3 mouse fibroblast cell line. All compounds were found to be non cytotoxic, except compounds 3f and 3m (IC50=17.79±0.66-20.44±0.30 μM), which showed a weak cytotoxic activity against the HeLa, and 3T3 cell lines. In molecular docking simulation study, all the compounds were docked into the active site of the predicted homology model of α-glucosidase enzyme. From the docking result, it was observed that most of the synthesized compounds showed interaction through carbonyl oxygen atom and polar phenyl ring with active site residues of the enzyme.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  4. Al-Zuaidy MH, Hamid AA, Ismail A, Mohamed S, Abdul Razis AF, Mumtaz MW, et al.
    J Food Sci, 2016 May;81(5):C1080-90.
    PMID: 27074520 DOI: 10.1111/1750-3841.13293
    Diabetes mellitus is normally characterized by chronic hyperglycemia associated with disturbances in the fat, carbohydrate, and protein metabolism. There is an increasing trend of using natural products instead of synthetic agents as alternative therapy for disorders due to their fewer side effects. In this study, antidiabetic and antioxidant activities of different Melicope lunu-ankenda (ML) ethanolic extracts were evaluated using inhibition of α-glucosidase and 2,2-diphenyl-l-picrylhydrazyl (DPPH) radicals scavenging activity, respectively; whereas, proton nuclear magnetic resonance ((1) H NMR) and ultra-high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) techniques were used for metabolite profiling of ML leaf extracts at different concentrations of ethanol and water. Sixty percent of ethanolic ML extract showed highest inhibitory effect against α-glucosidase enzyme (IC50 of 37 μg/mL) and DPPH scavenging activity (IC50 of 48 μg/mL). Antidiabetic effect of ML extracts was also evaluated in vivo and it was found that the high doses (400 mg/Kg BW) of ML extract exhibited high suppression in fasting blood glucose level by 62.75%. The metabolites responsible for variation among ML samples with variable ethanolic levels have been evaluated successfully using (1) H-NMR-based metabolomics. The principal component analysis (PCA) and partial least squares(PLS) analysis scores depicted clear and distinct separations into 4 clusters representing the 4 ethanolic concentrations by PC1 and PC2, with an eigenvalue of 69.9%. Various (1) H-NMR chemical shifts related to the metabolites responsible for sample difference were also ascribed. The main bioactive compounds identified attributing toward the separation included: isorhamnetin, skimmianine, scopoletin, and melicarpinone. Hence, ML may be used as promising medicinal plant for the development of new functional foods, new generation antidiabetic drugs, as a single entity phytomedicine or in combinational therapy.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  5. Tan DC, Idris KI, Kassim NK, Lim PC, Safinar Ismail I, Hamid M, et al.
    Pharm Biol, 2019 Dec;57(1):345-354.
    PMID: 31185767 DOI: 10.1080/13880209.2019.1610462
    Context:Paederia foetida L. (Rubiaceae) is an edible plant distributed in Asian countries including Malaysia. Fresh leaves have been traditionally used as a remedy for indigestion and diarrhea. Several phytochemical studies of the leaves have been documented, but there are few reports on twigs. Objective: This study investigates the enzyme inhibition of P. foetida twig extracts and compound isolated from them. In addition, in silico molecular docking of scopoletin was investigated. Materials and methods: Plants were obtained from two locations in Malaysia, Johor (PFJ) and Pahang (PFP). Hexane, chloroform and methanol extracts along with isolated compound (scopoletin) were evaluated for their enzyme inhibition activities (10,000-0.000016 µg/mL). The separation and identification of bio-active compounds were carried out using column chromatography and spectroscopic techniques, respectively. In silico molecular docking of scopoletin with receptors (α-amylase and α-glucosidase) was carried out using AutoDock 4.2. Results: The IC50 values of α-amylase and α-glucosidase inhibition activity of PFJ chloroform extract were 9.60 and 245.6 µg/mL, respectively. PFP chloroform extract exhibited α-amylase and α-glucosidase inhibition activity (IC50 = 14.83 and 257.2 µg/mL, respectively). The α-amylase and α-glucosidase inhibitory activity of scopoletin from both locations had IC50 values of 0.052 and 0.057 µM, respectively. Discussion and conclusions: Separation of PFJ chloroform extract afforded scopoletin (1), stigmasterol (2) and γ-sitosterol (3) and the PFP chloroform extract yielded (1), (2), (3) and ergost-5-en-3-ol (4). Scopoletin was isolated from this species for the first time. In silico calculations gave a binding energy between scopoletin and α-amylase of -6.03 kcal/mol.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology
  6. Saleem H, Htar TT, Naidu R, Zengin G, Ahmad I, Ahemad N
    Nat Prod Res, 2020 Sep;34(18):2602-2606.
    PMID: 30600720 DOI: 10.1080/14786419.2018.1543684
    In this study, phytochemical composition, antioxidant, enzyme inhibition and cytotoxic activities of methanol and dichloromethane (DCM) extracts of Bougainvillea glabra (B. glabra) flowers were investigated. Methanol extract was found to have higher total bioactive contents and UHPLC-MS analysis of methanol extract revealed the presence of well-known phenolic and flavonoid compounds. Antioxidant activities were performed by radical scavenging (DPPH and ABTS), reducing power (FRAP and CUPRAC), phosphomolybdenum (TAC) and metal chelating assays. From our result, we observed that methanol extract had many antioxidant compounds. The DCM extract exhibited higher cholinesterases and α-glucosidase enzyme inhibition, while methanol extract showed significant urease inhibition. Both extracts exhibited strong to moderate cytotoxicity against MCF-7, MDA-MB-231, CaSki, DU-145 and SW-480 cancer cells with IC50 values ranging from 88.49 to 304.7 µg/mL. The findings showed the B. glabra to possess considerable antioxidant, enzyme inhibition and cytotoxic potentials and therefore has potential to discover novel bioactive molecules.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology
  7. Nokhala A, Siddiqui MJ, Ahmed QU, Ahamad Bustamam MS, Zakaria AZA
    Biomolecules, 2020 02 12;10(2).
    PMID: 32059529 DOI: 10.3390/biom10020287
    Stone leaf (Tetracera scandens) is a Southeast Asian medicinal plant that has been traditionally used for the management of diabetes mellitus. The underlying mechanisms of the antidiabetic activity have not been fully explored yet. Hence, this study aimed to evaluate the α-glucosidase inhibitory potential of the hydromethanolic extracts of T. scandens leaves and to characterize the metabolites responsible for such activity through gas chromatography-mass spectrometry (GC-MS) metabolomics. Crude hydromethanolic extracts of different strengths were prepared and in vitro assayed for α-glucosidase inhibition. GC-MS analysis was further carried out and the mass spectral data were correlated to the corresponding α-glucosidase inhibitory IC50 values via an orthogonal partial least squares (OPLS) model. The 100%, 80%, 60% and 40% methanol extracts displayed potent α-glucosidase inhibitory potentials. Moreover, the established model identified 16 metabolites to be responsible for the α-glucosidase inhibitory activity of T. scandens. The putative α-glucosidase inhibitory metabolites showed moderate to high affinities (binding energies of -5.9 to -9.8 kcal/mol) upon docking into the active site of Saccharomyces cerevisiae isomaltase. To sum up, an OPLS model was developed as a rapid method to characterize the α-glucosidase inhibitory metabolites existing in the hydromethanolic extracts of T. scandens leaves based on GC-MS metabolite profiling.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology
  8. Abbasi MA, Rehman A, Siddiqui SZ, Hadi N, Mumtaz A, Shah SAA, et al.
    Pak J Pharm Sci, 2019 Jan;32(1):61-68.
    PMID: 30772791
    In the current research work, a series of new N-(alkyl/aralkyl)-N-(2,3-dihydro-1,4-benzodioxan-6-yl)-4-chlorobenzenesulfonamides has been synthesized by reacting 1,4-benzozzdioxan-6-amine (1) with 4-chlorobenzenesulfonyl chloride (2) to yield N-(2,3-dihydro-1,4-benzodioxan-6-yl)-4-chlorobenzenesulfonamide (3) which was further reacted with different alkyl/aralkyl halides (4a-n) to afford the target compounds (5a-n). Structures of the synthesized compounds were confirmed by IR, 1H-NMR, EI-MS spectral techniques and CHN analysis data. The results of enzyme inhibition showed that the molecules, N-2-phenethyl-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5j) and N-(1-butyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5d), exhibited moderate inhibitory potential against acetylcholinesterase with IC50 values 26.25±0.11 μM and 58.13±0.15 μM respectively, whereas, compounds N-benzyl-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5i) and N-(pentane-2-yl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5f) showed moderate inhibition against α-glucosidase enzyme as evident from IC50 values 74.52±0.07 and 83.52±0.08 μM respectively, relative to standards Eserine having IC50 value of 0.04±0.0001 μM for cholinesterases and Acarbose having IC50 value 38.25±0.12 μM for α-glucosidase, respectively.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  9. Saleem H, Zengin G, Khan KU, Ahmad I, Waqas M, Mahomoodally FM, et al.
    Nat Prod Res, 2021 Feb;35(4):664-668.
    PMID: 30919661 DOI: 10.1080/14786419.2019.1587427
    This study sets out to probe into total bioactive contents, UHPLC-MS secondary metabolites profiling, antioxidant (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum and metal chelating) and enzyme inhibitory (acetylcholinesterase- AChE, butyrylcholinesterase- BChE, α-amylase, α glucosidase, and tyrosinase) activities of methanol extract of Aerva javanica, also known as desert cotton or Kapok bush. Aerva javanica contains considerable phenolic (44.79 ± 3.12 mg GAE/g) and flavonoid (28.86 ± 0.12 mg QE/g) contents which tends to correlate with its significant antioxidant potential for ABTS, FRAP and CUPRAC assays with values of 101.41 ± 1.18, 124.10 ± 1.71 and 190.22 ± 5.70 mg TE/g, respectively. The UHPLC-MS analysis identified the presence of 45 phytochemicals belonging to six major groups: phenolic, flavonoids, lignin, terpenes, glycoside and alkaloid. Moreover, the plant extract also showed potent inhibitory action against AChE (3.73 ± 0.22 mg GALAE/g), BChE (3.31 ± 0.19 mg GALAE/g) and tyrosinase (126.05 ± 1.77 mg KAE/g). The observed results suggest A. javanica could be further explored as a natural source of bioactive compounds.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology
  10. Hassan LR, Anouar EH, Bahron H, Abdullah F, Mohd Tajuddin A
    J Biol Inorg Chem, 2020 03;25(2):239-252.
    PMID: 31974764 DOI: 10.1007/s00775-020-01755-6
    Hydroxamic acids [R(CO)N(OH)R'] are flexible compounds for organic and inorganic analyses due to their frailer structures compared to the carboxylic acid. The syntheses and characterization of benzohydroxamic acid (BHA), its CH3-, OCH3-, Cl- para-substituted derivatives and their Cr(III) complexes are reported herein. The metal complexes were synthesized by reacting the hydroxamic acids with chromium(III) chloride hexahydrate in 2:1 molar ratio. The compounds were characterized via melting point, elemental analysis, FTIR, 1H and 13C NMR, TGA, mass spectrometry, molar conductance and UV-Visible. Data analysis suggests that each complex has the Cr(III) center coordinated to the carbonyl and hydroxy oxygen atoms of the hydroxamic acids in bidentate O,O manner and two water molecules to form octahedral geometry. Non-electrolytic behavior of the complexes was shown through their low molar conductivity. Cytotoxicity study against HCT116 and alpha-glucosidase inhibition test revealed that all complexes have higher activity than their parent ligands. Molecular docking study shows that the docking of active complexes is thermodynamically favorable and the inhibition efficiency may depend on the types and the numbers of molecular interactions established in the corresponding stable conformers.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  11. Saddique FA, Aslam S, Ahmad M, Ashfaq UA, Muddassar M, Sultan S, et al.
    Molecules, 2021 May 20;26(10).
    PMID: 34065194 DOI: 10.3390/molecules26103043
    Diabetes mellitus (DM) is a chronic disorder and has affected a large number of people worldwide. Insufficient insulin production causes an increase in blood glucose level that results in DM. To lower the blood glucose level, various drugs are employed that block the activity of the α-glucosidase enzyme, which is considered responsible for the breakdown of polysaccharides into monosaccharides leading to an increase in the intestinal blood glucose level. We have synthesized novel 2-(3-(benzoyl/4-bromobenzoyl)-4-hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)-N-arylacetamides and have screened them for their in silico and in vitro α-glucosidase inhibition activity. The derivatives 11c, 12a, 12d, 12e, and 12g emerged as potent inhibitors of the α-glucosidase enzyme. These compounds exhibited good docking scores and excellent binding interactions with the selected residues (Asp203, Asp542, Asp327, His600, Arg526) during in silico screening. Similarly, these compounds also showed good in vitro α-glucosidase inhibitions with IC50 values of 30.65, 18.25, 20.76, 35.14, and 24.24 μM, respectively, which were better than the standard drug, acarbose (IC50 = 58.8 μM). Furthermore, a good agreement was observed between in silico and in vitro modes of study.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  12. Saleem F, Kanwal, Khan KM, Chigurupati S, Solangi M, Nemala AR, et al.
    Bioorg Chem, 2021 01;106:104489.
    PMID: 33272713 DOI: 10.1016/j.bioorg.2020.104489
    Diabetes being a chronic metabolic disorder have attracted the attention of medicinal chemists and biologists. The introduction of new and potential drug candidates for the cure and treatment of diabetes has become a major concern due to its increased prevelance worldwide. In the current study, twenty-seven azachalcone derivatives 3-29 were synthesized and evaluated for their antihyperglycemic activities by inhibiting α-amylase and α-glucosidase enzymes. Five compounds 3 (IC50 = 23.08 ± 0.03 µM), (IC50 = 26.08 ± 0.43 µM), 5 (IC50 = 24.57 ± 0.07 µM), (IC50 = 27.57 ± 0.07 µM), 6 (IC50 = 24.94 ± 0.12 µM), (IC50 = 27.13 ± 0.08 µM), 16 (IC50 = 27.57 ± 0.07 µM), (IC50 = 29.13 ± 0.18 µM), and 28 (IC50 = 26.94 ± 0.12 µM) (IC50 = 27.99 ± 0.09 µM) demonstrated good inhibitory activities against α-amylase and α-glucosidase enzymes, respectively. Acarbose was used as the standard in this study. Structure-activity relationship was established by considering the parent skeleton and different substitutions on aryl ring. The compounds were also subjected for kinetic studies to study their mechanism of action and they showed competitive mode of inhibition against both enzymes. The molecular docking studies have supported the results and showed that these compounds have been involved in various binding interactions within the active site of enzyme.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  13. Jani NA, Sirat HM, Ahmad F, Mohamad Ali NA, Jamil M
    Nat Prod Res, 2017 Dec;31(23):2793-2796.
    PMID: 28278643 DOI: 10.1080/14786419.2017.1294172
    Hydrodistillation of the fresh stem and leaf of Neolitsea kedahense Gamble, collected from Gunung Jerai, Malaysia followed by the GC-FID and GC-MS analysis revealed the detection of a total of 47 constituents of which 28 (86.4%) from the stem and 31 (96.4%) constituents from the leaf. δ-Cadinene (17.4%), 1-epi-cubenol (11.8%), cyperotundone (9.0%), cis-cadin-4-en-7-ol (7.7%), τ-cadinol (7.1%) and α-cadinol (7.1%) were the principle constituents in the stem oil, whereas β-caryophyllene (18.9%), bicyclogermacrene (18.6%) and trans-muurola-4(14),5-diene (9.8%) were the major constituents in the leaf oil. Among the identified constituents, three constituents namely 7-epi-α-selinene, junenol and cis-cadin-4-en-7-ol have not been found previously from Neolitsea oils. The stem and leaf oils were screened for their α-glucosidase inhibitory and antibacterial activities. Both oils displayed potential α-glucosidase inhibitory activity, while the stem oil possessed weak antibacterial activity against Bacillus subtilis.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  14. Taha M, Rahim F, Imran S, Ismail NH, Ullah H, Selvaraj M, et al.
    Bioorg Chem, 2017 10;74:30-40.
    PMID: 28750203 DOI: 10.1016/j.bioorg.2017.07.009
    Discovery of α-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the treatment of type-II diabetes mellitus and the other carbohydrate mediated disease. In continuation of our drug discovery research on potential antidiabetic agents, we synthesized novel tris-indole-oxadiazole hybrid analogs (1-21), structurally characterized by various spectroscopic techniques such as 1H NMR, EI-MS, and 13C NMR. Elemental analysis was found in agreement with the calculated values. All compounds were evaluated for α-glucosidase inhibiting potential and showed potent inhibitory activity in the range of IC50=2.00±0.01-292.40±3.16μM as compared to standard acarbose (IC50=895.09±2.04µM). The pharmacokinetic predictions of tris-indole series using descriptor properties showed that almost all compounds in this series indicate the drug aptness. Detailed binding mode analyses with docking simulation was also carried out which showed that the inhibitors can be stabilized by the formation of hydrogen bonds with catalytic residues and the establishment of hydrophobic contacts at the opposite side of the active site.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  15. Hellal K, Maulidiani M, Ismail IS, Tan CP, Abas F
    Molecules, 2020 Mar 10;25(5).
    PMID: 32164186 DOI: 10.3390/molecules25051247
    Claims of effective therapy against diabetes using plants including Peganum harmala L., Zygophyllum album, Anacyclus valentinus L., Ammodaucus leucotrichus, Lupinus albus, and Marrubium vulgare in Algerian empirical medicine prompted our interest in evaluating their antidiabetic activity by screening their free radical scavenging (DPPH), α-glucosidase, and nitric oxide (NO) inhibitory activities as well as the total phenolic content (TPC). Extracts of the selected plants were prepared using different ratios of ethanol (0, 50, 80, and 100%). In this study, 100%, and 80% ethanol extracts of L. albus were found to be the most potent, in inhibiting α-glucosidase activity with IC50 values of 6.45 and 8.66 μg/mL, respectively. The 100% ethanol extract of A. leucotrichus exhibited the highest free radical scavenging activity with an IC50 value of 26.26 μg/mL. Moreover, the highest TPC of 612.84 μg GAE/mg extract was observed in M. vulgare, extracted with 80% ethanol. Metabolite profiling of the active extract was conducted using 1H-NMR metabolomics. Partial least square analysis (PLS) was used to assess the relationship between the α-glucosidase inhibitory activity of L. albus and the metabolites identified in the extract. Based on the PLS model, isoflavonoids (lupinoisoflavone G, lupisoflavone, lupinoisolone C), amino acids (asparagine and thiamine), and several fatty acids (stearic acid and oleic acid) were identified as metabolites that contributed to the inhibition of α-glucosidase activity. The results of this study have clearly strengthened the traditional claim of the antihyperglycemic effects of L. albus.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology
  16. Akinyede KA, Oyewusi HA, Hughes GD, Ekpo OE, Oguntibeju OO
    Molecules, 2021 Dec 28;27(1).
    PMID: 35011387 DOI: 10.3390/molecules27010155
    Diabetes mellitus (DM) is a chronic metabolic condition that can lead to significant complications and a high fatality rate worldwide. Efforts are ramping up to find and develop novel α-glucosidase and α-amylase inhibitors that are both effective and potentially safe. Traditional methodologies are being replaced with new techniques that are less complicated and less time demanding; yet, both the experimental and computational strategies are viable and complementary in drug discovery and development. As a result, this study was conducted to investigate the in vitro anti-diabetic potential of aqueous acetone Helichrysum petiolare and B.L Burtt extract (AAHPE) using a 2-NBDG, 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxy-d-glucose uptake assay. In addition, we performed molecular docking of the flavonoid constituents identified and quantified by liquid chromatography-mass spectrometry (LC-MS) from AAHPE with the potential to serve as effective and safe α-amylase and α-glucosidase inhibitors, which are important in drug discovery and development. The results showed that AAHPE is a potential inhibitor of both α-amylase and α-glucosidase, with IC50 values of 46.50 ± 6.17 (µg/mL) and 37.81 ± 5.15 (µg/mL), respectively. This is demonstrated by a significant increase in the glucose uptake activity percentage in a concentration-dependent manner compared to the control, with the highest AAHPE concentration of 75 µg/mL of glucose uptake activity being higher than metformin, a standard anti-diabetic drug, in the insulin-resistant HepG2 cell line. The molecular docking results displayed that the constituents strongly bind α-amylase and α-glucosidase while achieving better binding affinities that ranged from ΔG = -7.2 to -9.6 kcal/mol (compared with acarbose ΔG = -6.1 kcal/mol) for α-amylase, and ΔG = -7.3 to -9.0 kcal/mol (compared with acarbose ΔG = -6.3 kcal/mol) for α-glucosidase. This study revealed the potential use of the H. petiolare plant extract and its phytochemicals, which could be explored to develop potent and safe α-amylase and α-glucosidase inhibitors to treat postprandial glycemic levels in diabetic patients.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology
  17. Taha M, Alrashedy AS, Almandil NB, Iqbal N, Anouar EH, Nawaz M, et al.
    Int J Biol Macromol, 2021 Nov 01;190:301-318.
    PMID: 34481854 DOI: 10.1016/j.ijbiomac.2021.08.207
    In this study, we have investigated a series of indole-based compounds for their inhibitory study against pancreatic α-amylase and intestinal α-glucosidase activity. Inhibitors of carbohydrate degrading enzymes appear to have an essential role as antidiabetic drugs. All analogous exhibited good to moderate α-amylase (IC50 = 3.80 to 47.50 μM), and α-glucosidase inhibitory interactions (IC50 = 3.10-52.20 μM) in comparison with standard acarbose (IC50 = 12.28 μM and 11.29 μM). The analogues 4, 11, 12, 15, 14 and 17 had good activity potential both for enzymes inhibitory interactions. Structure activity relationships were deliberated to propose the influence of substituents on the inhibitory potential of analogues. Docking studies revealed the interaction of more potential analogues and enzyme active site. Further, we studied their kinetic study of most active compounds showed that compounds 15, 14, 12, 17 and 11 are competitive for α-amylase and non- competitive for α-glucosidase.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  18. Abbasi MA, Anwar A, Rehman A, Siddiqui SZ, Rubab K, Shah SAA, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1715-1724.
    PMID: 29084694
    Heterocyclic molecules have been frequently investigated to possess various biological activities during the last few decades. The present work elaborates the synthesis and enzymatic inhibition potentials of a series of sulfonamides. A series of 1-arylsulfonyl-4-Phenylpiperazine (3a-n) geared up by the reaction of 1-phenylpiperazine (1) and different (un)substituted alkyl/arylsulfonyl chlorides (2a-n), under defined pH control using water as a reaction medium. The synthesized molecules were characterized by 1H-NMR, 13C-NMR, IR and EI-MS spectral data. The enzyme inhibition study was carried on α-glucosidase, lipoxygenase (LOX), acetyl cholinesterase (AChE) and butyryl cholinesterase (BChE) enzymes supported by docking simulation studies and the IC50 values rendered a few of the synthesized molecules as moderate inhibitors of these enzymes where, the compound 3e exhibited comparatively better potency against α-glucosidase enzyme. The synthesized compounds showed weak or no inhibition against LOX, AChE and BChE enzymes.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  19. Tasnuva ST, Qamar UA, Ghafoor K, Sahena F, Jahurul MHA, Rukshana AH, et al.
    Nat Prod Res, 2019 May;33(10):1495-1499.
    PMID: 29281898 DOI: 10.1080/14786419.2017.1419224
    The aim of the study was to isolate digestive enzymes inhibitors from Mimosa pudica through a bioassay-guided fractionation approach. Repeated silica gel and sephadex LH 20 column chromatographies of bioactive fractions afforded stigmasterol, quercetin and avicularin as digestive enzymes inhibitors whose IC50 values as compared to acarbose (351.02 ± 1.46 μg mL-1) were found to be as 91.08 ± 1.54, 75.16 ± 0.92 and 481.7 ± 0.703 μg mL-1, respectively. In conclusion, M. pudica could be a good and safe source of digestive enzymes inhibitors for the management of diabetes in future.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  20. Nagappan H, Pee PP, Kee SHY, Ow JT, Yan SW, Chew LY, et al.
    Food Res Int, 2017 Sep;99(Pt 2):950-958.
    PMID: 28847432 DOI: 10.1016/j.foodres.2017.01.023
    Two Malaysian brown seaweeds, Sargassum siliquosum and Sargassum polycystum were first extracted using methanol to get the crude extract (CE) and further fractionated to obtain fucoxanthin-rich fraction (FRF). Samples were evaluated for their phenolic, flavonoid, and fucoxanthin contents, as well as their inhibitory activities towards low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), α-amylase, and α-glucosidase. In LDL oxidation assay, an increasing trend in antioxidant activity was observed as the concentration of FRF (0.04-0.2mg/mL) and CE (0.2-1.0mg/mL) increased, though not statistically significant. As for serum oxidation assay, significant decrease in antioxidant activity was observed as concentration of FRF increased, while CE showed no significant difference in inhibitory activity across the concentrations used. The IC50 values for ACE inhibitory activity of CE (0.03-0.42mg/mL) were lower than that of FRF (0.94-1.53mg/mL). When compared to reference drug Voglibose (IC50 value of 0.61mg/mL) in the effectiveness in inhibiting α-amylase, CE (0.58mg/mL) gave significantly lower IC50 values while FRF (0.68-0.71mg/mL) had significantly higher IC50 values. The α-glucosidase inhibitory activity of CE (IC50 value of 0.57-0.69mg/mL) and FRF (IC50 value of 0.50-0.53mg/mL) were comparable to that of reference drug (IC50 value of 0.54mg/mL). Results had shown the potential of S. siliquosum and S. polycystum in reducing cardiovascular diseases related risk factors following their inhibitory activities on ACE, α-amylase and α-glucosidase. In addition, it is likelihood that FRF possessed antioxidant activity at low concentration level.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links