Displaying publications 41 - 60 of 61 in total

Abstract:
Sort:
  1. Danial R, Sobri S, Abdullah LC, Mobarekeh MN
    Chemosphere, 2019 Oct;233:559-569.
    PMID: 31195261 DOI: 10.1016/j.chemosphere.2019.06.010
    In this study, the performance of glyphosate removal in an electrocoagulation batch with two electrodes formed by the same metal type, consisting of aluminum, iron, steel and copper have been compared. The aim of this study intends to remove glyphosate from an aqueous solution by an electrocoagulation process using metal electrode plates, which involves electrogeneration of metal cations as coagulant agents. The production of metal cations showed an ability to bind together to form aggregates of flocs composed of a combination of glyphosate and metal oxide. Electrocoagulation using aluminum electrodes indicated a high percentage removal of glyphosate, 94.25%; followed by iron electrodes, 88.37%; steel electrodes, 62.82%; and copper electrodes, 46.69%. The treated aqueous solution was then analyzed by Fourier Transform Infrared Spectroscopy. Percentages of Carbon, Hydrogen, Nitrogen, Sulfur remaining in the treated aqueous solution after the electrocoagulation process have been determined. The treated water and sludge were characterized and the mechanism of the overall process was concluded as an outcome. An X-Ray Diffraction analysis of dried sludge confirmed that new polymeric compounds were formed during the treatment. The sludge composed of new compounds were also verified the removals. This study revealed that an electrocoagulation process using metal electrodes is reliable and efficient.
    Matched MeSH terms: Iron/chemistry
  2. Low PL, Yong BE, Ong BH, Matsumoto M, Tou TY
    J Nanosci Nanotechnol, 2011 Mar;11(3):2640-3.
    PMID: 21449444
    The substrate effects on surface morphologies, crystal structures, and magnetic properties of the sputter-deposited FePt thin films on Corning 1737, normal glass, and Si wafer substrates, respectively, were investigated. High in-plane coercivities of 10 kOe were obtained for the air-annealed films on Corning 1737 and Si wafer, where both films similarly have granular-like morphologies. Besides, increasing grain size and surface roughness of all the FePt films with the post-anneal temperature were observed. Moreover, partially separated grains were seen in the film on Si wafer, where the formation of Fe silicides during post-anneal is suspected, in which has enhanced the magnetic ordering.
    Matched MeSH terms: Iron/chemistry*
  3. Nasir N, Yahya N, Kashif M, Daud H, Akhtar MN, Zaid HM, et al.
    J Nanosci Nanotechnol, 2011 Mar;11(3):2551-4.
    PMID: 21449424
    This is our initial response towards preparation of nano-inductors garnet for high operating frequencies strontium iron garnet (Sr3Fe5O12) denoted as SrIG and yttrium iron garnet (Y3Fe5O12) denoted as YIG. The garnet nano crystals were prepared by novel sol-gel technique. The phase and crystal structure of the prepared samples were identified by using X-ray diffraction analysis. SEM images were done to reveal the surface morphology of the samples. Raman spectra was taken for yttrium iron garnet (Y3Fe5O12). The magnetic properties of the samples namely initial permeability (micro), relative loss factor (RLF) and quality factor (Q-Factor) were done by using LCR meter. From the XRD profile, both of the Y3Fe5O12 and Sr3Fe5O12 samples showed single phase garnet and crystallization had completely occurred at 900 degrees C for the SrIG and 950 degrees C for the YIG samples. The YIG sample showed extremely low RLF value (0.0082) and high density 4.623 g/cm3. Interesting however is the high Q factor (20-60) shown by the Sr3Fe5O12 sample from 20-100 MHz. This high performance magnetic property is attributed to the homogenous and cubical-like microstructure. The YIG particles were used as magnetic feeder for EM transmitter. It was observed that YIG magnetic feeder with the EM transmitter gave 39% higher magnetic field than without YIG magnetic feeder.
    Matched MeSH terms: Iron/chemistry*
  4. Karim S, Bae S, Greenwood D, Hanna K, Singhal N
    Water Res, 2017 11 15;125:32-41.
    PMID: 28826034 DOI: 10.1016/j.watres.2017.08.029
    The catalytic properties of nanoparticles (e.g., nano zero valent iron, nZVI) have been used to effectively treat a wide range of environmental contaminants. Emerging contaminants such as endocrine disrupting chemicals (EDCs) are susceptible to degradation by nanoparticles. Despite extensive investigations, questions remain on the transformation mechanism on the nZVI surface under different environmental conditions (redox and pH). Furthermore, in terms of the large-scale requirement for nanomaterials in field applications, the effect of polymer-stabilization used by commercial vendors on the above processes is unclear. To address these factors, we investigated the degradation of a model EDC, the steroidal estrogen 17α-ethinylestradiol (EE2), by commercially sourced nZVI at pH 3, 5 and 7 under different oxygen conditions. Following the use of radical scavengers, an assessment of the EE2 transformation products shows that under nitrogen purging direct reduction of EE2 by nZVI occurred at all pHs. The radicals transforming EE2 in the absence of purging and upon air purging were similar for a given pH, but the dominant radical varied with pH. Upon air purging, EE2 was transformed by the same radical species as the non-purged system at the same respective pH, but the degradation rate was lower with more oxygen - most likely due to faster nZVI oxidation upon aeration, coupled with radical scavenging. The dominant radicals were OH at pH 3 and O2- at pH 5, and while neither radical was involved at pH 7, no conclusive inferences could be made on the actual radical involved at pH 7. Similar transformation products were observed without purging and upon air purging.
    Matched MeSH terms: Iron/chemistry*
  5. Mook WT, Ajeel MA, Aroua MK, Szlachta M
    J Environ Sci (China), 2017 Apr;54:184-195.
    PMID: 28391928 DOI: 10.1016/j.jes.2016.02.003
    In this work a novel anode configuration consisting of an iron mesh double layer is proposed for the electrochemical treatment of wastewater. The removal of Reactive Black 5 dye (RB5) from synthetic contaminated water was used as a model system. At a constant anode surface area, identical process operating parameters and batch process mode, the iron mesh double layer electrode showed better performance compared to the conventional single layer iron mesh. The double layer electrode was characterized by RB5 and chemical oxygen demand (COD) removal efficiency of 98.2% and 97.7%, respectively, kinetic rate constant of 0.0385/min, diffusion coefficient of 4.9×10(-5)cm(2)/sec and electrical energy consumption of 20.53kWh/kgdye removed. In the continuous flow system, the optimum conditions suggested by Response Surface Methodology (RSM) are: initial solution pH of 6.29, current density of 1.6mA/cm(2), electrolyte dose of 0.15g/L and flow rate of 11.47mL/min which resulted in an RB5 removal efficiency of 81.62%.
    Matched MeSH terms: Iron/chemistry
  6. Nordin N, Ho LN, Ong SA, Ibrahim AH, Abdul Rani AL, Lee SL, et al.
    Chemosphere, 2020 Apr;244:125459.
    PMID: 31790991 DOI: 10.1016/j.chemosphere.2019.125459
    The hybrid electrochemical system of photocatalytic fuel cell - peroxi-coagulation (PFC-PC) is a combined technology of advanced oxidation process (AOP) which involve the hydroxyl radical formation for simultaneous degradation of organic pollutant and electricity generation. The p-nitrosodimethylaniline (RNO) spin trapping technique was applied by analyzing the RNO bleaching performance to detect the OH at the PFC and PC reactors. The presence of UV light showed higher RNO bleaching rate at the PFC reactor (11.7%) with maximum power density (Pmax = 3.14 mW cm-2). Results revealed that the optimum of maximum power density was observed at iron plate size of 30 cm2. UV light became a limiting factor in the PFC system as a power source in the PFC-PC system. Meanwhile, iron plate plays an important role to supply the soluble Fe2+ ions by oxidation process and become a suitable catalyst for in-situ production of H2O2 and OH through the PC process to degrade the organic molecules.
    Matched MeSH terms: Iron/chemistry
  7. Jahangirian H, Kalantari K, Izadiyan Z, Rafiee-Moghaddam R, Shameli K, Webster TJ
    Int J Nanomedicine, 2019;14:1633-1657.
    PMID: 30880970 DOI: 10.2147/IJN.S184723
    Conventional cancer treatment techniques show several limitations including low or no specificity and consequently a low efficacy in discriminating between cancer cells and healthy cells. Recent nanotechnology developments have introduced smart and novel therapeutic nanomaterials that take advantage of various targeting approaches. The use of nanotechnology in medicine and, more specifically, drug delivery is set to spread even more rapidly than it has over the past two decades. Currently, many nanoparticles (NPs) are under investigation for drug delivery including those for cancer therapy. Targeted nanomaterials bind selectively to cancer cells and greatly affect them with only a minor effect on healthy cells. Gold nanoparticles (Au-NPs), specifically, have been identified as significant candidates for new cancer therapeutic modalities because of their biocompatibility, easy functionalization and fabrication, optical tunable characteristics, and chemophysical stability. In the last decade, there has been significant research on Au-NPs and their biomedical applications. Functionalized Au-NPs represent highly attractive and promising candidates for drug delivery, owing to their unique dimensions, tunable surface functionalities, and controllable drug release. Further, iron oxide NPs due to their "superparamagnetic" properties have been studied and have demonstrated successful employment in numerous applications. In targeted drug delivery systems, drug-loaded iron oxide NPs can accumulate at the tumor site with the aid of an external magnetic field. This can lead to incremental effectiveness in drug release to the tumor site and vanquish cancer cells without harming healthy cells. In order for the application of iron oxide NPs in the human body to be realized, they should be biodegradable and biocompatible to minimize toxicity. This review illustrates recent advances in the field drug and small molecule delivery such as fluorouracil, folic acid, doxorubicin, paclitaxel, and daunorubicin, specifically when using gold and iron oxide NPs as carriers of anticancer therapeutic agents.
    Matched MeSH terms: Iron/chemistry*
  8. Jacob PJ, Masarudin MJ, Hussein MZ, Rahim RA
    Microb Cell Fact, 2017 Oct 11;16(1):175.
    PMID: 29020992 DOI: 10.1186/s12934-017-0789-3
    BACKGROUND: Iron based ferromagnetic nanoparticles (IONP) have found a wide range of application in microelectronics, chemotherapeutic cell targeting, and as contrast enhancers in MRI. As such, the design of well-defined monodisperse IONPs is crucial to ensure effectiveness in these applications. Although these nanostructures are currently manufactured using chemical and physical processes, these methods are not environmentally conducive and weigh heavily on energy and outlays. Certain microorganisms have the innate ability to reduce metallic ions in aqueous solution and generate nano-sized IONP's with narrow size distribution. Harnessing this potential is a way forward in constructing microbial nanofactories, capable of churning out high yields of well-defined IONP's with physico-chemical characteristics on par with the synthetically produced ones.

    RESULTS: In this work, we report the molecular characterization of an actinomycetes, isolated from tropical freshwater wetlands sediments, that demonstrated rapid aerobic extracellular reduction of ferric ions to generate iron based nanoparticles. Characterization of these nanoparticles was carried out using Field Emission Scanning Electron Microscope with energy dispersive X-ray spectroscopy (FESEM-EDX), Field Emission Transmission Electron Microscope (FETEM), Ultraviolet-Visible (UV-Vis) Spectrophotometer, dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FTIR). This process was carried out at room temperature and humidity and under aerobic conditions and could be developed as an environmental friendly, cost effective bioprocess for the production of IONP's.

    CONCLUSION: While it is undeniable that iron reducing microorganisms confer a largely untapped resource as potent nanofactories, these bioprocesses are largely anaerobic and hampered by the low reaction rates, highly stringent microbial cultural conditions and polydispersed nanostructures. In this work, the novel isolate demonstrated rapid, aerobic reduction of ferric ions in its extracellular matrix, resulting in IONPs of relatively narrow size distribution which are easily extracted and purified without the need for convoluted procedures. It is therefore hoped that this isolate could be potentially developed as an effective nanofactory in the future.

    Matched MeSH terms: Iron/chemistry*
  9. Heng GC, Isa MH, Lim JW, Ho YC, Zinatizadeh AAL
    Environ Sci Pollut Res Int, 2017 Dec;24(35):27113-27124.
    PMID: 28963706 DOI: 10.1007/s11356-017-0287-5
    Biological treatments, such as activated sludge process, are common methods to treat municipal and industrial wastewaters. However, they produce huge amounts of waste activated sludge (WAS). The excess sludge treatment and disposal are a challenge for wastewater treatment plants due to economic, environmental, and regulatory factors. In this study, photo-Fenton pretreatment (oxidation using hydrogen peroxide and iron catalyst aided with UV light) was optimized using response surface methodology (RSM) and central composite design (CCD) to determine the effects of three operating parameters (H2O2 dosage, H2O2/Fe2+ molar ratio, and irradiation time) on disintegration and dewaterability of WAS. MLVSS removal, capillary suction time (CST) reduction, sCOD, and EPS were obtained as 70%, 25%, 12,000 mg/L, and 500 mg/L, respectively, at the optimal conditions, i.e., 725 g H2O2/kg TS, H2O2/Fe2+ molar ratio 80, and irradiation time 40 min. Two batch-fed completely mixed mesophilic anaerobic digesters were then operated at 15-day solid retention time (SRT) and 37 ± 0.5 °C to compare the digestibility of untreated and photo-Fenton pretreated sludge in terms of volatile solids (VS) reduction, COD removal, and biogas production at steady-state operations. Photo-Fenton pretreatment followed by anaerobic digestion of WAS was very effective and yielded 75.7% total VS reduction, 81.5% COD removal, and 0.29-0.31 m3/kg VSfed·d biogas production rate, compared to 40.7% total VS solid reduction, 54.7% COD removal, and 0.12-0.17 m3/kg VSfed·d biogas production rate for control. Thus, photo-Fenton can be a useful pretreatment step in sludge management.
    Matched MeSH terms: Iron/chemistry*
  10. Venny, Gan S, Ng HK
    Environ Sci Pollut Res Int, 2014 Feb;21(4):2888-97.
    PMID: 24151025 DOI: 10.1007/s11356-013-2207-7
    Extensive contamination of soils by highly recalcitrant contaminants such as polycyclic aromatic hydrocarbons (PAHs) is an environmental problem arising from rapid industrialisation. This work focusses on the remediation of soil contaminated with 3- and 4-aromatic ring PAHs (phenanthrene (PHE) and fluoranthene (FLUT)) through catalysed hydrogen peroxide propagation (CHP). In the present work, the operating parameters of the CHP treatment in packed soil column was optimised with central composite design (H2O2/soil 0.081, Fe(3+)/soil 0.024, sodium pyrophosphate (SP)/soil 0.024, pH of SP solution 7.73). The effect of contaminant aging on PAH removals was also investigated. Remarkable oxidative PAH removals were observed for the short aging and extended aging period (up to 86.73 and 70.61 % for PHE and FLUT, respectively). The impacts of CHP on soil biological, chemical and physical properties were studied for both spiked and aged soils. Overall, the soil functionality analyses after the proposed operating condition demonstrated that the values for soil respiration, electrical conductivity, pH and iron precipitation fell within acceptable limits, indicating the compatibility of the CHP process with land restoration.
    Matched MeSH terms: Iron/chemistry
  11. Halmi MI, Zuhainis SW, Yusof MT, Shaharuddin NA, Helmi W, Shukor Y, et al.
    Biomed Res Int, 2013;2013:384541.
    PMID: 24383052 DOI: 10.1155/2013/384541
    Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS-) degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v), between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant.
    Matched MeSH terms: Iron/chemistry
  12. Hassan SA, Mijin S, Yusoff UK, Ding P, Wahab PE
    Molecules, 2012 Jun 28;17(7):7843-53.
    PMID: 22743588 DOI: 10.3390/molecules17077843
    The source and quantity of nutrients available to plants can affect the quality of leafy herbs. A study was conducted to compare quality of Cosmos caudatus in response to rates of organic and mineral-based fertilizers. Organic based fertilizer GOBI (8% N:8% P₂O₅:8% K₂O) and inorganic fertilizer (15% N, 15% P₂O₅, 15% K₂O) were evaluated based on N element rates at 0, 30, 60, 90, 120 kg h⁻¹. Application of organic based fertilizer reduced nitrate, improved vitamin C, antioxidant activity as well as nitrogen and calcium nutrients content. Antioxidant activity and chlorophyll content were significantly higher with increased fertilizer application. Fertilization appeared to enhance vitamin C content, however for the maximum ascorbic acid content, regardless of fertilizer sources, plants did not require high amounts of fertilizer.
    Matched MeSH terms: Iron/chemistry
  13. Karimi S, Abdulkhani A, Karimi A, Ghazali AH, Ahmadun FL
    Environ Technol, 2010 Apr 1;31(4):347-56.
    PMID: 20450108 DOI: 10.1080/09593330903473861
    The efficiency of advanced oxidation processes (AOPs), enzymatic treatment and combined enzymatic/AOP sequences for the colour remediation of soda and chemimechanical pulp and paper mill effluent was investigated. The results indicated that under all circumstances, the AOP using ultraviolet irradiation (photo-Fenton) was more efficient in the degradation of effluent components in comparison with the dark reaction. It was found that both versatile peroxidase (VP) from Bjerkandera adusta and laccase from Trametes versicolor, as pure enzymes, decolorize the deep brown effluent to a clear light-yellow solution. In addition, it was found that in the laccase treatment, the decolorization rates of both effluents were enhanced in the presence of 2, 2'-azinobis (3-ethylbenzthiazoline-6-sulfonate), while in the case of VP, Mn(+2) decreased the efficiency of the decolorization treatment. The concomitant use of enzymes and AOPs imposes a considerable effect on the colour remediation of effluent samples.
    Matched MeSH terms: Iron/chemistry*
  14. Yap CL, Gan S, Ng HK
    Chemosphere, 2011 Jun;83(11):1414-30.
    PMID: 21316731 DOI: 10.1016/j.chemosphere.2011.01.026
    This paper aims to review the applications of Fenton based treatments specifically for polycyclic aromatic hydrocarbons-contaminated soils. An overview of the background and principles of Fenton treatment catalysed by both homogenous (conventional and modified Fenton) and heterogeneous (Fenton-like) catalysts is firstly presented. Laboratory and field soil remediation studies are then discussed in terms of efficiency, kinetics and associated factors. Four main scopes of integrated Fenton treatments, i.e. physical-Fenton, biological-Fenton, electro-Fenton and photo-Fenton are also reviewed in this paper. For each of these integrated remediation technologies, the theoretical background and mechanisms are detailed alongside with achievable removal efficiencies for polycyclic aromatic hydrocarbons in contaminated soils compared to sole Fenton treatment. Finally, the environmental impacts of Fenton based soil treatments are documented and discussed.
    Matched MeSH terms: Iron/chemistry*
  15. Adam F, Andas J
    J Colloid Interface Sci, 2007 Jul 1;311(1):135-43.
    PMID: 17391688
    Iron and 4-(methylamino)benzoic acid have been successfully incorporated into silica extracted from rice husk. The silica/Fe/amine complex, RH-Fe(5% amine), showed a ca. 24% increase in specific surface area compared to RH-Fe. This increase was attributed to the templated formation of regular pores. The XRD showed the RH-Fe(5% amine) to be amorphous. The Friedel-Crafts benzylation reaction with toluene using RH-Fe(5% amine) showed a drastic reduction in the di-substituted products to ca. 1.0%.
    Matched MeSH terms: Iron/chemistry
  16. Mohd NI, Gopal K, Raoov M, Mohamad S, Yahaya N, Lim V, et al.
    Talanta, 2019 May 01;196:217-225.
    PMID: 30683354 DOI: 10.1016/j.talanta.2018.12.043
    The non-ionic silicone surfactant (OFX 0309) has been applied in cloud point extraction for the extraction of triazine herbicides in food samples. Evidence has shown that the non-ionic silicone surfactant demonstrated a good performance as an extractor toward triazine herbicides. In this present study, OFX 0309 surfactant was combined with activated charcoal (AC) due to their valuable properties. Activated charcoal modified with non-ionic silicone surfactant coated with magnetic nanoparticles (AC-OFX MNPs) was synthesized and characterized by FT-IR, VSM, SEM, TEM and BET. This novel material was applied as a magnetic adsorbent for the pre-concentration and separation of triazine herbicides due to hydrophobic interaction between polysiloxane polyether of OFX 0309 surfactant and triazine herbicides. Under optimal conditions, the proposed magnetic solid phase extraction method using AC-OFX MNPs adsorbent was applied to extract triazine herbicides from selected milk and rice samples using high performance liquid chromatography coupled with diode array detector. The validation method revealed a good linearity (1 - 500 μg L-1) with the coefficient of determination (R2) in the range of 0.992-0.998 for the samples. The limits of detection (LOD) of the developed method were 0.04 - 0.05 µg L-1 (milk sample) and 0.02 - 0.05 µg L-1 (rice sample). The limits of quantification (LOQ) were 0.134 - 0.176 µg L-1 (milk sample) and 0.075 - 0.159 µg L-1 (rice sample). The recoveries of the triazine compounds ranged from 81% to 109% in spiked milk samples and from 81% to 111% in spiked rice samples, with relative standard deviations (RSD) values lower than 13.5% and 12.1% for milk and rice samples, respectively. To the best of our knowledge, this is the first study that have investigated the use of magnetic nanoparticles coated activated charcoal modified with OFX 0309 surfactant for pretreatment of triazine herbicides in food samples analysis for simultaneous separation of organic pollutants.
    Matched MeSH terms: Iron/chemistry
  17. Al-Fahdawi MQ, Rasedee A, Al-Qubaisi MS, Alhassan FH, Rosli R, El Zowalaty ME, et al.
    Int J Nanomedicine, 2015;10:5739-50.
    PMID: 26425082 DOI: 10.2147/IJN.S82586
    Iron-manganese-doped sulfated zirconia nanoparticles with both Lewis and Brønsted acidic sites were prepared by a hydrothermal impregnation method followed by calcination at 650°C for 5 hours, and their cytotoxicity properties against cancer cell lines were determined. The characterization was carried out using X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Brauner-Emmett-Teller (BET) surface area measurements, X-ray fluorescence, X-ray photoelectron spectroscopy, zeta size potential, and transmission electron microscopy (TEM). The cytotoxicity of iron-manganese-doped sulfated zirconia nanoparticles was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays against three human cancer cell lines (breast cancer MDA-MB231 cells, colon carcinoma HT29 cells, and hepatocellular carcinoma HepG2 cells) and two normal human cell lines (normal hepatocyte Chang cells and normal human umbilical vein endothelial cells [HUVECs]). The results suggest for the first time that iron-manganese-doped sulfated zirconia nanoparticles are cytotoxic to MDA-MB231 and HepG2 cancer cells but have less toxicity to HT29 and normal cells at concentrations from 7.8 μg/mL to 500 μg/mL. The morphology of the treated cells was also studied, and the results supported those from the cytotoxicity study in that the nanoparticle-treated HepG2 and MDA-MB231 cells had more dramatic changes in cell morphology than the HT29 cells. In this manner, this study provides the first evidence that iron-manganese-doped sulfated zirconia nanoparticles should be further studied for a wide range of cancer applications without detrimental effects on healthy cell functions.
    Matched MeSH terms: Iron/chemistry*
  18. Nemati K, Abu Bakar NK, Abas MR, Sobhanzadeh E, Low KH
    Environ Monit Assess, 2011 May;176(1-4):313-20.
    PMID: 20632089 DOI: 10.1007/s10661-010-1584-3
    A study was carried out to investigate the fractionation of Cd, Cr, Cu, Fe, Mn, Pb, and Zn in shrimp aquaculture sludge from Selangor, Malaysia, using original (unmodified) and modified four-steps BCR (European Community Bureau of Reference, now known as the Standards Measurements and Testing Program) sequential extraction scheme. Step 2 of the unmodified BCR procedure (subsequently called Method A) involves treatment with 0.1 M hydroxylammonium chloride at pH 2, whereas 0.5 M hydroxylammonium chloride at pH 1.5 was used in the modified BCR procedure (subsequently called Method B). Metal analyses were carried out by flame atomic absorption spectrometry. A pseudo-total aqua-regia digest of BCR CRM 701 has also been undertaken for quality assurance purposes. The recovery of Method A for all metals studied ranges from 96.14% to 105.26%, while the recovery for Method B ranges from 95.94% to 122.40%. Our results reveal that Method A underestimated the proportion of metals bound to the easily reducible fraction except for copper. Therefore, the potential mobility of these elements is higher than others. Thus, to use this sludge as a fertilizer we have to first find a remediation for reduction of heavy metal contamination.
    Matched MeSH terms: Iron/chemistry
  19. Nasiri R, Dabagh S, Meamar R, Idris A, Muhammad I, Irfan M, et al.
    Nanotechnology, 2020 May 08;31(19):195603.
    PMID: 31978907 DOI: 10.1088/1361-6528/ab6fd4
    The present study aims at engineering, fabrication, characterization, and qualifications of papain (PPN) conjugated SiO2-coated iron oxide nanoparticles 'IONPs@SiO2-PPN'. Initially fabricated iron oxide nanoparticles (IONPs) were coated with silica (SiO2) using sol-gel method to hinder the aggregation and to enhance biocompatibility. Next, PPN was loaded as an anticancer agent into the silica coated IONPs (IONPs@SiO2) for the delivery of papain to the HeLa cancer cells. This fabricated silica-coated based magnetic nanoparticle is introduced as a new physiologically-compatible and stable drug delivery vehicle for delivering of PPN to the HeLa cancer cell line. The IONPs@SiO2-PPN were characterized using FT-IR, AAS, FESEM, XRD, DLS, and VSM equipment. Silica was amended on the surface of iron oxide nanoparticles (IONPs, γ-Fe2O3) to modify its biocompatibility and stability. The solvent evaporation method was used to activate PPN vectorization. The following tests were performed to highlight the compatibility of our proposed delivery vehicle: in vitro toxicity assay, in vivo acute systemic toxicity test, and the histology examination. The results demonstrated that IONPs@SiO2-PPN successfully reduced the IC50 values compared with the native PPN. Also, the structural alternations of HeLa cells exposed to IONPs@SiO2-PPN exhibited higher typical hallmarks of apoptosis compared to the cells treated with the native PPN. The in vivo acute toxicity test indicated no clinical signs of distress/discomfort or weight loss in Balb/C mice a week after the intravenous injection of IONPs@SiO2 (10 mg kg-1). Besides, the tissues architectures were not affected and the pathological inflammatory alternations detection failed. In conclusion, IONPs@SiO2-PPN can be chosen as a potent candidate for further medical applications in the future, for instance as a drug delivery vehicle or hyperthermia agent.
    Matched MeSH terms: Iron/chemistry*
  20. Yusri NM, Chan KW, Iqbal S, Ismail M
    Molecules, 2012 Oct 25;17(11):12612-21.
    PMID: 23099617 DOI: 10.3390/molecules171112612
    A sequential solvent extraction scheme was employed for the extraction of antioxidant compounds from kenaf (Hibiscus cannabinus L.) seeds. Yield of extracts varied widely among the solvents and was the highest for hexane extract (16.6% based on dry weight basis), while water extract exhibited the highest total phenolic content (18.78 mg GAE/g extract), total flavonoid content (2.49 mg RE/g extract), and antioxidant activities (p < 0.05). DPPH and hydroxyl radical scavenging, β-carotene bleaching, metal chelating activity, ferric thiocyanate and thiobarbituric acid reactive substances assays were employed to comprehensively assess the antioxidant potential of different solvent extracts prepared sequentially. Besides water, methanolic extract also exhibited high retardation towards the formation of hydroperoxides and thiobarbituric acid reactive substances in the total antioxidant activity tests (p < 0.05). As conclusion, water and methanol extracts of kenaf seed may potentially serve as new sources of antioxidants for food and nutraceutical applications.
    Matched MeSH terms: Iron/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links