Displaying publications 41 - 60 of 133 in total

Abstract:
Sort:
  1. Ali Tahir A, Ullah H, Sudhagar P, Asri Mat Teridi M, Devadoss A, Sundaram S
    Chem Rec, 2016 06;16(3):1591-634.
    PMID: 27230414 DOI: 10.1002/tcr.201500279
    Graphene (GR) and its derivatives are promising materials on the horizon of nanotechnology and material science and have attracted a tremendous amount of research interest in recent years. The unique atom-thick 2D structure with sp(2) hybridization and large specific surface area, high thermal conductivity, superior electron mobility, and chemical stability have made GR and its derivatives extremely attractive components for composite materials for solar energy conversion, energy storage, environmental purification, and biosensor applications. This review gives a brief introduction of GR's unique structure, band structure engineering, physical and chemical properties, and recent energy-related progress of GR-based materials in the fields of energy conversion (e.g., photocatalysis, photoelectrochemical water splitting, CO2 reduction, dye-sensitized and organic solar cells, and photosensitizers in photovoltaic devices) and energy storage (batteries, fuel cells, and supercapacitors). The vast coverage of advancements in environmental applications of GR-based materials for photocatalytic degradation of organic pollutants, gas sensing, and removal of heavy-metal ions is presented. Additionally, the use of graphene composites in the biosensing field is discussed. We conclude the review with remarks on the challenges, prospects, and further development of GR-based materials in the exciting fields of energy, environment, and bioscience.
    Matched MeSH terms: Graphite/chemistry*
  2. Mansouri N, SamiraBagheri
    Mater Sci Eng C Mater Biol Appl, 2016 Apr 1;61:906-21.
    PMID: 26838922 DOI: 10.1016/j.msec.2015.12.094
    The actual in vivo tissue scaffold offers a three-dimensional (3D) structural support along with a nano-textured surfaces consist of a fibrous network in order to deliver cell adhesion and signaling. A scaffold is required, until the tissue is entirely regenerated or restored, to act as a temporary ingrowth template for cell proliferation and extracellular matrix (ECM) deposition. This review depicts some of the most significant three dimensional structure materials used as scaffolds in various tissue engineering application fields currently being employed to mimic in vivo features. Accordingly, some of the researchers' attempts have envisioned utilizing graphene for the fabrication of porous and flexible 3D scaffolds. The main focus of this paper is to evaluate the topographical and topological optimization of scaffolds for tissue engineering applications in order to improve scaffolds' mechanical performances.
    Matched MeSH terms: Graphite/chemistry
  3. Akbari E, Buntat Z, Shahraki E, Parvaz R, Kiani MJ
    J Biomater Appl, 2016 Jan;30(6):677-85.
    PMID: 26024896 DOI: 10.1177/0885328215585682
    Graphene is another allotrope of carbon with two-dimensional monolayer honeycomb. Owing to its special characteristics including electrical, physical and optical properties, graphene is known as a more suitable candidate compared to other materials to be used in the sensor application. It is possible, moreover, to use biosensor by using electrolyte-gated field effect transistor based on graphene (GFET) to identify the alterations in charged lipid membrane properties. The current article aims to show how thickness and charges of a membrane electric can result in a monolayer graphene-based GFET while the emphasis is on the conductance variation. It is proposed that the thickness and electric charge of the lipid bilayer (LLP and QLP) are functions of carrier density, and to find the equation relating these suitable control parameters are introduced. Artificial neural network algorithm as well as support vector regression has also been incorporated to obtain other models for conductance characteristic. The results comparison between analytical models, artificial neural network and support vector regression with the experimental data extracted from previous work show an acceptable agreement.
    Matched MeSH terms: Graphite/chemistry*
  4. Ibrahim WA, Nodeh HR, Sanagi MM
    Crit Rev Anal Chem, 2016 Jul 03;46(4):267-83.
    PMID: 26186420 DOI: 10.1080/10408347.2015.1034354
    Graphene is a new carbon-based material that is of interest in separation science. Graphene has extraordinary properties including nano size, high surface area, thermal and chemical stability, and excellent adsorption affinity to pollutants. Its adsorption mechanisms are through non-covalent interactions (π-π stacking, electrostatic interactions, and H-bonding) for organic compounds and covalent interactions for metal ions. These properties have led to graphene-based material becoming a desirable adsorbent in a popular sample preparation technique known as solid phase extraction (SPE). Numerous studies have been published on graphene applications in recent years, but few review papers have focused on its applications in analytical chemistry. This article focuses on recent preconcentration of trace elements, organic compounds, and biological species using SPE-based graphene, graphene oxide, and their modified forms. Solid phase microextraction and micro SPE (µSPE) methods based on graphene are discussed.
    Matched MeSH terms: Graphite/chemistry*
  5. Thavanathan J, Huang NM, Thong KL
    Int J Nanomedicine, 2015;10:2711-22.
    PMID: 25897217 DOI: 10.2147/IJN.S74753
    We have developed a colorimetric biosensor using a dual platform of gold nanoparticles and graphene oxide sheets for the detection of Salmonella enterica. The presence of the invA gene in S. enterica causes a change in color of the biosensor from its original pinkish-red to a light purplish solution. This occurs through the aggregation of the primary gold nanoparticles-conjugated DNA probe onto the surface of the secondary graphene oxide-conjugated DNA probe through DNA hybridization with the targeted DNA sequence. Spectrophotometry analysis showed a shift in wavelength from 525 nm to 600 nm with 1 μM of DNA target. Specificity testing revealed that the biosensor was able to detect various serovars of the S. enterica while no color change was observed with the other bacterial species. Sensitivity testing revealed the limit of detection was at 1 nM of DNA target. This proves the effectiveness of the biosensor in the detection of S. enterica through DNA hybridization.
    Matched MeSH terms: Graphite/chemistry*
  6. Shamsi S, Alagan AA, Sarchio SNE, Md Yasin F
    Int J Nanomedicine, 2020;15:8311-8329.
    PMID: 33149578 DOI: 10.2147/IJN.S271159
    Background: In the current literature, there are ongoing debates on the toxicity of graphene oxide (GO) that demonstrate contradictory findings regarding its toxicity profile. As a potential drug carrier, these findings are very concerning due to the safety concerns in humans, as well as the dramatic rise of GO being excreted into the environment. Therefore, there is an imperative need to mitigate the potential toxicity of GO to allow for a safer application in the future.

    Purpose: The present study aims to address this issue by functionalizing GO with Pluronic F127 (PF) as a means to mitigate toxicity and resolve the biocompatibility of GO. Although results from previous studies generally indicated that Pluronic functionalized GO exhibits relatively low toxicity to living organisms, reports that emphasize on its toxicity, particularly during embryonic developmental stage, are still scarce.

    Methods: In the present study, two different sizes of native GO samples, GO and NanoGO, as well as PF-functionalized GO, GO-PF and NanoGO-PF, were prepared and characterized using DLS, UV-Vis, Raman spectroscopy, FTIR, and FESEM analyses. Toxicological assessment of all GO samples (0-100 µg/mL) on zebrafish embryonic developmental stages (survival, hatching and heart rates, and morphological changes) was recorded daily for up to 96 hours post-fertilization (hpf).

    Results: The toxicity effects of each GO sample were observed to be higher at increasing concentrations and upon prolonged exposure. NanoGO demonstrated lower toxicity effects compared to GO. GO-PF and NanoGO-PF were also found to have lower toxicity effects compared to native GO samples. GO-PF showed the lowest toxicity response on zebrafish embryo.

    Conclusion: These findings highlight that toxicity is dependent on the concentration, size, and exposure period of GO. Functionalization of GO with PF through surface coating could potentially mitigate the toxicity effects of GO in embryonic developmental stages, but further investigation is warranted for broader future applications.

    Matched MeSH terms: Graphite/chemistry*
  7. Mengting Z, Kurniawan TA, Fei S, Ouyang T, Othman MHD, Rezakazemi M, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113182.
    PMID: 31541840 DOI: 10.1016/j.envpol.2019.113182
    Methylene blue (MB) is a dye pollutant commonly present in textile wastewater. We investigate and critically evaluate the applicability of BaTiO3/GO composite for photodegradation of MB in synthetic wastewater under UV-vis irradiation. To enhance its performance, the BaTiO3/GO composite is varied based on the BaTiO3 weight. To compare and evaluate any changes in their morphologies and crystalline structures before and after treatment, BET (Brunauer-Emmett-Teller), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) tests are conducted, while the effects of reaction time, pH, dose of photocatalyst and initial MB concentration on its photodegradation by the composite are also investigated under identical conditions. The degradation pathways and removal mechanisms of MB by the BaTiO3/GO are elaborated. It is evident from this study that the BaTiO3/GO composite is promising for MB photodegradation through ·OH. Under optimized conditions (0.5 g/L of dose, pH 9.0, and 5 mg/L of MB concentration), the composite with 1:2 dose ratio of BaTiO3/GO has the highest MB degradation rate (95%) after 3 h of UV vis irradiation. However, its treated effluents still could not comply with the discharge standard limit of less than 0.2 mg/L imposed by national environmental legislation. This suggests that additional biological treatments are still required to deal with the remaining oxidation by-products of MB, still present in the wastewater samples such as 3,7-bis (dimethyl-amino)-10H-phenothiazine 5-oxide.
    Matched MeSH terms: Graphite/chemistry*
  8. Low FW, Chin Hock G, Kashif M, Samsudin NA, Chau CF, Indah Utami AR, et al.
    Molecules, 2020 Oct 21;25(20).
    PMID: 33096759 DOI: 10.3390/molecules25204852
    Renewable solar energy is the key target to reduce fossil fuel consumption, minimize global warming issues, and indirectly minimizes erratic weather patterns. Herein, the authors synthesized an ultrathin reduced graphene oxide (rGO) nanosheet with ~47 nm via an improved Hummer's method. The TiO2 was deposited by RF sputtering onto an rGO nanosheet with a variation of temperature to enhance the photogenerated electron or charge carrier mobility transport for the photoanode component. The morphology, topologies, element composition, crystallinity as well as dye-sensitized solar cells' (DSSCs) performance were determined accordingly. Based on the results, FTIR spectra revealed presence of Ti-O-C bonds in every rGO-TiO2 nanocomposite samples at 800 cm-1. Besides, XRD revealed that a broad peak of anatase TiO2 was detected at ~25.4° after incorporation with the rGO. Furthermore, it was discovered that sputtering temperature of 120 °C created a desired power conversion energy (PCE) of 7.27% based on the J-V plot. Further increase of the sputtering temperature to 160 °C and 200 °C led to excessive TiO2 growth on the rGO nanosheet, thus resulting in undesirable charge recombination formed at the photoanode in the DSSC device.
    Matched MeSH terms: Graphite/chemistry
  9. Shahid MM, Rameshkumar P, Numan A, Shahabuddin S, Alizadeh M, Khiew PS, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Jul;100:388-395.
    PMID: 30948075 DOI: 10.1016/j.msec.2019.02.107
    Cobalt oxide nanocubes incorporated with reduced graphene oxide (rGO-Co3O4) was prepared by using simple one-step hydrothermal route. Crystallinity and structural characteristics of the nanocomposite were analyzed and confirmed using X-ray diffraction (XRD) and Raman analysis, respectively. The cubical shape of the Co3O4 nanostructures and the distribution of Co3O4 nanocubes on the surface of rGO sheets were identified through field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) mapping analysis, respectively. Raman spectra depicted the presence of D and G bands for GO and rGO with different ID/IG values and thus confirmed the reduction of GO into rGO. The electrochemical study reflects that the rGO-Co3O4 nanocomposite shows good electrocatalytic activity in oxidation of depression biomarker serotonin (5-HT) in phosphate buffer (pH 7.2). The detection of 5-HT was carried out by using rGO-Co3O4 nanocomposite modified glassy carbon electrode under dynamic condition using amperometry technique with a linear range of 1-10 μM. The limit of detection and limit of quantification were calculated and found to be 1.128 and 3.760 μM, respectively with a sensitivity value of 0.133 μΑ·μM-1. The sensor showed selectivity in the presence of different interferent species such as ascorbic acid, dopamine and uric acid.
    Matched MeSH terms: Graphite/chemistry*
  10. Chen XY, Low HR, Loi XY, Merel L, Mohd Cairul Iqbal MA
    J Biomed Mater Res B Appl Biomater, 2019 08;107(6):2140-2151.
    PMID: 30758129 DOI: 10.1002/jbm.b.34309
    Graphene oxide (GO) is a potential material for wound dressing due to its excellent biocompatibility and mechanical properties. This study evaluated the effects of GO concentration on the synthesis of bacterial nanocellulose (BNC)-grafted poly(acrylic acid) (AA)-graphene oxide (BNC/P(AA)/GO) composite hydrogel and its potential as wound dressing. Hydrogels were successfully synthesized via electron-beam irradiation. The hydrogels were characterized by their mechanical properties, bioadhesiveness, water vapor transmission rates (WVTRs), water retention abilities, water absorptivity, and biocompatibility. Fourier transform infrared analysis showed the successful incorporation of GO into hydrogel. Thickness, gel fraction determination and morphological study revealed that increased GO concentration in hydrogels leads to reduced crosslink density and larger pore size, resulting in increased WVTR. Thus, highest swelling ratio was found in hydrogel with higher amount of GO (0.09 wt %). The mechanical properties of the composite hydrogel were maintained, while its hardness and bioadhesion were reduced with higher GO concentration in the hydrogel, affirming the durable and easy removable properties of a wound dressing. Human dermal fibroblast cell attachment and proliferation studies showed that biocompatibility of hydrogel was improved with the inclusion of GO in the hydrogel. Therefore, BNC/P(AA)/GO composite hydrogel has a potential application as perdurable wound dressing. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2140-2151, 2019.
    Matched MeSH terms: Graphite/chemistry*
  11. Zhao J, Chang W, Liu L, Xing X, Zhang C, Meng H, et al.
    J Immunol Methods, 2021 02;489:112942.
    PMID: 33333060 DOI: 10.1016/j.jim.2020.112942
    Highly sensitive and easy detection method for Alzheimer's disease (AD) with a suitable biomarker is mandatory for preventing the factors resulting from AD. This research reports a modified ELISA with graphene for the detection of AD biomarker amyloid beta (Aβ) oligomer. Gold nanoparticle (AuNP) conjugated aptamer was used as the capture probe and attached on ELISA-graphene oxide surface through the amine linker. Antibody was used as the detection molecule to reach the maximum detection of Aβ oligomer. Suitable level of APTMS (2%), size of AuNP (30 nm) and aptamer concentration (2 μM) were optimized. This sandwich pattern of aptamer-Aβ oligomer-antibody helps to reach the detection at 50 pM on the optimized ELISA surface and the control experiments in the absence of Aβ oligomer or anti-Aβ oligomer antibody did not show the significant optical detection at 492 nm, indicting the specific detection. Further, Aβ oligomer spiked artificial cerebrospinal fluid did not interfere the detection of Aβ oligomer, confirming the selective detection. This new and modified ELISA surface helps to reach the lower detection of Aβ oligomer and diagnose AD.
    Matched MeSH terms: Graphite/chemistry*
  12. Raja Jamaluddin RZA, Tan LL, Chong KF, Heng LY
    Nanotechnology, 2020 Nov 27;31(48):485501.
    PMID: 32748805 DOI: 10.1088/1361-6528/abab2e
    Graphene decorated with graphitic nanospheres functionalized with pyrene butyric acid (PBA) is used for the first time to fabricate a DNA biosensor. The electrode was formed by attaching a DNA probe onto PBA, which had been stacked onto a graphene material decorated with graphene nanospheres (GNSs). The nanomaterial was drop-coated onto a carbon screen-printed electrode (SPE) to create the GNS-PBA modified electrode (GNS-PBA/SPE). A simple method was used to produce GNS by annealing graphene oxide (GO) solution at high temperature. Field emission scanning electron micrographs confirmed the presence of a spherical shape of GNS with a diameter range of 40-80 nm. A stable and uniform PBA-modified GNS (GNS-PBA) was obtained with a facile ultrasonication step. Thus allowing aminated DNA probes of genetically modified (GM) soybean to be attached to the nanomaterials to form the DNA biosensor. The GNS-PBA/SPE exhibited excellent electrical conductivity via cyclic voltammetry (CV) and differential pulse voltammetry (DPV) tests using potassium ferricyanide (K3[Fe(CN)6]) as the electroactive probe. By employing an anthraquinone monosulfonic acid (AQMS) redox intercalator as the DNA hybridization indicator, the biosensor response was evaluated using the DPV electrochemical method. A good linear relationship between AQMS oxidation peak current and target DNA concentrations from 1.0 × 10-16 to 1.0 × 10-8 M with a limit of detection (LOD) of less than 1.0 × 10-16 M was obtained. Selectivity experiments revealed that the voltammetric GM DNA biosensor could discriminate complementary sequences of GM soybean from non-complementary sequences and hence good recoveries were obtained for real GM soybean sample analysis. The main advantage of using GNS is an improvement of the DNA biosensor analytical performance.
    Matched MeSH terms: Graphite/chemistry*
  13. Mahmoudian S, Wahit MU, Imran M, Ismail AF, Balakrishnan H
    J Nanosci Nanotechnol, 2012 Jul;12(7):5233-9.
    PMID: 22966551
    This study presents the preparation of regenerated cellulose (RC)/graphene nanoplatelets (GNPs) nanocomposites via room temperature ionic liquid, 1-ethyl-3-methylimidazolium acetate (EMIMAc) using solution casting method. The thermal stability, gas permeability, water absorption and mechanical properties of the films were studied. The synthesized nanocomposite films were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The T20 decomposition temperature of regenerated cellulose improved with the addition of graphene nanoplatelets up to 5 wt%. The tensile strength and Young's modulus of RC films improved by 34 and 56%, respectively with the addition of 3 wt% GNPs. The nanocomposite films exhibited improved oxygen and carbon dioxide gas barrier properties and water absorption resistance compared to RC. XRD and SEM results showed good interaction between RC and GNPs and well dispersion of graphene nanoplatelets in regenerated cellulose. The FTIR spectra showed that the addition of GNPs in RC did not result in any noticeable change in its chemical structure.
    Matched MeSH terms: Graphite/chemistry*
  14. Saud SN, Hosseinian S R, Bakhsheshi-Rad HR, Yaghoubidoust F, Iqbal N, Hamzah E, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:687-694.
    PMID: 27524069 DOI: 10.1016/j.msec.2016.06.048
    In the present work, the microstructure, corrosion, and bioactivity of graphene oxide (GO) coating on the laser-modified and -unmodified surfaces of TiNb shape memory alloys (SMAs) were investigated. The surface morphology and chemical composition was examined using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The surface modification was carried out via a femtosecond laser with the aim to increase the surface roughness, and thus increase the adhesion property. FE-SEM analysis of the laser-treated Ti-30at.% Nb revealed the increase in surface roughness and oxygen/nitrogen containing groups on the Ti-30at.% Nb surface after being surface modified via a femtosecond laser. Furthermore, the thickness of GO was increased from 35μm to 45μm after the surface was modified. Potentiodynamic polarisation and electrochemical impedance spectroscopy studies revealed that both the GO and laser/GO-coated samples exhibited higher corrosion resistance than that of the uncoated TiNb SMA sample. However, the laser/GO-coated sample presented the highest corrosion resistance in SBF at 37°C. In addition, during soaking in the simulated body fluid (SBF), both the GO and laser/GO coating improved the formation of apatite layer. Based on the bioactivity results, the GO coating exhibited a remarkable antibacterial activity against gram-negative bacteria compared with the uncoated. In conclusion, the present results indicate that Ti-30at.% Nb SMAs may be promising alternatives to NiTi for certain biomedical applications.
    Matched MeSH terms: Graphite/chemistry*
  15. Yusoff N, Rameshkumar P, Mohamed Noor A, Huang NM
    Mikrochim Acta, 2018 04 03;185(4):246.
    PMID: 29616348 DOI: 10.1007/s00604-018-2782-x
    An amperometric sensor for L-Cys is described which consists of a glassy carbon electrode (GCE) that was modified with reduced graphene oxide placed in a Nafion film and decorated with palladium nanoparticles (PdNPs). The film was synthesized by a hydrothermal method. The PdNPs have an average diameter of about 10 nm and a spherical shape. The modified GCE gives a linear electro-oxidative response to L-Cys (typically at +0.6 V vs. SCE) within the 0.5 to 10 μM concentration range. Other figures of merit include a response time of less than 2 s, a 0.15 μM lower detection limit (at signal to noise ratio of 3), and an analytical sensitivity of 1.30 μA·μM-1·cm-2. The sensor displays selectivity over ascorbic acid, uric acid, dopamine, hydrogen peroxide, urea, and glucose. The modified GCE was applied to the determination of L-Cys in human urine samples and gave excellent recoveries. Graphical abstract Spherical palladium nanoparticles (PdNPs) on reduced graphene oxide-Nafion (rGO-Nf) films were synthesized using a hydrothermal method. This nanohybrid was used for modifying a glassy carbon electrode to develop a sensor electrode for detecting L-cysteine that has fast response (less than 2 s), low detection limit (0.15 μM), and good sensitivity (0.092 μA μM-1 cm-2).
    Matched MeSH terms: Graphite/chemistry*
  16. Abdollahi Y, Sabbaghi S, Abouzari-Lotf E, Jahangirian H, Sairi NA
    Water Sci Technol, 2018 Mar;77(5-6):1493-1504.
    PMID: 29595152 DOI: 10.2166/wst.2018.017
    The global attention has been focused on degradation of the environmental organic pollutants through green methods such as advanced oxidation processes (AOPs) under sunlight. However, AOPs have not yet been efficient in function of the photocatalyst that has been used. In this work, firstly, CaCu3Ti4O12 nanocomposite was simultaneously synthesized and decorated in different amounts of graphene oxide to enhance photodegradation of the organics. The result of the photocatalyst characterization showed that the sample with 8% graphene presented optimum photo-electrical properties such as low band gap energy and a great surface area. Secondly, the photocatalyst was applied for photodegradation of an organic model in a batch photoreactor. Thirdly, to scale up the process and optimize the efficiency, the photodegradation was modeled by multivariate semi-empirical methods. As the optimized condition showed, 45 mg/L of the methyl-orange has been removed at pH 5.8 by 0.96 g/L of the photocatalyst during 288 min of the light irradiation. Moreover, the photodegradation has been scaled up for industrial applications by determining the importance of the input effective variables according to the following organics order > photocatalyst > pH > irradiation time.
    Matched MeSH terms: Graphite/chemistry
  17. Umbreen N, Sohni S, Ahmad I, Khattak NU, Gul K
    J Colloid Interface Sci, 2018 Oct 01;527:356-367.
    PMID: 29843021 DOI: 10.1016/j.jcis.2018.05.010
    Herein, self-assembled three-dimensional reduced graphene oxide (RGO)-based hydrogels were synthesized and characterized in detail. A thorough investigation on the uptake of three widely used pharmaceutical drugs, viz. Naproxen (NPX), Ibuprofen (IBP) and Diclofenac (DFC) was carried out from aqueous solutions. To ensure the sustainability of developed hydrogel assembly, practically important parameters such as desorption, recyclability and applicability to real samples were also evaluated. Using the developed 3D hydrogels as adsorptive platforms, excellent decontamination for the above mentioned persistent pharmaceutical drugs was achieved in acidic pH with a removal efficiency in the range of 70-80%. These hydrogels showed fast adsorption kinetics and experimental findings were fitted to different kinetic models, such as pseudo-first order, pseudo-second order, intra-particle and the Elovich models in an attempt to better understand the adsorption kinetics. Furthermore, equilibrium adsorption data was fitted to the Langmuir and Freundlich models, where relatively higher R2 values obtained in case of former one suggested that monolayer adsorption played an important part in drug uptake. Thermodynamic aspects were also studied and negative ΔG0 values obtained indicated the spontaneous nature of adsorption process. The study was also extended to check practical utility of as-prepared hydrogels by spiking real aqueous samples with drug solution, where high % recoveries obtained for NPX, IBP and DFC were of particular importance with regard to prospective application in wastewater treatment systems. We advocate RGO-based hydrogels as environmentally benign, readily recoverable/recyclable material with excellent adsorption capacity for application in wastewater purification.
    Matched MeSH terms: Graphite/chemistry*
  18. Thongprapai P, Cheewasedtham W, Chong KF, Rujiralai T
    J Sep Sci, 2018 Dec;41(23):4348-4354.
    PMID: 30267469 DOI: 10.1002/jssc.201800441
    A magnetic nanographene oxide sorbent as a selective sorbent for the magnetic solid-phase extraction combined with high-performance liquid chromatography and fluorescence detection was developed and proved to be a robust method for zearalenone determination in corn samples. Optimum extraction of zearalenone (20 mg magnetic nanographene oxide sorbent, extraction for 15 min, desorption time of 15 min using 1 mL of 0.5% formic acid in methanol) resulted in low limits of detection (05 mg/L) and quantitation (0.13 mg/L) and good linearity range of 0.13-1.25 mg/L with the correlation coefficient of 0.9957. Acceptable recoveries (79.3-80.6%) with relative standard deviations below 4% and satisfactory intra- and interday precisions (2-7.4%) were achieved. Additionally, the proposed method has been proved to be good in several aspects: easily prepared sorbent with high affinity to zearalenone, convenient and fast procedure, and high extraction efficiency.
    Matched MeSH terms: Graphite/chemistry*
  19. Hatamluyi B, Lorestani F, Es'haghi Z
    Biosens Bioelectron, 2018 Nov 30;120:22-29.
    PMID: 30144642 DOI: 10.1016/j.bios.2018.08.008
    The simultaneous measurement of the concentration of anticancer drugs with a fast, sensitive and accurate method in biological samples is a challenge for better monitoring of drug therapy and better determine the pharmacokinetics. An electrochemical sensor was developed for the simultaneous determination of anticancer drugs, Ifosfamide (IFO) and Etoposide (ETO) based on pencil graphite electrode modified with Au/Pd@rGO nanocomposite decorated with poly (L-Cysteine). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were utilized to study the properties of the modified electrode. The electrochemical behavior of IFO and ETO on the Au/Pd@rGO@p(L-Cys) modified electrode was investigated by cyclic voltammetry and differential pulse voltammetry (DPV) techniques and the obtained results confirmed its efficiency for the individual and simultaneous sensing of IFO and ETO. After optimization of electrochemical parameters, the fabricated sensor presented excellent performance in simultaneous determination of IFO and ETO with a wide linear range from 0.10 to 90.0 μM and 0.01 to 40.0 μM and low detection limits (3 Sb/m) of 9.210 nM and 0.718 nM, respectively. In addition, this study proved that the constructed sensor could be useful to simultaneous analysis of IFO and ETO in biological samples and pharmaceutical compounds.
    Matched MeSH terms: Graphite/chemistry
  20. Jahan S, Alias YB, Bakar AFBA, Yusoff IB
    Chemosphere, 2019 Feb;217:213-222.
    PMID: 30415119 DOI: 10.1016/j.chemosphere.2018.11.015
    Carbon based materials are emerging as a sustainable alternative to their metal-oxide counterparts. However, their transport behavior under natural aqueous environment is poorly understood. This study investigated the transport and retention profiles of carbon nanoparticles (CNPs) and graphene oxide quantum dots (GOQDs) through column experiments in saturated porous media. CNPs and GOQDs (30 mg/L) were dispersed in natural river water (RW) and passed through the column at a flow rate of 1 mL/min, which mimicking the natural water flow rate. After every 10 min, the column effluents were collected and the mass recovery and retention profiles were monitored. Results indicated that the transport of both carbonaceous colloids was predominantly controlled by surface potential and ionic composition of natural water. The CNPs with its high surface potential (-40 mV) exhibited more column transport and was less susceptible to solution pH (5.6-6.8) variation as compared to GOQDs (-24 mV). The results showed that, monovalent salt (NaCl) was one of the dominating factors for the retention and transport of carbonaceous colloids compared to divalent salt (CaCl2). Furthermore, the presence of natural organic matter (NOM) increased the transport of both carbonaceous colloids and thereby decreases the tendency for column retention.
    Matched MeSH terms: Graphite/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links