Displaying publications 41 - 60 of 619 in total

Abstract:
Sort:
  1. Nguyen XC, Ly QV, Peng W, Nguyen VH, Nguyen DD, Tran QB, et al.
    J Hazard Mater, 2021 07 05;413:125426.
    PMID: 33621772 DOI: 10.1016/j.jhazmat.2021.125426
    This study evaluated and compared the performance of two vertical flow constructed wetlands (VF) using expanded clay (VF1) and biochar (VF2), of which both are low-cost, eco-friendly, and exhibit potentially high adsorption as compared to conventional filter layers. Both VFs achieved relatively high removal for organic matters (i.e. Biological oxygen demand during 5 days, BOD5) and nitrogen, accounting for 9.5 - 10.5 g.BOD5.m-2.d-1 and 3.5 - 3.6 g.NH4-N.m-2.d-1, respectively. The different filter materials did not exert any significant discrepancy to effluent quality in terms of suspended solids, organic matters and NO3-N (P > 0.05), but they did influence NH4-N effluent as evidenced by the removal rate of that by VF1 and VF2 being of 82.4 ± 5.7 and 84.6 ± 6.4%, respectively (P 
    Matched MeSH terms: Nitrogen/analysis
  2. Chai X, Li X, Hii KS, Zhang Q, Deng Q, Wan L, et al.
    Mar Environ Res, 2021 Jul;169:105398.
    PMID: 34171592 DOI: 10.1016/j.marenvres.2021.105398
    Coastal eutrophication is one of the pivotal factors driving occurrence of harmful algal blooms (HABs), whose underlying mechanism remained unclear. To better understand the nutrient regime triggering HABs and their formation process, the phytoplankton composition and its response to varying nitrogen (N) and phosphorus (P), physio-chemical parameters in water and sediment in Johor Strait in March 2019 were analyzed. Surface and sub-surface HABs were observed with the main causative species of Skeletonema, Chaetoceros and Karlodinium. The ecophysiological responses of Skeletonema to the low ambient N/P ratio such as secreting alkaline phosphatase, regulating cell morphology (volume; surface area/volume ratio) might play an important role in dominating the community. Anaerobic sediment iron-bound P release and simultaneous N removal by denitrification and anammox, shaped the stoichiometry of N and P in water column. The decrease of N/P ratio might shift the phytoplankton community into the dominance of HABs causative diatoms and dinoflagellates.
    Matched MeSH terms: Nitrogen/analysis
  3. Khatoon H, Penz Penz K, Banerjee S, Redwanur Rahman M, Mahmud Minhaz T, Islam Z, et al.
    Bioresour Technol, 2021 Oct;338:125529.
    PMID: 34265592 DOI: 10.1016/j.biortech.2021.125529
    Removal of nitrogenous and phosphorus compounds from aquaculture wastewater by green microalgae (Tetraselmis sp.) was investigated using a novel method of algal cell immobilization. Immobilized microalgae removed nitrogenous and phosphorous compounds efficiently from aquaculture wastewater. Results showed that Tetraselmis beads reduced significantly (p nitrogen, nitrite nitrogen and soluble reactive phosphorous concentration (0.08; 0.10 and 0.17 mg/L, respectively) from the initial concentration of 7.7, 3.1 and 2.0 mg/L respectively within 48 h compared to other treatments. Removal rate of total ammonia nitrogen, nitrite nitrogen and soluble reactive phosphorous were 99.2, 99.2 and 94.3% respectively, for the artificial wastewater within 24 h. For the shrimp pond wastewater, total ammonia nitrogen, nitrite nitrogen and soluble reactive phosphorous were reduced 98.9, 97.7 and 91.1% respectively within 48 h. It is concluded that Tetraselmis sp. beads is an effective means to reduce nitrogen and phosphorus levels in aquaculture wastewater.
    Matched MeSH terms: Nitrogen/analysis
  4. Peck Yen T, Rohasliney H
    Trop Life Sci Res, 2013 Aug;24(1):19-34.
    PMID: 24575239 MyJurnal
    This paper aimed to describe the effects of sand mining on the Kelantan River with respect to physical and chemical parameter analyses. Three replicates of water samples were collected from five stations along the Kelantan River (November 2010 until February 2011). The physical parameters included water temperature, water conductivity, dissolved oxygen (DO), pH, total dissolved solids (TDS), total suspended solids (TSS) and turbidity, whereas the chemical parameters included the concentration of nitrogen nutrients such as ammonia, nitrate and nitrite. The Kelantan River case study revealed that TSS, turbidity and nitrate contents exceed the Malaysian Interim National Water Quality Standard (INWQS) range and are significantly different between Station 1 (KK) and Station 3 (TM). Station 1 has the largest variation of TDS, TSS, turbidity and nitrogen nutrients because of sand mining and upstream logging activities. The extremely high content of TSS and the turbidity have caused poor and stressful conditions for the aquatic life in the Kelantan River.
    Matched MeSH terms: Nitrogen; Nitrogen Oxides
  5. Buttery JE, de Witt GF, Ahmad UO
    Med J Malaya, 1969 Jun;23(4):265-8.
    PMID: 4242173
    Matched MeSH terms: Blood Urea Nitrogen*
  6. Seng RX, Tan LL, Lee WPC, Ong WJ, Chai SP
    J Environ Manage, 2020 Feb 01;255:109936.
    PMID: 32063312 DOI: 10.1016/j.jenvman.2019.109936
    Growing concerns of water pollution by dye pollutants from the textile industry has led to vast research interest to find green solutions to address this issue. In recent years, heterogeneous photocatalysis has harvested tremendous attention from researchers due to its powerful potential applications in tackling many important energy and environmental challenges at a global level. To fully utilise the broad spectrum of solar energy has been a common aim in the photocatalyst industry. This study focuses on the development of an efficient, highly thermal and chemical stable, environmentally friendly and metal-free graphitic carbon nitride (g-C3N4) to overcome the problem of fast charge recombination which hinders photocatalytic performances. Nitrogen-doped carbon quantum dots (NCQDs) known for its high electronic and optical functionality properties is believed to achieve photocatalytic enhancement by efficient charge separation through forming heterogeneous interfaces. Hence, the current work focuses on the hybridisation of NCQDs and g-C3N4 to produce a composite photocatalyst for methylene blue (MB) degradation under LED light irradiation. The optimal hybridisation method and the mass loading required for maximum attainable MB degradation were systematically investigated. The optimum photocatalyst, 1 wt% NCQD/g-C3N4 composite was shown to exhibit a 2.6-fold increase in photocatalytic activity over bare g-C3N4. Moreover, the optimum sample displayed excellent stability and durability after three consecutive degradation cycles, retaining 91.2% of its original efficiency. Scavenging tests were also performed where reactive species, photon-hole (h+) was identified as the primary active species initiating the pollutant degradation mechanism. The findings of this study successfully shed light on the hybridisation methods of NCQDs which improve existing g-C3N4 photocatalyst systems for environmental remediation by utilising solar energy.
    Matched MeSH terms: Nitrogen; Nitrogen Compounds
  7. How SW, Sin JH, Wong SYY, Lim PB, Mohd Aris A, Ngoh GC, et al.
    Water Sci Technol, 2020 Jan;81(1):71-80.
    PMID: 32293590 DOI: 10.2166/wst.2020.077
    Many developing countries, mostly situated in the tropical region, have incorporated a biological nitrogen removal process into their wastewater treatment plants (WWTPs). Existing wastewater characteristic data suggested that the soluble chemical oxygen demand (COD) in tropical wastewater is not sufficient for denitrification. Warm wastewater temperature (30 °C) in the tropical region may accelerate the hydrolysis of particulate settleable solids (PSS) to provide slowly-biodegradable COD (sbCOD) for denitrification. This study aimed to characterize the different fractions of COD in several sources of low COD-to-nitrogen (COD/N) tropical wastewater. We characterized the wastewater samples from six WWTPs in Malaysia for 22 months. We determined the fractions of COD in the wastewater by nitrate uptake rate experiments. The PSS hydrolysis kinetic coefficients were determined at tropical temperature using an oxygen uptake rate experiment. The wastewater samples were low in readily-biodegradable COD (rbCOD), which made up 3-40% of total COD (TCOD). Most of the biodegradable organics were in the form of sbCOD (15-60% of TCOD), which was sufficient for complete denitrification. The PSS hydrolysis rate was two times higher than that at 20 °C. The high PSS hydrolysis rate may provide sufficient sbCOD to achieve effective biological nitrogen removal at WWTPs in the tropical region.
    Matched MeSH terms: Nitrogen*
  8. Ravindran B, Karmegam N, Awasthi MK, Chang SW, Selvi PK, Balachandar R, et al.
    Bioresour Technol, 2022 Feb;346:126442.
    PMID: 34848334 DOI: 10.1016/j.biortech.2021.126442
    The present study proposes a system for co-composting food waste and poultry manure amended with rice husk biochar at different doses (0, 3, 5, 10%, w/w), saw dust, and salts. The effect of rice husk biochar on the characteristics of final compost was evaluated through stabilization indices such as electrical conductivity, bulk density, total porosity, gaseous emissions and nitrogen conservation. Results indicated that when compared to control, the biochar amendment extended the thermophilic stage of the composting, accelerated the biodegradation and mineralization of substrate mixture and helped in the maturation of the end product. Carbon dioxide, methane and ammonia emissions were reduced and the nitrogen conservation was achieved at a greater level in the 10% (w/w) biochar amended treatments. This study implies that the biochar and salts addition for co-composting food waste and poultry manure is beneficial to enhance the property of the compost.
    Matched MeSH terms: Nitrogen/analysis
  9. Nurulhuda K, Gaydon DS, Jing Q, Zakaria MP, Struik PC, Keesman KJ
    J Sci Food Agric, 2018 Feb;98(3):865-871.
    PMID: 28940491 DOI: 10.1002/jsfa.8683
    Extensive modelling studies on nitrogen (N) dynamics in flooded soil systems have been published. Consequently, many N dynamics models are available for users to select from. With the current research trend, inclined towards multidisciplinary research, and with substantial progress in understanding of N dynamics in flooded soil systems, the objective of this paper is to provide an overview of the modelling concepts and performance of 14 models developed to simulate N dynamics in flooded soil systems. This overview provides breadth of knowledge on the models, and, therefore, is valuable as a first step in the selection of an appropriate model for a specific application. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
    Matched MeSH terms: Nitrogen/chemistry*
  10. Alarefee HA, Ishak CF, Othman R, Karam DS
    J Environ Manage, 2023 Mar 01;329:117051.
    PMID: 36549060 DOI: 10.1016/j.jenvman.2022.117051
    Nitrogen-rich materials such as poultry litter (PL) contributes to substantial N and C loss in the form of ammonia (NH3) and carbon dioxide (CO2) during composting. Biochar can act as a sorbent of ammonia (NH3) and CO2 emission released during co-composting. Thus, co-composting poultry litter with rice husk biochar as a bulking agent is a good technique to mitigate NH3 volatilization and CO2 emission. A study was conducted to evaluate the effects of composting the mixtures of poultry litter with rice husk biochar at different ratios on NH3 and CO2 emissions. Four mixtures of poultry litter and rice husk biochar at different rate were composted at 0:1, 0.5:1, 1.3:1 and 2.3:1 ratio of rice husk biochar (RHB): poultry litter (PL) on a dry weight basis to achieve a suitable C/N ratio of 15, 20, 25, and 30, respectively. The results show that composting poultry litter with rice husk biochar can accelerate the breakdown of organic matter, thereby shortening the thermophilic phase compared to composting using poultry litter alone. There was a significant reduction in the cumulative NH3 emissions, which accounted for 78.38%, 94.60%, and 97.30%, for each C/N ratio of 20, 25, and 30. The total nitrogen (TN) retained relative was 75.96%, 85.61%, 90.24%, and 87.89% for each C/N ratio of 15, 20, 25, and 30 at the completion of composting. Total carbon dioxide lost was 5.64%, 6.62%, 8.91%, and 14.54%, for each C/N ratio of 15, 20, 21, and 30. In addition, the total carbon (TC) retained were 66.60%, 72.56%, 77.39%, and 85.29% for 15, 20, 25, and 30 C/N ratios and shows significant difference as compared with the initial reading of TC of the compost mixtures. In conclusion, mixing and composting rice husk biochar in poultry litter with C/N ratio of 25 helps in reducing the NH3 volatilization and CO2 emissions, while reducing the overall operational costs of waste disposal by shortening the composting time alongside nitrogen conservation and carbon sequestration. In formulating the compost mixture with rice husk biochar, the contribution of C and N from the biochar can be neglected in the determination of C/N ratio to predict the rate of mineralization in the compost because biochar has characteristic of being quite inert and recalcitrant in nature.
    Matched MeSH terms: Nitrogen/analysis
  11. Jhonson P, Goh HW, Chan DJC, Juiani SF, Zakaria NA
    Environ Sci Pollut Res Int, 2023 Feb;30(9):24562-24574.
    PMID: 36336739 DOI: 10.1007/s11356-022-23605-5
    Bioretention systems are among the most popular stormwater best management practices (BMPs) for urban runoff treatment. Studies on plant performance using bioretention systems have been conducted, especially in developed countries with a temperate climate, such as the USA and Australia. However, these results might not be applicable in developing countries with tropical climates due to the different rainfall regimes and the strength of runoff pollutants. Thus, this study focuses on the performance of tropical plants in treating urban runoff polluted with greywater using a bioretention system. Ten different tropical plant species were triplicated and planted in 30 mesocosms with two control mesocosms without vegetation. One-way ANOVA was used to analyze the performance of plants, which were then ranked based on their performance in removing pollutants using the total score obtained for each water quality test. Results showed that vetiver topped the table with 86.4% of total nitrogen (TN) removal, 93.5% of total phosphorus (TP) removal, 89.8% of biological oxygen demand (BOD) removal, 90% of total suspended solids (TSS) removal, and 92.5% of chemical oxygen demand (COD) removal followed by blue porterweed, Hibiscus, golden trumpet, and tall sedge which can be recommended to be employed in future bioretention studies.
    Matched MeSH terms: Nitrogen/analysis
  12. Hakeem KR, Sabir M, Ozturk M, Akhtar MS, Ibrahim FH
    Rev Environ Contam Toxicol, 2017;242:183-217.
    PMID: 27734212 DOI: 10.1007/398_2016_11
    Increased use of nitrogenous (N) fertilizers in agriculture has significantly altered the global N-cycle because they release nitrogenous gases of environmental concerns. The emission of nitrous oxide (N2O) contributes to the global greenhouse gas accumulation and the stratospheric ozone depletion. In addition, it causes nitrate leaching problem deteriorating ground water quality. The nitrate toxicity has been reported in a number of studies showing the health hazards like methemoglobinemia in infants and is a potent cause of cancer. Despite these evident negative environmental as well as health impacts, consumption of N fertilizer cannot be reduced in view of the food security for the teeming growing world population. Various agronomic and genetic modifications have been practiced to tackle this problem. Some agronomic techniques adopted include split application of N, use of slow-release fertilizers, nitrification inhibitors and encouraging the use of organic manure over chemical fertilizers. As a matter of fact, the use of chemical means to remediate nitrate from the environment is very difficult and costly. Particularly, removal of nitrate from water is difficult task because it is chemically non-reactive in dilute aqueous solutions. Hence, the use of biological means for nitrate remediation offers a promising strategy to minimize the ill effects of nitrates and nitrites. One of the important goals to reduce N-fertilizer application can be effectively achieved by choosing N-efficient genotypes. This will ensure the optimum uptake of applied N in a balanced manner and exploring the molecular mechanisms for their uptake as well as metabolism in assimilatory pathways. The objectives of this paper are to evaluate the interrelations which exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake and analyze the global consumption and demand for fertilizer nitrogen in relation to cereal production, evaluate the various methods used to determine nitrogen use efficincy (NUE), determine NUE for the major cereals grown across large agroclimatic regions, determine the key factors that control NUE, and finally analyze various strategies available to improve the use efficiency of fertilizer nitrogen.
    Matched MeSH terms: Nitrogen Oxides/toxicity*
  13. Zakaria MH, Ramaiya SD, Bidin N, Syed NNF, Bujang JS
    PeerJ, 2023;11:e15496.
    PMID: 37456903 DOI: 10.7717/peerj.15496
    BACKGROUND: The social acceptability of wild freshwater macrophytes as locally consumed vegetables is widespread. Freshwater macrophytes have several uses; for example, they can be used as food for humans. This study determined the proximate composition and mineral content of three freshwater macrophyte species, i.e., Eichhornia crassipes, Limnocharis flava, and Neptunia oleracea.

    METHODS: Young shoots of E. crassipes, L. flava, and N. oleracea were collected from shallow channels of Puchong (3°00'11.89″N, 101°42'43.12″E), Ladang 10, Universiti Putra Malaysia (2°58'44.41″N, 101°42'44.45″E), and Kampung Alur Selibong, Langgar (06°5'50.9″N, 100°26'49.8″E), Kedah, Peninsular Malaysia. The nutritional values of these macrophytes were analysed by using a standard protocol from the Association of Official Analytical Chemists. Eight replicates of E. crassipes and L. flava and four replicates of N. oleracea were used for the subsequent analyses.

    RESULTS: In the proximate analysis, N. oleracea possessed the highest percentage of crude protein (29.61%) and energy content (4,269.65 cal g-1), whereas L. flava had the highest percentage of crude fat (5.75%) and ash (18.31%). The proximate composition trend for each species was different; specifically, all of the species possessed more carbohydrates and fewer crude lipids. All of the species demonstrated a similar mineral trend, with high nitrogen and potassium and lower copper contents. Nitrogen and potassium levels ranged from 12,380-40,380 mg kg-1 and from 11,212-33,276 mg kg-1, respectively, and copper levels ranged from 16-27 mg kg-1. The results showed that all three plant species, i.e., E. crassipes, N. oleracea, and L. flava are plant-based sources of macro- and micronutrient beneficial supplements for human consumption.

    Matched MeSH terms: Nitrogen/analysis
  14. Wang W, Zhang F, Zhao Q, Liu C, Jim CY, Johnson VC, et al.
    J Environ Manage, 2023 Oct 01;343:118249.
    PMID: 37245314 DOI: 10.1016/j.jenvman.2023.118249
    Understanding the main driving factors of oasis river nutrients in arid areas is important to identify the sources of water pollution and protect water resources. Twenty-seven sub-watersheds were selected in the lower oasis irrigated agricultural reaches of the Kaidu River watershed in arid Northwest China, divided into the site, riparian, and catchment buffer zones. Data on four sets of explanatory variables (topographic, soil, meteorological elements, and land use types) were collected. The relationships between explanatory variables and response variables (total phosphorus, TP and total nitrogen, TN) were analyzed by redundancy analysis (RDA). Partial least squares structural equation modeling (PLS-SEM) was used to quantify the relationship between explanatory as well as response variables and fit the path relationship among factors. The results showed that there were significant differences in the TP and TN concentrations at each sampling point. The catchment buffer exhibited the best explanatory power of the relationship between explanatory and response variables based on PLS-SEM. The effects of various land use types, meteorological elements (ME), soil, and topography in the catchment buffer were responsible for 54.3% of TP changes and for 68.5% of TN changes. Land use types, ME and soil were the main factors driving TP and TN changes, accounting for 95.56% and 94.84% of the total effects, respectively. The study provides a reference for river nutrients management in arid oases with irrigated agriculture and a scientific and targeted basis to mitigate water pollution and eutrophication of rivers in arid lands.
    Matched MeSH terms: Nitrogen/analysis
  15. Tie HO, Che Man H, Koyama M, Syukri F, Md Yusoff F, Toda T, et al.
    Waste Manag, 2023 Jul 01;166:194-202.
    PMID: 37178588 DOI: 10.1016/j.wasman.2023.04.046
    A modified outdoor large-scale nutrient recycling system was developed to compost organic sludge and aimed to recover clean nitrogen for the cultivation of high-value-added microalgae. This study investigated the effect of calcium hydroxide addition on enhancing NH3 recovery in a pilot-scale reactor self-heated by metabolic heat of microorganisms during thermophilic composting of dewatered cow dung. 350 kg-ww of compost was prepared at the ratio of 5: 14: 1 (dewatered cowdung: rice husk: compost-seed) in a 4 m3 cylindrical rotary drum composting reactor for 14 days of aerated composting. High compost temperature up to 67 °C was observed from day 1 of composting, proving that thermophilic composting was achieved through the self-heating process. The temperature of compost increases as microbial activity increases and temperature decreases as organic matter decreases. The high CO2 evolution rate on day 0-2 (0.02-0.08 mol/min) indicated that microorganisms are most active in degrading organic matter. The increasing conversion of carbon demonstrated that organic carbon was degraded by microbial activity and emitted as CO2. The nitrogen mass balance revealed that adding calcium hydroxide to the compost and increasing the aeration rate on day 3 volatilized 9.83 % of the remaining ammonium ions in the compost, thereby improving the ammonia recovery. Moreover, Geobacillus was found to be the most dominant bacteria under elevated temperature that functions in the hydrolysis of non-dissolved nitrogen for better NH3 recovery. The presented results show that by thermophilic composting 1 ton-ds of dewatered cowdung for NH3 recovery, up to 11.54 kg-ds of microalgae can be produced.
    Matched MeSH terms: Nitrogen/analysis
  16. Ghorbani M, Kianmehr MH, Sarlaki E, Angelidaki I, Yang Y, Tabatabaei M, et al.
    Sci Total Environ, 2023 Sep 20;892:164526.
    PMID: 37257609 DOI: 10.1016/j.scitotenv.2023.164526
    The livestock industry needs to use crop straws that are highly digestible to improve feed productivity and reduce ruminal methane emissions. Hence, this study aimed to use the ozonation and pelleting processes to enhance the digestibility and reduce the ruminal methane emissions of wheat straw enriched with two nitrogen sources (i.e., urea and heat-processed broiler litter). Various analyses were conducted on the pellets, including digestibility indicators, mechanical properties, surface chemistry functionalization, chemical-spectral-structural features, and energy requirements. For comparison, loose forms of the samples were also analyzed. The nitrogen-enriched ozonated wheat straw pellets had 43.06 % lower lignin, 28.30 % higher gas production for 24 h, 12.28 % higher metabolizable energy, 13.78 % higher in vitro organic matter digestibility for 24 h, and 28.81 % higher short-chain fatty acid content than the nitrogen-enriched loose sample. The reduction of methane emissions by rumen microorganisms of nitrogen-enriched wheat straw by ozonation, pelleting, and ozonation-pelleting totaled 89.15 %, 23.35 %, and 66.98 %, respectively. The ozonation process resulted in a 64 % increase in the particle density, a 5.5-time increase in the tensile strength, and a 75 % increase in the crushing energy of nitrogen-enriched wheat straw. In addition, ozone treatment could also reduce the specific and thermal energy consumption required in the pelleting process by 15.10 % and 7.61 %, respectively.
    Matched MeSH terms: Nitrogen/analysis
  17. Thamizharasan A, Rajaguru VRR, Gajalakshmi S, Lim JW, Greff B, Rajagopal R, et al.
    Environ Res, 2024 Feb 15;243:117752.
    PMID: 38008202 DOI: 10.1016/j.envres.2023.117752
    Plant leaf litter has a major role in the structure and function of soil ecosystems as it is associated with nutrient release and cycling. The present study is aimed to understand how well the decomposing leaf litter kept soil organic carbon and nitrogen levels stable during an incubation experiment that was carried out in a lab setting under controlled conditions and the results were compared to those from a natural plantation. In natural site soil samples, Anacardium. occidentale showed a higher value of organic carbon at surface (1.14%) and subsurface (0.93%) and Azadirachta. indica exhibited a higher value of total nitrogen at surface (0.28%) and subsurface sample (0.14%). In the incubation experiment, Acacia auriculiformis had the highest organic carbon content initially (5.26%), whereas A. occidentale had the highest nitrogen level on 30th day (0.67%). The overall carbon-nitrogen ratio showed a varied tendency, which may be due to dynamic changes in the complex decomposition cycle. The higher rate of mass loss and decay was observed in A. indica leaf litter, the range of the decay constant is 1.26-2.22. The morphological and chemical changes of soil sample and the vermicast were substantained using scanning electron microscopy (SEM) and Fourier transmission infrared spectroscopy (FT-IR).
    Matched MeSH terms: Nitrogen/analysis
  18. Sim DHH, Tan IAW, Lim LLP, Lau ET, Hameed BH
    Waste Manag, 2024 Jan 01;173:51-61.
    PMID: 37977096 DOI: 10.1016/j.wasman.2023.11.006
    Nutrient leaching and volatilization cause environmental pollution, thus the pursuit of developing controlled-release fertilizer formulation is necessary. Biochar-based fertilizer exhibits slow-release characteristic, however the nutrient release mechanism needs to be improved. To overcome this limitation, the approach of applying encapsulation technology with biochar-based fertilizer has been implemented in this study. Black peppercorn waste was used to synthesize urea-impregnated biochar (UIB). Central composite design was used to investigate the effects of pyrolysis temperature, residence time and urea:biochar ratio on nitrogen content of UIB. The optimum condition to synthesize UIB was at 400 °C pyrolysis temperature, 120 min residence time and 0.6:1 urea:biochar ratio, which resulted in 16.07% nitrogen content. The tapioca starch/palm oil (PO) biofilm formulated using 8 g of tapioca starch and 0.12 µL of PO was coated on the UIB to produce encapsulated urea-impregnated biochar (EUIB). The UIB and EUIB pellets achieved complete release of nitrogen in water after 90 min and 330 min, respectively. The nutrient release mechanism of UIB and EUIB was best described by the Higuchi model and Korsmeyer-Peppas model, respectively. The improvement of water retention ratio of UIB and EUIB pellets was more significant in sandy-textural soil as compared to clayey-textural soil. The EUIB derived from peppercorn waste has the potential to be utilized as a sustainable controlled-release fertilizer for agriculture.
    Matched MeSH terms: Nitrogen/analysis
  19. Zango ZU, Lawal MA, Usman F, Sulieman A, Akhdar H, Eisa MH, et al.
    Chemosphere, 2024 Mar;351:141218.
    PMID: 38266876 DOI: 10.1016/j.chemosphere.2024.141218
    The widespread consumption of pharmaceutical drugs and their incomplete breakdown in organisms has led to their extensive presence in aquatic environments. The indiscriminate use of antibiotics, such as sulfonamides, has contributed to the development of drug-resistant bacteria and the persistent pollution of water bodies, posing a threat to human health and the safety of the environment. Thus, it is paramount to explore remediation technologies aimed at decomposing and complete elimination of the toxic contaminants from pharmaceutical wastewater. The review aims to explore the utilization of metal-oxide nanoparticles (MONPs) and graphitic carbon nitrides (g-C3N4) in photocatalytic degradation of sulfonamides from wastewater. Recent advances in oxidation techniques such as photocatalytic degradation are being exploited in the elimination of the sulfonamides from wastewater. MONP and g-C3N4 are commonly evolved nano substances with intrinsic properties. They possessed nano-scale structure, considerable porosity semi-conducting properties, responsible for decomposing wide range of water pollutants. They are widely applied for photocatalytic degradation of organic and inorganic substances which continue to evolve due to the low-cost, efficiency, less toxicity, and more environmentally friendliness of the materials. The review focuses on the current advances in the application of these materials, their efficiencies, degradation mechanisms, and recyclability in the context of sulfonamides photocatalytic degradation.
    Matched MeSH terms: Nitrogen Compounds*
  20. Clarke CM, Bauer U, Lee CC, Tuen AA, Rembold K, Moran JA
    Biol Lett, 2009 Oct 23;5(5):632-5.
    PMID: 19515656 DOI: 10.1098/rsbl.2009.0311
    Nepenthes pitcher plants are typically carnivorous, producing pitchers with varying combinations of epicuticular wax crystals, viscoelastic fluids and slippery peristomes to trap arthropod prey, especially ants. However, ant densities are low in tropical montane habitats, thereby limiting the potential benefits of the carnivorous syndrome. Nepenthes lowii, a montane species from Borneo, produces two types of pitchers that differ greatly in form and function. Pitchers produced by immature plants conform to the 'typical' Nepenthes pattern, catching arthropod prey. However, pitchers produced by mature N. lowii plants lack the features associated with carnivory and are instead visited by tree shrews, which defaecate into them after feeding on exudates that accumulate on the pitcher lid. We tested the hypothesis that tree shrew faeces represent a significant nitrogen (N) source for N. lowii, finding that it accounts for between 57 and 100 per cent of foliar N in mature N. lowii plants. Thus, N. lowii employs a diversified N sequestration strategy, gaining access to a N source that is not available to sympatric congeners. The interaction between N. lowii and tree shrews appears to be a mutualism based on the exchange of food sources that are scarce in their montane habitat.
    Matched MeSH terms: Nitrogen/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links