Displaying publications 41 - 60 of 169 in total

Abstract:
Sort:
  1. Nusee Z, Ibrahim N, Rus RM, Ismail H
    Taiwan J Obstet Gynecol, 2014 Mar;53(1):12-6.
    PMID: 24767639 DOI: 10.1016/j.tjog.2013.01.028
    To determine the accuracy of bladder volume (BV) measurement and to identify factors that influenced the ultrasound bladder scanner (UBS) measurement of BV in postpartum women compared with transurethral catheterization.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*; Imaging, Three-Dimensional/standards
  2. Liu H, Tan T, van Zelst J, Mann R, Karssemeijer N, Platel B
    J Med Imaging (Bellingham), 2014 Jul;1(2):024501.
    PMID: 26158036 DOI: 10.1117/1.JMI.1.2.024501
    We investigated the benefits of incorporating texture features into an existing computer-aided diagnosis (CAD) system for classifying benign and malignant lesions in automated three-dimensional breast ultrasound images. The existing system takes into account 11 different features, describing different lesion properties; however, it does not include texture features. In this work, we expand the system by including texture features based on local binary patterns, gray level co-occurrence matrices, and Gabor filters computed from each lesion to be diagnosed. To deal with the resulting large number of features, we proposed a combination of feature-oriented classifiers combining each group of texture features into a single likelihood, resulting in three additional features used for the final classification. The classification was performed using support vector machine classifiers, and the evaluation was done with 10-fold cross validation on a dataset containing 424 lesions (239 benign and 185 malignant lesions). We compared the classification performance of the CAD system with and without texture features. The area under the receiver operating characteristic curve increased from 0.90 to 0.91 after adding texture features ([Formula: see text]).
    Matched MeSH terms: Imaging, Three-Dimensional
  3. Ananda GK, Nambiar P, Mutalik S, Shanmuhasuntharam P
    Surg Radiol Anat, 2015 Nov;37(9):1099-108.
    PMID: 25850735 DOI: 10.1007/s00276-015-1473-0
    With the advent of cone-beam computed tomography (CBCT) for maxillofacial imaging, there has been a paradigm shift from two dimensional panoramic radiography to three dimensional imaging. This study investigated the microanatomy of the maxillary permanent first molar socket and its relationship to the floor of the maxillary sinus, especially for immediate or early implant placement.
    Matched MeSH terms: Imaging, Three-Dimensional
  4. Farook TH, Jamayet NB, Abdullah JY, Asif JA, Rajion ZA, Alam MK
    Comput Biol Med, 2020 03;118:103646.
    PMID: 32174323 DOI: 10.1016/j.compbiomed.2020.103646
    OBJECTIVE: To design and compare the outcome of commercial (CS) and open source (OS) software-based 3D prosthetic templates for rehabilitation of maxillofacial defects using a low powered personal computer setup.

    METHOD: Medical image data for five types of defects were selected, segmented, converted and decimated to 3D polygon models on a personal computer. The models were transferred to a computer aided design (CAD) software which aided in designing the prosthesis according to the virtual models. Two templates were designed for each defect, one by an OS (free) system and one by CS. The parameters for analyses were the virtual volume, Dice similarity coefficient (DSC) and Hausdorff's distance (HD) and were executed by the OS point cloud comparison tool.

    RESULT: There was no significant difference (p > 0.05) between CS and OS when comparing the volume of the template outputs. While HD was within 0.05-4.33 mm, evaluation of the percentage similarity and spatial overlap following the DSC showed an average similarity of 67.7% between the two groups. The highest similarity was with orbito-facial prostheses (88.5%) and the lowest with facial plate prosthetics (28.7%).

    CONCLUSION: Although CS and OS pipelines are capable of producing templates which are aesthetically and volumetrically similar, there are slight comparative discrepancies in the landmark position and spatial overlap. This is dependent on the software, associated commands and experienced decision-making. CAD-based templates can be planned on current personal computers following appropriate decimation.

    Matched MeSH terms: Imaging, Three-Dimensional
  5. Othman SA, Saffai L, Wan Hassan WN
    Clin Oral Investig, 2020 Aug;24(8):2853-2866.
    PMID: 31754872 DOI: 10.1007/s00784-019-03150-1
    OBJECTIVES: To validate the accuracy and reproducibility of linear measurements of three-dimensional (3D) images and to compare the measurements with the direct anthropometry method on cleft lip and palate (CLP) patients.

    MATERIALS AND METHODS: Nineteen linear facial measurements were derived from 16 standardized surface landmarks obtained from 37 cleft patients (20 males, 17 females; mean age 23.84 years, standard deviation ± 6.02). They were taken manually with calipers and were compared with the digitally calculated distance on the 3D images captured using the VECTRA-M5 360° Imaging System with pre-marked landmarks. Another pair of 19 linear measurements were computed on the 3D images 2 weeks apart for intra- and inter-observer agreements. Statistical analyses used were paired t test, the Bland-Altman analysis, and the intra-class correlation coefficient (ICC) index.

    RESULTS: Most of the linear measurements showed no statistically significant differences between the proposed method and direct anthropometry linear measurements. Nevertheless, bias of the 3D imaging system is present in the linear measurements of the nose width and the upper vermillion height. The measurements' mean biases were within 2 mm, but the 95% limit of agreement was more than 2 mm. Intra- and inter-observer measurements generally showed good reproducibility. Four inter-observer measurements, the upper and lower face heights, nose width, and pronasale to left alar base were clinically significant.

    CONCLUSIONS: Measurements obtained from this 3D imaging system are valid and reproducible for evaluating CLP patients.

    CLINICAL RELEVANCE: The system is suitable to be used in a clinical setting for cleft patients. However, training of the operator is strictly advisable.

    Matched MeSH terms: Imaging, Three-Dimensional
  6. Farook TH, Jamayet NB, Abdullah JY, Rajion ZA, Alam MK
    J Stomatol Oral Maxillofac Surg, 2020 Jun;121(3):268-277.
    PMID: 31610244 DOI: 10.1016/j.jormas.2019.10.003
    A systematic review was conducted in early 2019 to evaluate the articles published that dealt with digital workflow, CAD, rapid prototyping and digital image processing in the rehabilitation by maxillofacial prosthetics. The objective of the review was to primarily identify the recorded cases of orofacial rehabilitation made by maxillofacial prosthetics using computer assisted 3D printing. Secondary objectives were to analyze the methods of data acquisition recorded with challenges and limitations documented with various software in the workflow. Articles were searched from Scopus, PubMed and Google Scholar based on the predetermined eligibility criteria. Thirty-nine selected papers from 1992 to 2019 were then read and categorized according to type of prosthesis described in the papers. For nasal prostheses, Common Methods of data acquisition mentioned were computed tomography, photogrammetry and laser scanners. After image processing, computer aided design (CAD) was used to design and merge the prosthesis to the peripheral healthy tissue. Designing and printing the mold was more preferred. Moisture and muscle movement affected the overall fit especially for prostheses directly designed and printed. For auricular prostheses, laser scanning was most preferred. For unilateral defects, CAD was used to mirror the healthy tissue over to the defect side. Authors emphasized on the need of digital library for prostheses selection, especially for bilateral defects. Printing the mold and conventionally creating the prosthesis was most preferred due to issues of proper fit and color matching. Orbital prostheses follow a similar workflow as auricular prosthesis. 3D photogrammetry and laser scans were more preferred and directly printing the prosthesis was favored in various instance. However, ocular prostheses fabrication was recorded to be a challenge due to difficulties in appropriate volume reconstruction and inability to mirror healthy globe. Only successful cases of digitally designed and printed iris were noted.
    Matched MeSH terms: Imaging, Three-Dimensional
  7. Abdul Wahab Mohammad, Lim YP, Indok Nurul Hasyimah Mohd Amin, Rafeqah Raslan, Hilal N
    Atomic force microscopy (AFM) has a wide range of applications and is rapidly growing in research and development. This powerful technique has been used to visualize surfaces both in liquid or gas media. It has been considered as an effective tool to investigate the surface structure for its ability to generate high-resolution 3D images at a subnanometer range without sample pretreatment. In this paper, the use of AFM to characterize the membrane roughness is presented for commercial and self-prepared membranes for specific applications. Surface roughness has been regarded as one of the most important surface properties, and has significant effect in membrane permeability and fouling behaviour. Several scan areas were used to compare surface roughness for different membrane samples. Characterization of the surfaces was achieved by measuring the average roughness (Ra) and root mean square roughness (Rrms) of the membrane. AFM image shows that the membrane surface was composed entirely of peaks and valleys. Surface roughness is substantially greater for commercial available hydrophobic membranes, in contrast to self-prepared membranes. This study also shows that foulants deposited on membrane surface would increase the membrane roughness.
    Matched MeSH terms: Imaging, Three-Dimensional
  8. Kho ASK, Foo JJ, Ooi ET, Ooi EH
    Comput Methods Programs Biomed, 2020 Feb;184:105289.
    PMID: 31891903 DOI: 10.1016/j.cmpb.2019.105289
    BACKGROUND AND OBJECTIVE: The majority of the studies on radiofrequency ablation (RFA) have focused on enlarging the size of the coagulation zone. An aspect that is crucial but often overlooked is the shape of the coagulation zone. The shape is crucial because the majority of tumours are irregularly-shaped. In this paper, the ability to manipulate the shape of the coagulation zone following saline-infused RFA by altering the location of saline infusion is explored.

    METHODS: A 3D model of the liver tissue was developed. Saline infusion was described using the dual porosity model, while RFA was described using the electrostatic and bioheat transfer equations. Three infusion locations were investigated, namely at the proximal end, the middle and the distal end of the electrode. Investigations were carried out numerically using the finite element method.

    RESULTS: Results indicated that greater thermal coagulation was found in the region of tissue occupied by the saline bolus. Infusion at the middle of the electrode led to the largest coagulation volume followed by infusion at the proximal and distal ends. It was also found that the ability to delay roll-off, as commonly associated with saline-infused RFA, was true only for the case when infusion is carried out at the middle. When infused at the proximal and distal ends, the occurrence of roll-off was advanced. This may be due to the rapid and more intense heating experienced by the tissue when infusion is carried out at the electrode ends where Joule heating is dominant.

    CONCLUSION: Altering the location of saline infusion can influence the shape of the coagulation zone following saline-infused RFA. The ability to 'shift' the coagulation zone to a desired location opens up great opportunities for the development of more precise saline-infused RFA treatment that targets specific regions within the tissue.

    Matched MeSH terms: Imaging, Three-Dimensional
  9. Farook TH, Rashid F, Jamayet NB, Abdullah JY, Dudley J, Khursheed Alam M
    J Prosthet Dent, 2022 Oct;128(4):830-836.
    PMID: 33642077 DOI: 10.1016/j.prosdent.2020.12.041
    STATEMENT OF PROBLEM: The anatomic complexity of the ear challenges conventional maxillofacial prosthetic rehabilitation. The introduction of specialized scanning hardware integrated into computer-aided design and computer-aided manufacturing (CAD-CAM) workflows has mitigated these challenges. Currently, the scanning hardware required for digital data acquisition is expensive and not readily available for prosthodontists in developing regions.

    PURPOSE: The purpose of this virtual analysis study was to compare the accuracy and precision of 3-dimensional (3D) ear models generated by scanning gypsum casts with a smartphone camera and a desktop laser scanner.

    MATERIAL AND METHODS: Six ear casts were fabricated from green dental gypsum and scanned with a laser scanner. The resultant 3D models were exported as standard tessellation language (STL) files. A stereophotogrammetry system was fabricated by using a motorized turntable and an automated microcontroller photograph capturing interface. A total of 48 images were captured from 2 angles on the arc (20 degrees and 40 degrees from the base of the turntable) with an image overlap of 15 degrees, controlled by a stepper motor. Ear 1 was placed on the turntable and captured 5 times with smartphone 1 and tested for precision. Then, ears 1 to 6 were scanned once with a laser scanner and with smartphones 1 and 2. The images were converted into 3D casts and compared for accuracy against their laser scanned counterparts for surface area, volume, interpoint mismatches, and spatial overlap. Acceptability thresholds were set at <0.5 mm for interpoint mismatches and >0.70 for spatial overlap.

    RESULTS: The test for smartphone precision in comparison with that of the laser scanner showed a difference in surface area of 774.22 ±295.27 mm2 (6.9% less area) and in volume of 4228.60 ±2276.89 mm3 (13.4% more volume). Both acceptability thresholds were also met. The test for accuracy among smartphones 1, 2, and the laser scanner showed no statistically significant differences (P>.05) in all 4 parameters among the groups while also meeting both acceptability thresholds.

    CONCLUSIONS: Smartphone cameras used to capture 48 overlapping gypsum cast ear images in a controlled environment generated 3D models parametrically similar to those produced by standard laser scanners.

    Matched MeSH terms: Imaging, Three-Dimensional
  10. Kurniawan A, Hamdani J, Chusida A, Utomo H, Rizky BN, Prakoeswa BFWR, et al.
    Leg Med (Tokyo), 2024 Mar;67:102399.
    PMID: 38219704 DOI: 10.1016/j.legalmed.2024.102399
    The field of bitemark analysis involves examining physical alterations in a medium resulting from contact with teeth and other oral structures. Various techniques, such as 2D and 3D imaging, have been developed in recent decades to ensure precise analysis of bitemarks. This study assessed the precision of using a smartphone camera to generate 3D models of bitemark patterns. A 3D model of the bite mark pattern was created using 3Shape TRIOSTM and a smartphone camera combined with monoscopic photogrammetry. The mesiodistal dimensions of the anterior teeth were measured using Rapidform Explorer and OrtogOnBlender, and the collected data were analyzed using IBM® SPSS® Statistics version 23.0. The mean mesiodistal dimension of the anterior teeth, as measured on the 3D model from 3Shape TRIOSTM and smartphone cameras, was found to be 6.95 ± 0.7667 mm and 6.94 ± 0.7639 mm, respectively. Statistical analysis revealed no significant difference between the two measurement methods, p > 0.05. The outcomes derived from this study unequivocally illustrate that a smartphone camera possessing the specific parameters detailed in this study can create a 3D representation of bite patterns with an accuracy level on par with the outputs of a 3D intraoral camera. These findings underscore the promising trajectory of merging smartphone cameras and monoscopic photogrammetry techniques, positioning them as a budget-friendly avenue for 3D bitemark analysis. Notably, the monoscopic photogrammetry methodology assumes substantial significance within forensic odontology due to its capacity for precise 3D reconstructions and the preservation of critical measurement data.
    Matched MeSH terms: Imaging, Three-Dimensional
  11. Rassem TH, Khoo BE
    ScientificWorldJournal, 2014;2014:373254.
    PMID: 24977193 DOI: 10.1155/2014/373254
    Despite the fact that the two texture descriptors, the completed modeling of Local Binary Pattern (CLBP) and the Completed Local Binary Count (CLBC), have achieved a remarkable accuracy for invariant rotation texture classification, they inherit some Local Binary Pattern (LBP) drawbacks. The LBP is sensitive to noise, and different patterns of LBP may be classified into the same class that reduces its discriminating property. Although, the Local Ternary Pattern (LTP) is proposed to be more robust to noise than LBP, however, the latter's weakness may appear with the LTP as well as with LBP. In this paper, a novel completed modeling of the Local Ternary Pattern (LTP) operator is proposed to overcome both LBP drawbacks, and an associated completed Local Ternary Pattern (CLTP) scheme is developed for rotation invariant texture classification. The experimental results using four different texture databases show that the proposed CLTP achieved an impressive classification accuracy as compared to the CLBP and CLBC descriptors.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  12. Sim KS, Chia FK, Nia ME, Tso CP, Chong AK, Abbas SF, et al.
    Comput Biol Med, 2014 Jun;49:46-59.
    PMID: 24736203 DOI: 10.1016/j.compbiomed.2014.03.003
    A computer-aided detection auto-probing (CADAP) system is presented for detecting breast lesions using dynamic contrast enhanced magnetic resonance imaging, through a spatial-based discrete Fourier transform. The stand-alone CADAP system reduces noise, refines region of interest (ROI) automatically, and detects the breast lesion with minimal false positive detection. The lesions are then classified and colourised according to their characteristics, whether benign, suspicious or malignant. To enhance the visualisation, the entire analysed ROI is constructed into a 3-D image, so that the user can diagnose based on multiple views on the ROI. The proposed method has been applied to 101 sets of digital images, and the results compared with the biopsy results done by radiologists. The proposed scheme is able to identify breast cancer regions accurately and efficiently.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  13. Anderson PJ, Yong R, Surman TL, Rajion ZA, Ranjitkar S
    Aust Dent J, 2014 Jun;59 Suppl 1:174-85.
    PMID: 24611727 DOI: 10.1111/adj.12154
    Following the invention of the first computed tomography (CT) scanner in the early 1970s, many innovations in three-dimensional (3D) diagnostic imaging technology have occurred, leading to a wide range of applications in craniofacial clinical practice and research. Three-dimensional image analysis provides superior and more detailed information compared with conventional plain two-dimensional (2D) radiography, with the added benefit of 3D printing for preoperative treatment planning and regenerative therapy. Current state-of-the-art multidetector CT (MDCT), also known as medical CT, has an important role in the diagnosis and management of craniofacial injuries and pathology. Three-dimensional cone beam CT (CBCT), pioneered in the 1990s, is gaining increasing popularity in dental and craniofacial clinical practice because of its faster image acquisition at a lower radiation dose, but sound guidelines are needed to ensure its optimal clinical use. Recent innovations in micro-computed tomography (micro-CT) have revolutionized craniofacial biology research by enabling higher resolution scanning of teeth beyond the capabilities of MDCT and CBCT, presenting new prospects for translational clinical research. Even after four decades of refinement, CT technology continues to advance and broaden the horizons of craniofacial clinical practice and phenomics research.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  14. Gokula K, Earnest A, Wong LC
    Radiat Oncol, 2013;8:268.
    PMID: 24229418 DOI: 10.1186/1748-717X-8-268
    This meta-analysis aims to ascertain the significance of early lung toxicity with 3-Dimensional (3D) conformal irradiation for breast carcinomas and identify the sub-groups of patients with increased risk.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  15. Zubair M, Abdullah MZ, Ahmad KA
    Comput Math Methods Med, 2013;2013:727362.
    PMID: 23983811 DOI: 10.1155/2013/727362
    The accuracy of the numerical result is closely related to mesh density as well as its distribution. Mesh plays a very significant role in the outcome of numerical simulation. Many nasal airflow studies have employed unstructured mesh and more recently hybrid mesh scheme has been utilized considering the complexity of anatomical architecture. The objective of this study is to compare the results of hybrid mesh with unstructured mesh and study its effect on the flow parameters inside the nasal cavity. A three-dimensional nasal cavity model is reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes equation for steady airflow is solved numerically to examine inspiratory nasal flow. The pressure drop obtained using the unstructured computational grid is about 22.6 Pa for a flow rate of 20 L/min, whereas the hybrid mesh resulted in 17.8 Pa for the same flow rate. The maximum velocity obtained at the nasal valve using unstructured grid is 4.18 m/s and that with hybrid mesh is around 4.76 m/s. Hybrid mesh reported lower grid convergence index (GCI) than the unstructured mesh. Significant differences between unstructured mesh and hybrid mesh are determined highlighting the usefulness of hybrid mesh for nasal airflow studies.
    Matched MeSH terms: Imaging, Three-Dimensional/statistics & numerical data*
  16. Daud R, Abdul Kadir MR, Izman S, Md Saad AP, Lee MH, Che Ahmad A
    J Foot Ankle Surg, 2013 Jul-Aug;52(4):426-31.
    PMID: 23623302 DOI: 10.1053/j.jfas.2013.03.007
    The trapezium shape of the talar dome limits the use of 2-dimensional plain radiography for morphometric assessment because only 2 of the 4 required parameters can be measured. We used computed tomography data to measure the 4 morphologic parameters of the trochlea tali: anterior width, posterior width, trochlea tali length, and angle of trapezium shape. A total of 99 subjects underwent computed tomography scanning, and the left and right talus bones were both virtually modeled in 3 dimensions. The 4 morphologic parameters were measured 3 times each to obtain the intraclass correlation, and analysis of variance was used to check for any significant differences between the repeated measurements. The average intraclass correlation coefficient for the measurements for 2 to 3 trials was 0.94 ± 0.04. Statistical analyses were performed on the data from all 198 talus bones using SAS software, comparing male and female and left and right bones. All 4 morphometric values were greater in the male group. No significant differences were found between the left and right talus bones. A strong positive correlation was observed between the trochlea tali length and the anterior width. The angle of trapezium shape showed no correlation with the other 3 parameters. The measurements were compared with the dimensions of the current talar components of 4 total ankle arthroplasty implants. However, most of them did not perfectly match the trapezium shape of the talus from our population. We successfully analyzed the trapezium shape of the trochlea tali using reliable virtual 3-dimensional measurements. Compared with other published reports, our study showed a relatively smaller dimension of the trochlea tali than the European counterparts.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  17. Zakaria Z, Abdul Rahim R, Mansor MS, Yaacob S, Ayub NM, Muji SZ, et al.
    Sensors (Basel), 2012;12(6):7126-56.
    PMID: 22969341 DOI: 10.3390/s120607126
    Magnetic Induction Tomography (MIT), which is also known as Electromagnetic Tomography (EMT) or Mutual Inductance Tomography, is among the imaging modalities of interest to many researchers around the world. This noninvasive modality applies an electromagnetic field and is sensitive to all three passive electromagnetic properties of a material that are conductivity, permittivity and permeability. MIT is categorized under the passive imaging family with an electrodeless technique through the use of excitation coils to induce an electromagnetic field in the material, which is then measured at the receiving side by sensors. The aim of this review is to discuss the challenges of the MIT technique and summarize the recent advancements in the transmitters and sensors, with a focus on applications in biological tissue imaging. It is hoped that this review will provide some valuable information on the MIT for those who have interest in this modality. The need of this knowledge may speed up the process of adopted of MIT as a medical imaging technology.
    Matched MeSH terms: Imaging, Three-Dimensional/instrumentation*
  18. Chai WL, Brook IM, Emanuelsson L, Palmquist A, van Noort R, Moharamzadeh K
    J Biomed Mater Res A, 2012 Feb;100(2):269-77.
    PMID: 22045611 DOI: 10.1002/jbm.a.33245
    A three dimensional tissue-engineered human oral mucosal model (3D OMM) used in the investigation of implant-soft tissue interface was recently reported. The aim of this study was to examine the ultrastructural features of soft tissue attachment to various titanium (Ti) implant surfaces based on the 3D OMM. Two techniques, that is, focus ion beam (FIB) and electropolishing techniques were used to prepare specimens for transmission electron microscopic (TEM) analysis of the interface. The 3D OM consisting of both epithelial and connective tissue layers was constructed by co-culturing human oral keratinocytes and fibroblasts onto an acellular dermis scaffold. Four types of Ti surface topographies were tested: polished, machined (turned), sandblasted, and TiUnite. The specimens were then processed for TEM examination using FIB (Ti remained) and electropolishing (Ti removed) techniques. The FIB sections showed some artifact and lack of details of ultrastructural features. In contrast, the ultrathin sections prepared from the electropolishing technique showed a residual Ti oxide layer, which preserved the details for intact ultrastructural interface analysis. There was evidence of hemidesmosome-like structures at the interface on the four types of Ti surfaces, which suggests that the tissue-engineered oral mucosa formed epithelial attachments on the Ti surfaces.
    Matched MeSH terms: Imaging, Three-Dimensional*
  19. Ahmad Fadzil M, Ngah NF, George TM, Izhar LI, Nugroho H, Adi Nugroho H
    PMID: 21097305 DOI: 10.1109/IEMBS.2010.5628041
    Diabetic retinopathy (DR) is a sight threatening complication due to diabetes mellitus that affects the retina. At present, the classification of DR is based on the International Clinical Diabetic Retinopathy Disease Severity. In this paper, FAZ enlargement with DR progression is investigated to enable a new and an effective grading protocol DR severity in an observational clinical study. The performance of a computerised DR monitoring and grading system that digitally analyses colour fundus image to measure the enlargement of FAZ and grade DR is evaluated. The range of FAZ area is optimised to accurately determine DR severity stage and progression stages using a Gaussian Bayes classifier. The system achieves high accuracies of above 96%, sensitivities higher than 88% and specificities higher than 96%, in grading of DR severity. In particular, high sensitivity (100%), specificity (>98%) and accuracy (99%) values are obtained for No DR (normal) and Severe NPDR/PDR stages. The system performance indicates that the DR system is suitable for early detection of DR and for effective treatment of severe cases.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links