Displaying publications 41 - 60 of 813 in total

Abstract:
Sort:
  1. Noor Shafini Mohamad, Mohd Hafizi Mahmud
    Jurnal Inovasi Malaysia, 2020;4(1):1-14.
    MyJurnal
    Three-point bending test is one of the main methods used in long bones to characterise bone material and determine the biomechanical properties. We have examined the mechanical competencies of the mouse bones at four-week-old by using a three-point bending jig so that the potential genotype-related deficiencies in mechanical properties of bones explored. The available bending jig was not suitable for small animal model and may cause slippage when applying the load. The tibial gross length measurements of the four-week-old mouse measured using the proximal anatomical point of the centre of the condyles to the distal anatomical significance of the medial malleolus (~16 mm). The mid tibia diameter measurement is taken at the middle tibia (~1 mm) and metaphyseal diameter (~3 mm). The bending jig was custom-made, where both ends support were cut in a v-shape to provide stability. The tibias were mechanically tested with the v-shape support under three-point bending using a Bose ElectroForce® 3200 until failure. The test revealed a significant result of flexural strength, work-to-fracture and strain to failure obtained from the load-displacement curves. The finding may be useful in the studies of quantitative assessments of the strength and toughness of small animal bones.
    Matched MeSH terms: Disease Models, Animal
  2. Muhammad H, Omar MH, Rasid ENI, Suhaimi SN, Mohkiar FH, Siu LM, et al.
    Plants (Basel), 2021 Feb 11;10(2).
    PMID: 33670296 DOI: 10.3390/plants10020343
    The present study was carried out to assess the genotoxicity potential of Ficus deltoidea var. kunstleri aqueous extract (FDAE) using standard in vitro assays. The DNA damage of V79B cells was measured using the alkaline comet assay treated at 0.1 mg/mL (IC10) and 0.3 mg/mL (IC25) of FDAE together with positive and negative controls. For in vitro micronucleus assay, the V79B cells were treated with FDAE at five different concentrations (5, 2.5, 1.25, 0.625, and 0.3125 mg/mL) with and without S9 mixture. The bacteria reverse mutation assay of FDAE was performed on Salmonella typhimurium strains TA98, 100, 1535, 1537, and Escherichia coli strain WP2uvrA using pre-incubation method in the presence or in the absence of an extrinsic metabolic system (S9 mixture). FDAE at 0.1 and 0.3 mg/mL significantly increased DNA damage in both comet tail and tail moment (p < 0.05). No significant changes were detected in the number of micronucleated cell when compared to control. Tested at the doses up to 5000 µg/plate, the FDAE did not increase the number of revertant colonies for all strains. In conclusion, further investigation needs to be conducted in animal model to confirm the non-genotoxicity activities of FDAE.
    Matched MeSH terms: Models, Animal
  3. Roslinah M, Wan Hitam WH, Md Salleh MS, Abdul Hamid SS, Shatriah I
    Cureus, 2019 Jan 25;11(1):e3954.
    PMID: 30956907 DOI: 10.7759/cureus.3954
    We aimed to compare clinical and pathological reactions towards locally synthesized bovine bone derived from hydroxyapatite (bone docosahexaenoic acid (dHA)) and commercially available porous polyethylene (Medpor®, Porex Surgical Incorporation, Georgia, USA) orbital implants in animal models. An experimental study was performed on 14 New Zealand white rabbits. Group A (n=7) was implanted with bovine bone dHA and group B (n=7) was implanted with Medpor®. Clinical examinations were performed on Days 1, 7, 14, 28, and 42 post-implantation. The implanted eyes were enucleated on Day 42 and were sent for pathological evaluation. Serial clinical examinations included urine color and odor; feeding and physical activity demonstrated normal wellbeing in all the subjects. Localized minimal infection was observed in both groups during the first two weeks following implantation, and the subjects responded well to topical moxifloxacin. Both groups exhibited evidence of wound breakdown. No signs of implant migration or extrusion were observed in either group. The histopathological examination revealed no statistically significant difference in inflammatory cell reactions and fibrovascular tissue maturation between both types of implants. However, all (100%) of the bovine bone dHA implants displayed complete fibrovascular ingrowth compared to Medpor® implants (57.1%) at six weeks post-implantation (p=0.001). In conclusion, bovine bone dHA and Medpor® orbital implants were well-tolerated clinically and displayed similar inflammatory reactions and fibrovascular tissue maturation. Locally synthesized bovine bone dHA orbital implants displayed significantly greater complete fibrovascular ingrowth in comparison with Medpor® implants.
    Matched MeSH terms: Models, Animal
  4. Binti Badlishah Sham NI, Lewin SD, Grant MM
    Proteomics Clin Appl, 2020 05;14(3):e1900043.
    PMID: 31419032 DOI: 10.1002/prca.201900043
    Proteomics has currently been a developing field in periodontal diseases to obtain protein information of certain samples. Periodontal disease is an inflammatory disorder that attacks the teeth, connective tissues, and alveolar bone within the oral cavity. Proteomics information can provide proteins that are differentially expressed in diseased or healthy samples. This review provides insight into approaches researching single species, multi species, bacteria, non-human, and human models of periodontal disease for proteomics information. The approaches that have been taken include gel electrophoresis and qualitative and quantitative mass spectrometry. This review is carried out by extracting information about in vitro and in vivo studies of proteomics in models of periodontal diseases that have been carried out in the past two decades. The research has concentrated on a relatively small but well-known group of microorganisms. A wide range of models has been reviewed and conclusions across the breadth of these studies are presented in this review.
    Matched MeSH terms: Disease Models, Animal
  5. Ahmed Juvale II, Che Has AT
    Heliyon, 2020 Jul;6(7):e04557.
    PMID: 32775726 DOI: 10.1016/j.heliyon.2020.e04557
    The pilocarpine animal model of status epilepticus is a well-established, clinically translatable model that satisfies all of the criteria essential for an animal model of status epilepticus: a latency period followed by spontaneous recurrent seizures, replication of behavioural, electrographic, metabolic, and neuropathological changes, as well as, pharmacoresistance to anti-epileptic drugs similar to that observed in human status epilepticus. However, this model is also characterized by high mortality rates and studies in recent years have also seen difficulties in seizure induction due to pilocarpine resistant animals. This can be attributed to differences in rodent strains, species, gender, and the presence of the multi-transporter, P-glycoprotein at the blood brain barrier. The current paper highlights the various alterations made to the original pilocarpine model over the years to combat both the high mortality and low induction rates. These range from the initial lithium-pilocarpine model to the more recent Reduced Intensity Status Epilepticus (RISE) model, which finally brought the mortality rates down to 1%. These modifications are essential to improve animal welfare and future experimental outcomes.
    Matched MeSH terms: Models, Animal
  6. Paudel YN, Semple BD, Jones NC, Othman I, Shaikh MF
    J Neurochem, 2019 12;151(5):542-557.
    PMID: 30644560 DOI: 10.1111/jnc.14663
    Epilepsy is a serious neurological condition exhibiting complex pathology and deserving of more serious attention. More than 30% of people with epilepsy are not responsive to more than 20 anti-epileptic drugs currently available, reflecting an unmet clinical need for novel therapeutic strategies. Not much is known about the pathogenesis of epilepsy, but evidence indicates that neuroinflammation might contribute to the onset and progression of epilepsy following acquired brain insults. However, the molecular mechanisms underlying these pathophysiological processes are yet to be fully understood. The emerging research suggests that high-mobility group box protein 1 (HMGB1), a DNA-binding protein that is both actively secreted by inflammatory cells and released by necrotic cells, might contribute to the pathogenesis of epilepsy. HMGB1 as an initiator and amplifier of neuroinflammation, and its activation is implicated in the propagation of seizures in animal models. The current review will highlight the potential role of HMGB1 in the pathogenesis of epilepsy, and implications of HMGB1-targeted therapies against epilepsy. HMGB1 in this context is an emerging concept deserving further exploration. Increased understanding of HMGB1 in seizures and epilepsy will pave the way in designing novel and innovative therapeutic strategies that could modify the disease course or prevent its development.
    Matched MeSH terms: Models, Animal
  7. Yusoff NH, Alshehadat SA, Azlina A, Kannan TP, Hamid SS
    Trop Life Sci Res, 2015 Apr;26(1):21-9.
    PMID: 26868590 MyJurnal
    In the past decade, the field of stem cell biology is of major interest among researchers due to its broad therapeutic potential. Stem cells are a class of undifferentiated cells that are able to differentiate into specialised cell types. Stem cells can be classified into two main types: adult stem cells (adult tissues) and embryonic stem cells (embryos formed during the blastocyst phase of embryological development). This review will discuss two types of adult mesenchymal stem cells, dental stem cells and amniotic stem cells, with respect to their differentiation lineages, passage numbers and animal model studies. Amniotic stem cells have a greater number of differentiation lineages than dental stem cells. On the contrary, dental stem cells showed the highest number of passages compared to amniotic stem cells. For tissue regeneration based on animal studies, amniotic stem cells showed the shortest time to regenerate in comparison with dental stem cells.
    Matched MeSH terms: Models, Animal
  8. Johan Arief MF, Choo BKM, Yap JL, Kumari Y, Shaikh MF
    Front Pharmacol, 2018;9:655.
    PMID: 29997502 DOI: 10.3389/fphar.2018.00655
    Epilepsy is a common neurological disorder characterized by seizures which result in distinctive neurobiological and behavioral impairments. Not much is known about the causes of epilepsy, making it difficult to devise an effective cure for epilepsy. Moreover, clinical studies involving epileptogenesis and ictogenesis cannot be conducted in humans due to ethical reasons. As a result, animal models play a crucial role in the replication of epileptic seizures. In recent years, non-mammalian models have been given a primary focus in epilepsy research due to their advantages. This systematic review aims to summarize the importance of non-mammalian models in epilepsy research, such as in the screening of anti-convulsive compounds. The reason for this review is to integrate currently available information on the use and importance of non-mammalian models in epilepsy testing to aid in the planning of future studies as well as to provide an overview of the current state of this field. A PRISMA model was utilized and PubMed, Springer, ScienceDirect and SCOPUS were searched for articles published between January 2007 and November 2017. Fifty-one articles were finalized based on the inclusion/exclusion criteria and were discussed in this review. The results of this review demonstrated the current use of non-mammalian models in epilepsy research and reaffirmed their potential to supplement the typical rodent models of epilepsy in future research into both epileptogenesis and the treatment of epilepsy. This review also revealed a preference for zebrafish and fruit flies in lieu of other non-mammalian models, which is a shortcoming that should be corrected in future studies due to the great potential of these underutilized animal models.
    Matched MeSH terms: Models, Animal
  9. Jazayeri SD, Poh CL
    Vet Res, 2019 Oct 10;50(1):78.
    PMID: 31601266 DOI: 10.1186/s13567-019-0698-z
    Veterinary vaccines need to have desired characteristics, such as being effective, inexpensive, easy to administer, suitable for mass vaccination and stable under field conditions. DNA vaccines have been proposed as potential solutions for poultry diseases since they are subunit vaccines with no risk of infection or reversion to virulence. DNA vaccines can be utilized for simultaneous immunizations against multiple pathogens and are relatively easy to design and inexpensive to manufacture and store. Administration of DNA vaccines has been shown to stimulate immune responses and provide protection from challenges in different animal models. Although DNA vaccines offer advantages, setbacks including the inability to induce strong immunity, and the fact that they are not currently applicable for mass vaccination impede the use of DNA vaccines in the poultry industry. The use of either biological or physical carriers has been proposed as a solution to overcome the current delivery limitations of DNA vaccines for veterinary applications. This review presents an overview of the recent development of carriers for delivery of veterinary DNA vaccines against avian pathogens.
    Matched MeSH terms: Models, Animal
  10. Tsai MH, Megat Abdul Wahab R, Yazid F
    Arch Oral Biol, 2021 Dec;132:105278.
    PMID: 34634537 DOI: 10.1016/j.archoralbio.2021.105278
    OBJECTIVE: The optimal timing of orthodontic tooth movement (OTM) could allow earlier tooth movements across alveolar bone defects while minimizing the adverse effects. The objective of this scoping systematic review was therefore designed to review pre-clinical animal studies on the ideal protocol for the timing of orthodontic traction across alveolar defects augmented with synthetic scaffolds.

    DESIGN: Following the PRISMA-ScR guidelines, three electronic databases were searched (Pubmed, Scopus and Web of Science).

    RESULTS: A total of twelve studies were included in the final review that reported on small-animal (rats, guinea pigs, rabbits) and large-animal (dogs and goats) models. Based on the grafting biomaterials, eight papers used cell-free scaffolds, four articles utilised cell-based scaffolds. The timing protocol for the initiation of OTM employed in the studies ranged from immediate to 6 months after surgical grafting. Only four studies included autologous bone graft (gold standard) as positive control. Most papers reported positive results with regards to the rate of OTM and bone augmentation effects while only a few reported side effects such as root resorptions. Overall, the included articles showed a massive heterogeneity in terms of the animal bone defect model characteristics, scaffold materials, study designs, parameters of OTM and methods of analysis.

    CONCLUSION: Since there was inadequate evidence to identify the optimal protocol of OTM, optimization of animal bone defect models and outcome measurements is needed to improve the translational ability of future studies.

    Matched MeSH terms: Disease Models, Animal
  11. Yu WS, Aquili L, Wong KH, Lo ACY, Chan LLH, Chan YS, et al.
    Ann N Y Acad Sci, 2022 09;1515(1):249-265.
    PMID: 35751874 DOI: 10.1111/nyas.14850
    Dementia is a major burden on global health for which there are no effective treatments. The use of noninvasive visual stimulation to ameliorate cognitive deficits is a novel concept that may be applicable for treating dementia. In this study, we investigated the effects of transcorneal electrical stimulation (TES) on memory enhancement using two mouse models, in aged mice and in the 5XFAD model of Alzheimer's disease. After 3 weeks of TES treatment, mice were subjected to Y-maze and Morris water maze tests to assess hippocampal-dependent learning and memory. Immunostaining of the hippocampus of 5XFAD mice was also performed to examine the effects of TES on amyloid plaque pathology. The results showed that TES improved the performance of both aged and 5XFAD mice in memory tests. TES also reduced hippocampal plaque deposition in male, but not female, 5XFAD mice. Moreover, TES significantly reversed the downregulated level of postsynaptic protein 95 in the hippocampus of male 5XFAD mice, suggesting the effects of TES involve a postsynaptic mechanism. Overall, these findings support further investigation of TES as a potential treatment for cognitive dysfunction and mechanistic studies of TES effects in other dementia models.
    Matched MeSH terms: Disease Models, Animal
  12. Lam C, Alsaeedi HA, Koh AE, Harun MHN, Hwei ANM, Mok PL, et al.
    Tissue Eng Regen Med, 2021 02;18(1):143-154.
    PMID: 33415670 DOI: 10.1007/s13770-020-00312-1
    BACKGROUND: Different methods have been used to inject stem cells into the eye for research. We previously explored the intravitreal route. Here, we investigate the efficacy of intravenous and subretinal-transplanted human dental pulp stem cells (DPSCs) in rescuing the photoreceptors of a sodium iodate-induced retinal degeneration model.

    METHODS: Three groups of Sprague Dawley rats were used: intervention, vehicle group and negative control groups (n = 6 in each). Intravenous injection of 60 mg/kg sodium iodate (day 0) induced retinal degeneration. On day 4 post-injection of sodium iodate, the rats in the intervention group received intravenous DPSC and subretinal DPSC in the right eye; rats in the vehicle group received subretinal Hank's balance salt solution and intravenous normal saline; while negative control group received nothing. Electroretinogram (ERG) was performed to assess the retinal function at day 0 (baseline), day 4, day 11, day 18, day 26, and day 32. By the end of the study at day 32, the rats were euthanized, and both their enucleated eyes were sent for histology.

    RESULTS: No significant difference in maximal ERG a-wave (p = 0.107) and b-wave, (p = 0.153) amplitude was seen amongst the experimental groups. However, photopic 30 Hz flicker amplitude of the study eye showed significant differences in the 3 groups (p = 0.032). Within the intervention group, there was an improvement in 30 Hz flicker ERG response of all 6 treated right eyes, which was injected with subretinal DPSC; while the 30 Hz flicker ERG of the non-treated left eyes remained flat. Histology showed improved outer nuclear layer thickness in intervention group; however, findings were not significant compared to the negative and vehicle groups.

    CONCLUSION: Combination of subretinal and intravenous injection of DPSCs may have potential to rescue cone function from a NaIO3-induced retinal injury model.

    Matched MeSH terms: Disease Models, Animal
  13. Tavakoly Sany SB, Hashim R, Salleh A, Rezayi M, Karlen DJ, Razavizadeh BB, et al.
    Environ Sci Pollut Res Int, 2015 Dec;22(24):19434-50.
    PMID: 26514567 DOI: 10.1007/s11356-015-5597-x
    Dioxin-like compounds (DLCs) have been classified by the World Health Organization (WHO) as one of the most persistent toxic chemical substances in the environment, and they are associated with several occupational activities and industrial accidents around the world. Since the end of the 1970s, these toxic chemicals have been banned because of their human toxicity potential, long half-life, wide dispersion, and they bioaccumulate in the food web. This review serves as a primer for environmental health professionals to provide guidance on short-term risk assessment of dioxin and to identify key findings for health and exposure assessment based on policies of different agencies. It also presents possible health effects of dioxins, mechanisms of action, toxic equivalency factors (TEFs), and dose-response characterization. Key studies related to toxicity values of dioxin-like compounds and their possible human health risk were identified through PubMed and supplemented with relevant studies characterized by reviewing the reference lists in the review articles and primary literature. Existing data decreases the scope of analyses and models in relevant studies to a manageable size by focusing on the set of important studies related to the perspective of developing toxicity values of DLCs.
    Matched MeSH terms: Models, Animal
  14. Malik JA, Yaseen Z, Thotapalli L, Ahmed S, Shaikh MF, Anwar S
    Mol Biol Rep, 2023 Apr;50(4):3767-3785.
    PMID: 36692676 DOI: 10.1007/s11033-023-08241-7
    Schizophrenia affects millions of people worldwide and is a major challenge for the scientific community. Like most psychotic diseases, it is also considered a complicated mental disorder caused by an imbalance in neurotransmitters. Due to the complexity of neuropathology, it is always a complicated disorder. The lack of proper understanding of the pathophysiology makes the disorder unmanageable in clinical settings. However, due to recent advances in animal models, we hope we can have better therapeutic approaches with more success in clinical settings. Dopamine, glutamate, GABA, and serotonin are the neurotransmitters involved in the pathophysiology of schizophrenia. Various animal models have been put forward based on these neurotransmitters, including pharmacological, neurodevelopmental, and genetic models. Polymorphism of genes such as dysbindin, DICS1, and NRG1 has also been reported in schizophrenia. Hypothesis based on dopamine, glutamate, and serotonin are considered successful models of schizophrenia on which drug therapies have been designed to date. New targets like the orexin system, muscarinic and nicotinic receptors, and cannabinoid receptors have been approached to alleviate the negative and cognitive symptoms. The non-pharmacological models like the post-weaning social isolation model (maternal deprivation), the isolation rearing model etc. have been also developed to mimic the symptoms of schizophrenia and to create and test new approaches of drug therapy which is a breakthrough at present in psychiatric disorders. Different behavioral tests have been evaluated in these specific models. This review will highlight the currently available animal models and behavioral tests in psychic disorders concerning schizophrenia.
    Matched MeSH terms: Disease Models, Animal
  15. Ayumi RR, Shaik Mossadeq WM, Zakaria ZA, Bakhtiar MT, Kamarudin N, Hisamuddin N, et al.
    Planta Med, 2020 May;86(8):548-555.
    PMID: 32294786 DOI: 10.1055/a-1144-3663
    The antinociceptive property of Centella asiatica extracts is known but the analgesic activity of its bioactive constituent asiaticoside has not been reported. We evaluated the antinociceptive activity of orally (p. o.) administered asiaticoside (1, 3, 5, and 10 mg/kg) in mice using the 0.6% acetic acid-induced writhing test, the 2.5% formalin-induced paw licking test, and the hot plate test. The capsaicin- and glutamate-induced paw licking tests were employed to evaluate the involvement of the vanilloid and glutamatergic systems, respectively. Asiaticoside (3, 5, and 10 mg/kg, p. o.) reduced the rate of writhing (p 
    Matched MeSH terms: Disease Models, Animal
  16. Hasan N, Hasani NAH, Omar E, Sham FR, Fuad SBSA, Karim MKA, et al.
    Cancer Biomark, 2023;38(1):61-75.
    PMID: 37522193 DOI: 10.3233/CBM-220268
    BACKGROUND: A complicated interplay between radiation doses, tumour microenvironment (TME), and host immune system is linked to the active participation of immune response.

    OBJECTIVE: The effects of single targeted 2 Gy and 8 Gy gamma-ray irradiations on the immune cell population (lymphocytes, B-cells, T-cells, neutrophils, eosinophils, and macrophages) in EMT6 mouse-bearing tumour models was investigated.

    METHODS: The effects of both irradiation doses in early (96 hours) and acute phase (5 to 11 days) post-irradiation on immune parameters were monitored in blood circulation and TME using flow cytometry. Simultaneously, selected cytokines related to immune cells within the TME were measured using multiplex ELISA.

    RESULTS: A temporary reduction in systemic total white blood count (TWBC) resulted from an early phase (96 hours) of gamma-ray irradiation at 2 Gy and 8 Gy compared to sham control group. No difference was obtained in the acute phase. Neutrophils dominated among other immune cells in TME in sham control group. Eosinophils in TME was significantly increased after 8 Gy treatment in acute phase compared to sham control (p< 0.005). Furthermore, the increment of tumour necrosis (TNF)-α, eotaxin and interleukin (IL)-7 (p< 0.05) in both treatment groups and phases were associated with anti-tumour activities within TME by gamma-ray irradiation.

    CONCLUSION: The temporary changes in immune cell populations within systemic circulation and TME induced by different doses of gamma-ray irradiation correlated with suppression of several pro-tumorigenic cytokines in mouse-bearing EMT6 tumour models.

    Matched MeSH terms: Disease Models, Animal
  17. Vijayanathan Y, Lim SM, Tan MP, Lim FT, Majeed ABA, Ramasamy K
    Neurotox Res, 2021 Apr;39(2):504-532.
    PMID: 33141428 DOI: 10.1007/s12640-020-00298-7
    Parkinson's disease (PD) is the second most common neurodegenerative disease. The etiology of PD remains an enigma with no available disease modifying treatment or cure. Pharmacological compensation is the only quality of life improving treatments available. Endogenous dopaminergic neuroregeneration has recently been considered a plausible therapeutic strategy for PD. However, researchers have to first decipher the complexity of adult endogenous neuroregeneration. This raises the need of animal models to understand the underlying molecular basis. Mammalian models with highly conserved genetic homology might aid researchers to identify specific molecular mechanisms. However, the scarcity of adult neuroregeneration potential in mammals obfuscates such investigations. Nowadays, non-mammalian models are gaining popularity due to their explicit ability to neuroregenerate naturally without the need of external enhancements, yet these non-mammals have a much diverse gene homology that critical molecular signals might not be conserved across species. The present review highlights the advantages and disadvantages of both mammalian and non-mammalian animal models that can be essentially used to study the potential of endogenous DpN regeneration against PD.
    Matched MeSH terms: Models, Animal
  18. Aldoghachi AF, Yanagisawa D, Pahrudin Arrozi A, Abu Bakar ZH, Taguchi H, Ishigaki S, et al.
    Biochem Biophys Res Commun, 2024 Jan 29;694:149392.
    PMID: 38142581 DOI: 10.1016/j.bbrc.2023.149392
    Thioredoxin interacting protein (TXNIP) has emerged as a significant regulator of β-cell mass and loss, rendering it an attractive target for treating diabetes. We previously showed that Shiga-Y6, a fluorinated curcumin derivative, inhibited TXNIP mRNA and protein expression in vitro, raising the question of whether the same effect could be translated in vivo. Herein, we examined the effect of Shiga-Y6 on TNXIP levels and explored its therapeutic potential in a mouse model of diabetes, Akita mice. We intraperitoneally injected Shiga-Y6 (SY6; 30 mg/kg of body weight) or vehicle into 8-week-old Akita mice for 28 consecutive days. On day 29, the mice were euthanized, following which the serum levels of glucose, insulin, and glucagon were measured using ELISA, the expression of TXNIP in pancreatic tissue lysates was determined using western blotting, and the level of β-cell apoptosis was assessed using the TUNEL assay. TXNIP levels in the pancreatic tissue of Akita mice were significantly elevated compared with wild-type (WT) mice. Shiga-Y6 administration for 28 days significantly lowered those levels compared with Akita mice that received vehicle to a level comparable to WT mice. In immunohistochemical analysis, both α- to β-cell ratio and the number of apoptotic β-cells were significantly reduced in SY6-treated Akita mice, compared with vehicle-treated Akita mice. Findings from the present study suggest a potential of Shiga-Y6 as an antidiabetic agent through lowering TXNIP protein levels and ameliorating pancreatic β-cells apoptosis.
    Matched MeSH terms: Disease Models, Animal
  19. Sallehuddin N, Nordin A, Bt Hj Idrus R, Fauzi MB
    PMID: 32545210 DOI: 10.3390/ijerph17114160
    Nigella sativa (NS) has been reported to have a therapeutic effect towards skin wound healing via its anti-inflammatory, tissue growth stimulation, and antioxidative properties. This review examines all the available studies on the association of Nigella sativa (NS) and skin wound healing. The search was performed in Medline via EBSCOhost and Scopus databases to retrieve the related papers released between 1970 and March 2020. The principal inclusion criteria were original article issued in English that stated wound healing criteria of in vivo skin model with topically applied NS. The search discovered 10 related articles that fulfilled the required inclusion criteria. Studies included comprise different types of wounds, namely excisional, burn, and diabetic wounds. Seven studies unravelled positive results associated with NS on skin wound healing. Thymoquinone has anti-inflammatory, antioxidant, and antibacterial properties, which mainly contributed to wound healing process.
    Matched MeSH terms: Models, Animal
  20. Kamaruzzaman MA, Chin KY, Mohd Ramli ES
    PMID: 31641368 DOI: 10.1155/2019/8543618
    Bone remodelling is a complex and tightly regulated process. Disruption of bone remodelling skewing towards resorption will cause osteoporosis and increase the risk of fragility fracture. Honey is a natural product containing various bioactive ingredients with health benefits, especially polyphenols. Therefore, honey may be a novel dietary supplement to prevent osteoporosis. This review aims to summarize the current evidence on the effects of honey on bone health. The evidence reported so far indicates a skeletal-beneficial effect of honey in animal models of osteoporosis. However, the number of studies on humans is limited. Honey can protect the bone via its antioxidant and anti-inflammatory properties, primarily through its polyphenol content that acts upon several signalling pathways, leading to bone anabolic and antiresorptive effects. In conclusion, honey is a potential functional food for bone health, but the dose and the bioactive contents of honey need to be verified prior to its application in humans.
    Matched MeSH terms: Models, Animal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links