Displaying publications 41 - 60 of 292 in total

Abstract:
Sort:
  1. Yasin SM, Ibrahim S, Johan MR
    ScientificWorldJournal, 2014;2014:547076.
    PMID: 25133244 DOI: 10.1155/2014/547076
    New solid polymer electrolytes (SPE) based on poly(ethylene oxide) (PEO) doped with lithium trifluoromethanesulfonate (LiCF3SO3), dibutyl phthalate (DBP) plasticizer, and zirconium oxide (ZrO2) nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP) plasticizer and ZrO2 nanofiller with maximum conductivity (1.38 × 10(-4) Scm(-1)). The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2 due to the formation of localized states in the SPE and the degree of disorder in the films increased.
    Matched MeSH terms: Ions/chemistry
  2. Tay JH, Jaafar S, Mohd Tahir N
    Bull Environ Contam Toxicol, 2014 Mar;92(3):329-33.
    PMID: 24435136 DOI: 10.1007/s00128-014-1203-z
    A short-term investigation on the chemical composition of rainwater was carried out at five selected sampling stations in Kuantan district, Pahang, Malaysia. Sampling of rainwater was conducted by event basis between September and November 2011. Rainwater samples were collected using polyethylene containers and the parameters measured were cations (sodium, potassium, ammonium, calcium and magnesium) and anions (chlorides, nitrates and sulphates). The average pH value for rainwater samples was 6.0 ± 0.57 in which most of the sampling sites exhibited pH values >5.6. Calcium and sulphate were the most abundant cation and anion, respectively, whilst the concentrations of other major ions varied according to sampling location.
    Matched MeSH terms: Ions/analysis
  3. Johari IS, Yusof NA, Haron MJ, Nor SM
    Molecules, 2013 Jul 18;18(7):8461-72.
    PMID: 23873385 DOI: 10.3390/molecules18078461
    Poly(ethyl hydrazide)-grafted oil palm empty fruit bunch fibre (peh-g-opefb) was successfully prepared by heating poly(methyl acrylate)-grafted opefb (pma-g-opefb) at 60 °C for 4 h with a solution of hydrazine hydrate (15% v/v) in ethanol. The Fourier transform infrared spectrum of the product shows a secondary amine peak at 3267 cm⁻¹, with amide carbonyl peaks at 1729 cm⁻¹ and 1643 cm⁻¹. The chelating ability of peh-g-opefb was tested with copper ion in aqueous solution. A batch adsorption study revealed that maximum adsorption of copper ion was achieved at pH 5. An isotherm study showed the adsorption follows a Langmuir model, with a maximum adsorption capacity of 43.48 mg g-1 at 25 °C. A kinetic study showed that the adsorption of copper ion rapidly reaches equilibrium and follows a pseudo-second-order kinetic model, with a constant rate of 7.02 × 10⁻⁴ g mg⁻¹ min⁻¹ at 25 °C. The Gibbs free energy, ∆G⁰, value is negative, indicating a spontaneous sorption process. Entropy, ∆S⁰, gives a positive value, indicating that the system is becoming increasingly disordered after the adsorption of copper ion. A positive enthalpy value, ∆H⁰, shows that the endothermic process takes place during the adsorption and is more favourable at high temperatures.
    Matched MeSH terms: Ions/chemistry*; Solutions
  4. Wen Min S, Hasnat MA, Rahim AA, Mohamed N
    Chemosphere, 2013 Jan;90(2):674-82.
    PMID: 23063484 DOI: 10.1016/j.chemosphere.2012.09.048
    A series of experiments were carried out to determine the best medium for the recovery of cobalt by means of an electrogenerative system. Use of the electrogenerative system with a chloride medium had shown promising performance with the highest free energy of -389.8 kJ mol(-1) compared to that with sulphate and nitrate media. Subsequently, the influence of catholyte concentrations on cobalt recovery using the electrogenerative process was carried out by varying the initial cobalt concentration and sodium chloride concentration. The results showed that almost 100% recovery was attained within 1-4 h of the recovery process. Influence of pH was investigated where the electrogenerative system performed best between pH 5.0 and 7.0. Maximum cell performance of 83% with 99% cobalt removal was obtained at 90 min when 100 mg L(-1) of Co(2+) in 0.5 M NaCl was taken as catholyte solution. The values of ΔH(o) and ΔS(o) of the process were evaluated as 33.41 kJ mol(-1) and 0.13 kJ mol(-1), respectively.
    Matched MeSH terms: Ions/chemistry
  5. Kang OL, Ramli N, Said M, Ahmad M, Yasir SM, Ariff A
    J Environ Sci (China), 2011;23(6):918-22.
    PMID: 22066214
    The Cr(III) sorption experiments onto Kappaphycus alvarezii waste biomass were conducted at different pH values (2-6) under the conditions of initial metal concentration of 10-50 mg/L and the chemical compositions of Cr-Cu and Cr-Cd. The Cr(III) sorption capacities were slightly dependent on pH, and the maximum sorption capacity was 0.86 mg/g at pH 3. The sorption capacities increased with increase in the initial metal concentration, whereas it was suppressed by the presence of Cu(II) and Cd(III) in the solution. The Cr(III) sorption equilibrium was evaluated using Langmuir, Freundlich and BET isotherms. The sorption mechanisms were characterised using scanning electron microscopy and Fourier transform infrared spectroscopy. The main mechanisms were ion exchange coupled with a complexation mechanism. Kappaphycus alvarezii waste biomass represents a potential for Cr(III) ion removal from aqueous solution.
    Matched MeSH terms: Ions/chemistry*
  6. Sim LH, Gan SN, Chan CH, Yahya R
    Spectrochim Acta A Mol Biomol Spectrosc, 2010 Aug;76(3-4):287-92.
    PMID: 20444642 DOI: 10.1016/j.saa.2009.09.031
    The interaction behaviours between components of polyacrylate (PAc)/poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO(4)) were investigated in detail by Attenuated Total Reflectance (ATR)-Fourier Transformed Infrared (FTIR) spectroscopy. Solution cast films of the PAc/PEO and PAc/PEO/LiClO(4) were examined. No obvious shifting of the characteristic ether and ester group stretching modes of PEO and PAc was observed, indicating incompatibility of the binary PAc/PEO blend. The spectroscopic studies on the PAc/PEO/LiClO(4) blends reveal that Li(+) ions coordinate individually to the polymer components at the ether oxygen of PEO and the C-O of the ester group of PAc. Frequency changes observed on the nu(C-O-C) and omega(CH(2)) of PEO confirm the coordination between PEO and Li(+) ions resulting in crystallinity suppression of PEO. The absence of experimental evidence on the formation of PEO-Li(+)-PAc complexes suggests that LiClO(4) does not enhance the compatibility of PAc/PEO blend.
    Matched MeSH terms: Ions/chemistry
  7. Suleiman Gwaram N, Khaledi H, Ali HM, Olmstead MM
    Acta Crystallogr C, 2011 Jan;67(Pt 1):o6-9.
    PMID: 21206084 DOI: 10.1107/S0108270110046317
    The title compound, C(4)H(6)N(4)O·H(2)O, crystallized simultaneously as a triclinic and a monoclinic polymorph from an aqueous solution of 2,4-diaminopyrimidin-6-ol. Previously, an orthorhombic polymorph was isolated under the same experimental conditions. The molecular geometric parameters in the two present polymorphs and the previously reported orthorhombic polymorph are similar, but the structures differ in the details of their crystal packing. In the triclinic system, the diaminopyrimidinone molecules are connected to one another via N-H···O and N-H···N hydrogen bonding to form infinite chains in the [011] direction. The chains are further hydrogen bonded to the water molecules, resulting in a three-dimensional network. In the monoclinic system, the diaminopyrimidinone molecules are hydrogen bonded together into two-dimensional networks parallel to the bc plane. The water molecules link the planes to form a three-dimensional polymeric structure.
    Matched MeSH terms: Ions/chemistry*
  8. Mohamed MH
    Med J Malaysia, 2004 May;59 Suppl B:19-20.
    PMID: 15468798
    One of the emerging technologies in the area of plasma processing is plasma immersion ion implantation (PSII). The paper addresses the merits offered by the PSII technique especially in the area of biomaterial processing. Worldwide development status as well as the drive towards commercial applications is elaborated in an attempt to draw the attention to the importance of the process for Malaysia as well as south East Asia.
    Matched MeSH terms: Ions/metabolism*
  9. Choo CK, Kong XY, Goh TL, Ngoh GC, Horri BA, Salamatinia B
    Carbohydr Polym, 2016 Mar 15;138:16-26.
    PMID: 26794733 DOI: 10.1016/j.carbpol.2015.11.060
    Development of new materials for different applications especially as bio-composites has received great attention. This study concentrates on development of a biopolymer based on chitosan (CT) and halloysite nanotubes (HNT) and evaluates the copper removal intake as a potential application of this bio-composite. In this study, CT/HNT beads were prepared by ultrasonic-assisted extrusion-dripping method for the first time. Two sources of HNTs (i.e. Dragonite and Matauri Bay) were added into a chitosan solution (2wt.%) at various loading fractions (25, 50, 75wt.%). The effect of ultrasound as a mixing device was also studied by varying the amplitude at constant frequency of 25%, 50% and 75%. Characteristics and physical properties of the prepared CT/HNT beads were also analyzed by SEM, FTIR, TGA and BET the results show that introducing HNT to chitosan increases the adsorption capacity toward copper ions; however HNT loading fraction above 50wt.% resulted in a decrease in adsorption capacity attributed to limited accessibility of the amino groups. The adsorption capacity of the CT/HNT beads prepared from Dragonite source had a larger adsorption capacity of 14.2mg/g as compared to that of Matauri Bay, 10.55mg/g. It was observed that the adsorption capacity of the beads toward copper ions decreased when the loading fraction of HNT is increased at constant ultrasound amplitude. The result of this study helps to understand the links between the characteristics and adsorption abilities of CT/HNT beads.
    Matched MeSH terms: Ions/chemistry
  10. Ang WL, Boon Mee CAL, Sambudi NS, Mohammad AW, Leo CP, Mahmoudi E, et al.
    Sci Rep, 2020 12 03;10(1):21199.
    PMID: 33273663 DOI: 10.1038/s41598-020-78322-1
    In the present work, palm kernel shell (PKS) biomass waste has been used as a low-cost and easily available precursor to prepare carbon dots (CDs) via microwave irradiation method. The impacts of the reacting medium: water and diethylene glycol (DEG), and irradiation period, as well as the presence of chitosan on the CDs properties, have been investigated. The synthesized CDs were characterized by several physical and optical analyses. The performance of the CDs in terms of bacteria cell imaging and copper (II) ions sensing and removal were also explored. All the CDs possessed a size of 6-7 nm in diameter and the presence of hydroxyl and alkene functional groups indicated the successful transformation of PKS into CDs with carbon core consisting of C = C elementary unit. The highest quantum yield (44.0%) obtained was from the CDs synthesised with DEG as the reacting medium at irradiation period of 1 min. It was postulated that the high boiling point of DEG resulted in a complete carbonisation of PKS into CDs. Subsequently, the absorbance intensity and photoluminescence intensity were also much higher compared to other precursor formulation. All the CDs fluoresced in the bacteria culture, and fluorescence quenching occurred in the presence of heavy metal ions. These showed the potential of CDs synthesised from PKS could be used for cellular imaging and detection as well as removal of heavy metal ions.
    Matched MeSH terms: Ions; Heavy Ions
  11. Yee CN, Ooi CHR, Tan LP, Misran M, Tang NT
    PLoS One, 2019;14(3):e0213697.
    PMID: 30913207 DOI: 10.1371/journal.pone.0213697
    That water may not be an inert medium was indicated by the presence at water's interfaces a negatively charged solute free zone of several hundred microns in thickness called the exclusion zone (EZ). Further evidence was demonstrated by Ovchinnikova's experiments (2009) showing that water can store and release substantial amount of charge. We demonstrate that the charge storage capacity of water arises from highly stable large-scale ionic structures with measurable charge imbalances and discrete levels of charge density. We also show evidence that the charge zones formation requires ionic solutes, and their formation correlate to large change in conductivity, by as much as 250%. Our experiments indicate that large-scale structuring plays a pivotal role in electrolysis and conductivity in ionic solution. We propose that water is an electrochemically active medium and present a new model of electrolysis and conductivity in ionic solution.
    Matched MeSH terms: Ions/chemistry*; Solutions/chemistry
  12. Habiba U, Siddique TA, Talebian S, Lee JJL, Salleh A, Ang BC, et al.
    Carbohydr Polym, 2017 Dec 01;177:32-39.
    PMID: 28962774 DOI: 10.1016/j.carbpol.2017.08.115
    In this study, effect of degree of deacetylation on property and adsorption capacity of chitosan/polyvinyl Alcohol electrospun membrane has been investigated. Resulting nanofibers were characterized by FESEM, FTIR, XRD, TGA, tensile testing, weight loss test and adsorption test. FESEM result shows, finer nanofiber was fabricated from 42h hydrolyzed chitosan and PVA blend solution. FTIR and XRD result showed a strong interaction between chitosan and polyvinyl alcohol. Higher tensile strength was observed for the nanofiber having 42h hydrolyzed chitosan. Blend solution of chitosan/PVA having low DD chitosan had higher viscosity. The nanofibrous membrane was stable in distilled water, acidic and basic medium. The isotherm study shows that the adsorption capacity (qm) of nanofiber containing higher DD chitosan was higher for Cr(VI). In contrary, the membrane containing chitosan with lower DD showed the higher adsorption capacity for Fe(III) and methyl orange. Moreover, the effect of DD on removal percentage of adsorbate was dependent on the initial concentration of the adsorbate.
    Matched MeSH terms: Ions/chemistry
  13. Kura NU, Ramli MF, Sulaiman WNA, Ibrahim S, Aris AZ
    Environ Sci Pollut Res Int, 2018 Mar;25(8):7231-7249.
    PMID: 26686857 DOI: 10.1007/s11356-015-5957-6
    In this paper, numerous studies on groundwater in Malaysia were reviewed with the aim of evaluating past trends and the current status for discerning the sustainability of the water resources in the country. It was found that most of the previous groundwater studies (44 %) focused on the islands and mostly concentrated on qualitative assessment with more emphasis being placed on seawater intrusion studies. This was then followed by inland-based studies, with Selangor state leading the studies which reflected the current water challenges facing the state. From a methodological perspective, geophysics, graphical methods, and statistical analysis are the dominant techniques (38, 25, and 25 %) respectively. The geophysical methods especially the 2D resistivity method cut across many subjects such as seawater intrusion studies, quantitative assessment, and hydraulic parameters estimation. The statistical techniques used include multivariate statistical analysis techniques and ANOVA among others, most of which are quality related studies using major ions, in situ parameters, and heavy metals. Conversely, numerical techniques like MODFLOW were somewhat less admired which is likely due to their complexity in nature and high data demand. This work will facilitate researchers in identifying the specific areas which need improvement and focus, while, at the same time, provide policymakers and managers with an executive summary and knowledge of the current situation in groundwater studies and where more work needs to be done for sustainable development.
    Matched MeSH terms: Ions/analysis*
  14. Jayabal S, Pandikumar A, Lim HN, Ramaraj R, Sun T, Huang NM
    Analyst, 2015 Apr 21;140(8):2540-55.
    PMID: 25738185 DOI: 10.1039/c4an02330g
    Gold nanorods (Au NRs) are elongated nanoparticles with unique optical properties which depend on their shape anisometry. The Au NR-based longitudinal localized surface plasmon resonance (longitudinal LSPR) band is very sensitive to the surrounding local environment and upon the addition of target analytes, the interaction between the analytes and the surface of the Au NRs leads to a change in the longitudinal LSPR band. This makes it possible to devise Au NR probes with application potential to the detection of toxic metal ions with an improved limit of detection, response time, and selectivity for the fabrication of sensing devices. The effective surface modification of Au NRs helps in improving their selectivity and sensitivity toward the detection of toxic metal ions. In this review, we discuss different methods for the preparation of surface modified Au NRs for the detection of toxic metal ions based on the LSPR band of the Au NRs and the types of interactions between the surface of Au NRs and metal ions. We summarize the work that has been done on Au NR-based longitudinal LSPR detection of environmentally toxic metal ions, sensing mechanisms, and the current progress in various modified Au NR-based longitudinal LSPR sensors for toxic metal ions. Finally, we discuss the applications of Au NR-based longitudinal LSPR sensors to real sample analysis and some of the future challenges facing longitudinal LSPR-based sensors for the detection of toxic metal ions toward commercial devices.
    Matched MeSH terms: Ions
  15. Yusof NA, Ahmad M
    Talanta, 2002 Sep 12;58(3):459-66.
    PMID: 18968772
    Gallocynin immobilized in chitosan membrane has been studied as a sensor element of an optical sensor for lead using a flowing system. By using this set up, lead in solution has been determined in the concentration range from 1.0x10(-1) to 1.0x10(3) ppm with a detection limit of 0.075 ppm. The standard deviation of the method for the repeatability of lead detection at a concentration of 100 ppm was found to be 2.10%. The response of the sensor was reproducible and can be regenerated by using acidified saturated KNO(3) solution. Interference from foreign ions was also studied at 1:1 mole ratio of Pb(II):foreign ions.
    Matched MeSH terms: Ions
  16. Ganesan K, Alias Y, Ng SW
    Acta Crystallogr C, 2008 Sep;64(Pt 9):o478-80.
    PMID: 18758014 DOI: 10.1107/S0108270108023111
    Crystallization of the ionic liquid 3,3'-dimethyl-1,1'-(1,4-phenylenedimethylene)diimidazolium bis(tetrafluoroborate), C(16)H(20)N(4)(2+).2BF(4)(-), (I), from its solution in water has permitted the first single-crystal study of an imidazolium-based ionic liquid having a tetrafluoroborate ion as counter-ion. Despite the expectation that the anion would not participate in nonclassical hydrogen bonding, the ionic liquid features C-H...F hydrogen bonds. The dication lies about a center of inversion. The ionic liquid 3,3'-di-n-butyl-1,1'-(1,4-phenylenedimethylene)diimidazolium bis(trifluoromethanesulfonate), C(22)H(32)N(4)(2+).2CF(3)SO(3)(-), (II), features both C-H...F and C-H...O hydrogen bonds.
    Matched MeSH terms: Anions; Ions
  17. Zhao P, Wang Y, Zhang Y, Guo T, Zhang Z, Zhang WJ, et al.
    Saudi J Biol Sci, 2016 May;23(3):353-7.
    PMID: 27081360 DOI: 10.1016/j.sjbs.2015.08.007
    In this study, the selenium enriched peanuts and the different solubility proteins extracted from them were investigated. The dried defatted selenium enriched peanuts (SeP) powder (0.3147 μg/g) had a 2.5-fold higher mean total selenium concentration than general peanuts (GP) power (0.1233 μg/g). The SeP had higher concentration of selenium, manganese and zinc than that of GP, but less calcium. The rate of extraction of protein was 23.39% for peanuts and alkali soluble protein was the main component of protein in SeP, which accounted for 92.82% of total soluble protein and combined selenium was 77.33% of total selenium protein. In different forms of proteins from SeP, the WSePr due to higher concentration of selenium had higher DPPH free-radical scavenging activity, higher reducing activity and longer induction time than other proteins.
    Matched MeSH terms: Ions
  18. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2020 Sep 04;125(10):102001.
    PMID: 32955327 DOI: 10.1103/PhysRevLett.125.102001
    The first study of charm quark diffusion with respect to the jet axis in heavy ion collisions is presented. The measurement is performed using jets with p_{T}^{jet}>60  GeV/c and D^{0} mesons with p_{T}^{D}>4  GeV/c in lead-lead (Pb-Pb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of sqrt[s_{NN}]=5.02  TeV, recorded by the CMS detector at the LHC. The radial distribution of D^{0} mesons with respect to the jet axis is sensitive to the production mechanisms of the meson, as well as to the energy loss and diffusion processes undergone by its parent parton inside the strongly interacting medium produced in Pb-Pb collisions. When compared to Monte Carlo event generators, the radial distribution in pp collisions is found to be well described by pythia, while the slope of the distribution predicted by sherpa is steeper than that of the data. In Pb-Pb collisions, compared to the pp results, the D^{0} meson distribution for 4
    Matched MeSH terms: Heavy Ions
  19. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 May 18;120(20):202301.
    PMID: 29864330 DOI: 10.1103/PhysRevLett.120.202301
    The prompt D^{0} meson azimuthal anisotropy coefficients, v_{2} and v_{3}, are measured at midrapidity (|y|<1.0) in Pb-Pb collisions at a center-of-mass energy sqrt[s_{NN}]=5.02  TeV per nucleon pair with data collected by the CMS experiment. The measurement is performed in the transverse momentum (p_{T}) range of 1 to 40  GeV/c, for central and midcentral collisions. The v_{2} coefficient is found to be positive throughout the p_{T} range studied. The first measurement of the prompt D^{0} meson v_{3} coefficient is performed, and values up to 0.07 are observed for p_{T} around 4  GeV/c. Compared to measurements of charged particles, a similar p_{T} dependence, but smaller magnitude for p_{T}<6  GeV/c, is found for prompt D^{0} meson v_{2} and v_{3} coefficients. The results are consistent with the presence of collective motion of charm quarks at low p_{T} and a path length dependence of charm quark energy loss at high p_{T}, thereby providing new constraints on the theoretical description of the interactions between charm quarks and the quark-gluon plasma.
    Matched MeSH terms: Ions
  20. Nurul Syafiqah Hirman, Nur Athirah Mohd Taib
    MyJurnal
    A simple and low-cost Fiber Optic Displacement Sensor (FODS) using reflective intensity modulation technique was developed to analyze various concentrations of Pb2+, a compound classified under heavy metal ions. Lead is harmful to the environment including to human but is used in the cosmetic field for beauty without realizing and considering the hazardousness of lead as it would cause a long-term effect. Therefore, a feasible way has been identified in this study to demonstrate the level of Pb2+ concentration in cosmetics field by employing the theory of modulation of intensity as a function of displacement sensor. The permissible limit according to Malaysian Cosmetics Guidelines and ASEAN Cosmetic Directive was 20 ppm. The concentration sensor’s system exhibits 0.0018 V/ppm sensitivity with a linearity of 96% and 94% respectively, for both peaks. Meanwhile, the sensitivity was 0.034 V/ppm for the first peak and 27.72 V/ppm for the second peak, with slope linearity of more than 96% for surface tension parameter. The credibility of these optical response curves data might be useful, especially in the cosmetic’s industrial application.

    Matched MeSH terms: Ions
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links