Displaying publications 41 - 60 of 839 in total

Abstract:
Sort:
  1. Khor YS, Wong PF
    Biogerontology, 2024 Feb;25(1):23-51.
    PMID: 37646881 DOI: 10.1007/s10522-023-10059-6
    FOXO3 is a member of the FOXO transcription factor family and is known for regulating cellular survival in response to stress caused by various external and biological stimuli. FOXO3 decides cell fate by modulating cellular senescence, apoptosis and autophagy by transcriptional regulation of genes involved in DNA damage response and oxidative stress resistance. These cellular processes are tightly regulated physiologically, with FOXO3 acting as the hub that integrates signalling networks controlling them. The activity of FOXO3 is influenced by post-translational modifications, altering its subcellular localisation. In addition, FOXO3 can also be regulated directly or indirectly by microRNAs (miRNAs) or vice versa. This review discusses the involvement of various miRNAs in FOXO3-driven cellular responses such as senescence, apoptosis, autophagy, redox and inflammation defence. Given that these responses are linked and influence cell fate, a thorough understanding of the complex regulation by miRNAs would provide key information for developing therapeutic strategy and avoid unintended consequences caused by off-site targeting of FOXO3.
    Matched MeSH terms: Oxidative Stress
  2. Bhattacharya K, Dey R, Sen D, Paul N, Basak AK, Purkait MP, et al.
    Biomol Concepts, 2024 Jan 01;15(1).
    PMID: 38242137 DOI: 10.1515/bmc-2022-0038
    In the past two decades, oxidative stress (OS) has drawn a lot of interest due to the revelation that individuals with many persistent disorders including diabetes, polycystic ovarian syndrome (PCOS), cardiovascular, and other disorders often have aberrant oxidation statuses. OS has a close interplay with PCOS features such as insulin resistance, hyperandrogenism, and chronic inflammation; there is a belief that OS might contribute to the development of PCOS. PCOS is currently recognized as not only one of the most prevalent endocrine disorders but also a significant contributor to female infertility, affecting a considerable proportion of women globally. Therefore, the understanding of the relationship between OS and PCOS is crucial to the development of therapeutic and preventive strategies for PCOS. Moreover, the mechanistic study of intracellular reactive oxygen species/ reactive nitrogen species formation and its possible interaction with women's reproductive health is required, which includes complex enzymatic and non-enzymatic antioxidant systems. Apart from that, our current review includes possible regulation of the pathogenesis of OS. A change in lifestyle, including physical activity, various supplements that boost antioxidant levels, particularly vitamins, and the usage of medicinal herbs, is thought to be the best way to combat this occurrence of OS and improve the pathophysiologic conditions associated with PCOS.
    Matched MeSH terms: Oxidative Stress
  3. Huang M, Ma Y, Qian J, Sokolova IM, Zhang C, Waiho K, et al.
    J Hazard Mater, 2024 Apr 15;468:133801.
    PMID: 38377908 DOI: 10.1016/j.jhazmat.2024.133801
    Pollution with anthropogenic contaminants including antibiotics and nanoplastics leads to gradual deterioration of the marine environment, which threatens endangered species such as the horseshoe crab Tachypleus tridentatus. We assessed the potential toxic mechanisms of an antibiotic (norfloxacin, 0, 0.5, 5 μg/L) and polystyrene nanoparticles (104 particles/L) in T. tridentatus using biomarkers of tissue redox status, molting, and gut microbiota. Exposure to single and combined pollutants led to disturbance of redox balance during short-term (7 days) exposure indicated by elevated level of a lipid peroxidation product, malondialdehyde (MDA). After prolonged (14-21 days) exposure, compensatory upregulation of antioxidants (catalase and glutathione but not superoxide dismutase) was observed, and MDA levels returned to the baseline in most experimental exposures. Transcript levels of molting-related genes (ecdysone receptor, retinoic acid X alpha receptor and calmodulin A) and a molecular chaperone (cognate heat shock protein 70) showed weak evidence of response to polystyrene nanoparticles and norfloxacin. The gut microbiota T. tridentatus was altered by exposures to norfloxacin and polystyrene nanoparticles shown by elevated relative abundance of Bacteroidetes. At the functional level, evidence of suppression by norfloxacin and polystyrene nanoparticles was found in multiple intestinal microbiome pathways related to the genetic information processing, metabolism, organismal systems, and environmental information processing. Future studies are needed to assess the physiological and health consequences of microbiome dysbiosis caused by norfloxacin and polystyrene nanoparticles and assist the environmental risk assessment of these pollutants in the wild populations of the horseshoe crabs.
    Matched MeSH terms: Oxidative Stress
  4. Ong KS, Mawang CI, Daniel-Jambun D, Lim YY, Lee SM
    Expert Rev Anti Infect Ther, 2018 11;16(11):855-864.
    PMID: 30308132 DOI: 10.1080/14787210.2018.1535898
    INTRODUCTION: Biofilm formation is a strategy for microorganisms to adapt and survive in hostile environments. Microorganisms that are able to produce biofilms are currently recognized as a threat to human health. Areas covered: Many strategies have been employed to eradicate biofilms, but several drawbacks from these methods had subsequently raised concerns on the need for alternative approaches to effectively prevent biofilm formation. One of the main mechanisms that drives a microorganism to transit from a planktonic to a biofilm-sessile state, is oxidative stress. Chemical agents that could target oxidative stress regulators, for instance antioxidants, could therefore be used to treat biofilm-associated infections. Expert commentary: The focus of this review is to summarize the function and limitation of the current anti-biofilm strategies and will propose the use of antioxidants as an alternative method to treat, prevent and eradicate biofilms. Studies have shown that water-soluble and lipid-soluble antioxidants can reduce and prevent biofilm formation, by influencing the expression of genes associated with oxidative stress. Further in vivo work should be conducted to ensure the efficacy of these antioxidants in a biological environment. Nevertheless, antioxidants are promising anti-biofilm agents, and thus is a potential solution for biofilm-associated infections in the future.
    Matched MeSH terms: Oxidative Stress/drug effects*; Oxidative Stress/genetics
  5. Mohammad MK, Mohamed MI, Zakaria AM, Abdul Razak HR, Saad WM
    Biomed Res Int, 2014;2014:512834.
    PMID: 24877107 DOI: 10.1155/2014/512834
    Watermelon is a natural product that contains high level of antioxidants and may prevent oxidative damage in tissues due to free radical generation following an exposure to ionizing radiation. The present study aimed to investigate the radioprotective effects of watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice against oxidative damage induced by low dose X-ray exposure in mice. Twelve adult male ICR mice were randomly divided into two groups consisting of radiation (Rx) and supplementation (Tx) groups. Rx received filtered tap water, while Tx was supplemented with 50% (v/v) watermelon juice for 28 days ad libitum prior to total body irradiation by 100 μGy X-ray on day 29. Brain, lung, and liver tissues were assessed for the levels of malondialdehyde (MDA), apurinic/apyrimidinic (AP) sites, glutathione (GSH), and superoxide dismutase (SOD) inhibition activities. Results showed significant reduction of MDA levels and AP sites formation of Tx compared to Rx (P < 0.05). Mice supplemented with 50% watermelon juice restore the intracellular antioxidant activities by significantly increased SOD inhibition activities and GSH levels compared to Rx. These findings may postulate that supplementation of 50% watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice could modulate oxidative damage induced by low dose X-ray exposure.
    Matched MeSH terms: Oxidative Stress/drug effects*; Oxidative Stress/radiation effects
  6. Erejuwa OO, Sulaiman SA, Ab Wahab MS, Sirajudeen KN, Salleh S, Gurtu S
    Oxid Med Cell Longev, 2012;2012:374037.
    PMID: 22315654 DOI: 10.1155/2012/374037
    Oxidative stress is implicated in the pathogenesis and/or maintenance of elevated blood pressure in hypertension. This study investigated the effect of honey on elevated systolic blood pressure (SBP) in spontaneously hypertensive rats (SHR). It also evaluated the effect of honey on the amelioration of oxidative stress in the kidney of SHR as a possible mechanism of its antihypertensive effect. SHR and Wistar Kyoto (WKY) rats were randomly divided into 2 groups and administered distilled water or honey by oral gavage once daily for 12 weeks. The control SHR had significantly higher SBP and renal malondialdehyde (MDA) levels than did control WKY. The mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione S-transferase (GST) were significantly downregulated while total antioxidant status (TAS) and activities of GST and catalase (CAT) were higher in the kidney of control SHR. Honey supplementation significantly reduced SBP and MDA levels in SHR. Honey significantly reduced the activities of GST and CAT while it moderately but insignificantly upregulated the Nrf2 mRNA expression level in the kidney of SHR. These results indicate that Nrf2 expression is impaired in the kidney of SHR. Honey supplementation considerably reduces elevated SBP via amelioration of oxidative stress in the kidney of SHR.
    Matched MeSH terms: Oxidative Stress/drug effects*; Oxidative Stress/physiology
  7. Hafizah AH, Zaiton Z, Zulkhairi A, Mohd Ilham A, Nor Anita MM, Zaleha AM
    J Zhejiang Univ Sci B, 2010 May;11(5):357-65.
    PMID: 20443214 DOI: 10.1631/jzus.B0900397
    Endothelial cell death due to increased reactive oxygen species (ROS) may contribute to the initial endothelial injury, which promotes atherosclerotic lesion formation. Piper sarmentosum (PS), a natural product, has been shown to have an antioxidant property, which is hypothesized to inhibit production of ROS and prevent cell injury. Thus, the present study was designed to determine the effects of PS on the hydrogen peroxide (H(2)O(2))-induced oxidative cell damage in cultured human umbilical vein endothelial cells (HUVECs). In this experiment, HUVECs were obtained by collagenase perfusion of the large vein in the umbilical cord and cultured in medium M200 supplemented with low serum growth supplementation (LSGS). HUVECs were treated with various concentrations of H(2)O(2) (0-1000 micromol/L) and it was observed that 180 micromol/L H(2)O(2) reduced cell viability by 50% as denoted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Using the above concentration as the positive control, the H(2)O(2)-induced HUVECs were concomitantly treated with various concentrations (100, 150, 250 and 300 microg/ml) of three different extracts (aqueous, methanol and hexane) of PS. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) levels showed a significant increase (P<0.05) in HUVECs compared to the negative control. However, PS extracts showed a protective effect on HUVECs from H(2)O(2)-induced cell apoptosis with a significant reduction in MDA, SOD, CAT and GPX levels (P<0.05). Furthermore, PS had exhibited ferric reducing antioxidant power with its high phenolic content. Hence, it was concluded that PS plays a beneficial role in reducing oxidative stress in H(2)O(2)-induced HUVECs.
    Matched MeSH terms: Oxidative Stress/drug effects*; Oxidative Stress/physiology*
  8. Murugaiyah V, Mattson MP
    Neurochem Int, 2015 Oct;89:271-80.
    PMID: 25861940 DOI: 10.1016/j.neuint.2015.03.009
    The impact of dietary factors on brain health and vulnerability to disease is increasingly appreciated. The results of epidemiological studies, and intervention trials in animal models suggest that diets rich in phytochemicals can enhance neuroplasticity and resistance to neurodegeneration. Here we describe how interactions of plants and animals during their co-evolution, and resulting reciprocal adaptations, have shaped the remarkable characteristics of phytochemicals and their effects on the physiology of animal cells in general, and neurons in particular. Survival advantages were conferred upon plants capable of producing noxious bitter-tasting chemicals, and on animals able to tolerate the phytochemicals and consume the plants as an energy source. The remarkably diverse array of phytochemicals present in modern fruits, vegetables spices, tea and coffee may have arisen, in part, from the acquisition of adaptive cellular stress responses and detoxification enzymes in animals that enabled them to consume plants containing potentially toxic chemicals. Interestingly, some of the same adaptive stress response mechanisms that protect neurons against noxious phytochemicals are also activated by dietary energy restriction and vigorous physical exertion, two environmental challenges that shaped brain evolution. In this perspective article, we describe some of the signaling pathways relevant to cellular energy metabolism that are modulated by 'neurohormetic phytochemicals' (potentially toxic chemicals produced by plants that have beneficial effects on animals when consumed in moderate amounts). We highlight the cellular bioenergetics-related sirtuin, adenosine monophosphate activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and insulin-like growth factor 1 (IGF-1) pathways. The inclusion of dietary neurohormetic phytochemicals in an overall program for brain health that also includes exercise and energy restriction may find applications in the prevention and treatment of a range of neurological disorders.
    Matched MeSH terms: Oxidative Stress/drug effects; Oxidative Stress/physiology
  9. Tai L, Huang CJ, Choo KB, Cheong SK, Kamarul T
    Int J Med Sci, 2020;17(4):457-470.
    PMID: 32174776 DOI: 10.7150/ijms.38832
    Oxidative stress has been linked to senescence and tumorigenesis via modulation of the cell cycle. Using a hydrogen peroxide (H2O2)-induced oxidative stress-induced premature senescence (OSIPS) model previously reported by our group, this study aimed to investigate the effects of oxidative stress on microRNA (miRNA) expression in relation to the G1-to-S-phase (G1/S) transition of the cell cycle and cell proliferation. On global miRNA analysis of the OSIPS cells, twelve significantly up- or down-regulated miRNAs were identified, the target genes of which are frequently associated with cancers. Four down-regulated miR-17 family miRNAs are predicted to target key pro- and anti-proliferative proteins of the p21/cyclin D-dependent kinase (CDK)/E2F1 pathway to modulate G1/S transition. Two miR-17 miRNAs, miR-20-5p and miR-106-5p, were confirmed to be rapidly and stably down-regulated under oxidative stress. While H2O2 treatment hampered G1/S transition and suppressed DNA synthesis, miR-20b-5p/miR-106a-5p over-expression rescued cells from growth arrest in promoting G1/S transition and DNA synthesis. Direct miR-20b-5p/miR-106a-5p regulation of p21, CCND1 and E2F1 was demonstrated by an inverse expression relationship in miRNA mimic-transfected cells. However, under oxidative stress, E2F1 expression was down-regulated, consistent with hampered G1/S transition and suppressed DNA synthesis and cell proliferation. To explain the observed E2F1 down-regulation under oxidative stress, a scheme is proposed which includes miR-20b-5p/miR-106a-5p-dependent regulation, miRNA-E2F1 autoregulatory feedback and E2F1 response to repair oxidative stress-induced DNA damages. The oxidative stress-modulated expression of miR-17 miRNAs and E2F1 may be used to develop strategies to retard or reverse MSC senescence in culture, or senescence in general.
    Matched MeSH terms: Oxidative Stress/genetics; Oxidative Stress/physiology*
  10. Nesaretnam K, Sies H
    Antioxid Redox Signal, 2006 10 13;8(11-12):2175-7.
    PMID: 17034360
    The 6(th) COSTAM/SFRR (ASEAN/Malaysia) workshop, "Micronutrients, Oxidative Stress, and the Environment," was held from June 29 to July 2 at Holiday Inn Damai Beach Resort in Kuching, Sarawak. Two hundred twenty participants from 17 countries presented recent advances on natural antioxidants in the area of oxidative stress and molecular aspects of nutrition. Natural products and research are an important program in academic institutions and are experiencing unprecedented interest and growth by the scientific community and public health authorities. Progress is being driven by better understanding of the molecular mechanisms of the relation between oxidative stress and micronutrient action. The gathering of scientists from around the world was fruitful, and we hope that future work will be developed by the formal and informal interactions that took place in this beautiful tropical setting.
    Matched MeSH terms: Oxidative Stress/drug effects; Oxidative Stress/physiology*
  11. Nagapan TS, Lim WN, Basri DF, Ghazali AR
    Exp Anim, 2019 Nov 06;68(4):541-548.
    PMID: 31243189 DOI: 10.1538/expanim.19-0017
    Dietary antioxidant supplements such as L-glutathione have gained considerable attention in dermatology and cosmeceutical fields. L-glutathione possesses antiaging, antimelanogenic, antioxidant, and anticancer properties. This study aimed to investigate the inhibitory effects of L-glutathione on melanogenesis activity and oxidative stress in ultraviolet B (UVB)-irradiated BALB/c mice. Eighteen female BALB/c mice were randomly divided into 3 groups: a control group (n=6), a group without UVB irradiation and L-glutathione administration; a UVB irradiated group (n=6), a group irradiated with a UVB dose of 250 mJ/cm2 for 3 min; and a treatment group (n=6), a group irradiated with UVB and treated with 100 mg/kg of L-glutathione by oral gavage. Treatment was given for 14 days, and UVB irradiation was given on days 9, 11, and 13. Oral L-glutathione significantly (P<0.05) reduced lipid peroxidation and elevated superoxide dismutase activity the and glutathione level. L-glutathione also inhibited melanin content and tyrosinase activity significantly (P<0.05) as compared with the UVB-irradiated group. Histopathological examination also showed that L-glutathione reduced the deposition of melanin pigment in the basal layer of the epidermis as compared with that in UVB-irradiated mice. All in all, the present study demonstrated that L-glutathione has the potential to be developed as a photoprotection agent against UVB-induced oxidative stress and melanogenesis.
    Matched MeSH terms: Oxidative Stress/physiology*; Oxidative Stress/radiation effects
  12. Al-Fahdawi MQ, Al-Doghachi FAJ, Abdullah QK, Hammad RT, Rasedee A, Ibrahim WN, et al.
    Biomed Pharmacother, 2021 Jun;138:111483.
    PMID: 33744756 DOI: 10.1016/j.biopha.2021.111483
    The aim of this study was to prepare, characterize, and determine the in vitro anticancer effects of platinum-doped magnesia (Pt/MgO) nanoparticles. The chemical compositions, functional groups, and size of nanoparticles were determined using X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. Pt/MgO nanoparticles were cuboid and in the nanosize range of 30-50 nm. The cytotoxicity of Pt/MgO nanoparticles was determined via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on the human lung and colonic cancer cells (A549 and HT29 respectively) and normal human lung and colonic fibroblasts cells (MRC-5 and CCD-18Co repectively). The Pt/MgO nanoparticles were relatively innocuous to normal cells. Pt/MgO nanoparticles downregulated Bcl-2 and upregulated Bax and p53 tumor suppressor proteins in the cancer cells. Pt/MgO nanoparticles also induced production of reactive oxygen species, decreased cellular glutathione level, and increased lipid peroxidation. Thus, the anticancer effects of Pt/MgO nanoparticles were attributed to the induction of oxidative stress and apoptosis. The study showed the potential of Pt/MgO nanoparticles as an anti-cancer compound.
    Matched MeSH terms: Oxidative Stress/drug effects*; Oxidative Stress/physiology
  13. Kam MYY, Yap WSP
    Biotechnol Genet Eng Rev, 2020 Apr;36(1):1-31.
    PMID: 32308142 DOI: 10.1080/02648725.2020.1749818
    Artemisinin (ART) is an antimalarial compound that possesses a variety of novel biological activities. Due to the low abundance of ART in natural sources, agricultural supply has been erratic, and prices are highly volatile. While heterologous biosynthesis and semi-synthesis are advantageous in certain aspects, these approaches remained disadvantageous in terms of productivity and cost-effectiveness. Therefore, further improvement in ART production calls for approaches that should supplement the agricultural production gap, while reducing production costs and stabilising supply. The present review offers a discussion on the elicitation of plants and/or in vitro cultures as an economically feasible yield enhancement strategy to address the global problem of access to affordable ART. Deemed critical for the manipulation of biosynthetic potential, the mechanism of ART biosynthesis is reviewed. It includes a discussion on the current biotechnological solutions to ART production, focusing on semi-synthesis and elicitation. A brief commentary on the possible aspects that influence elicitation efficiency and how oxidative stress modulates ART synthesis is also presented. Based on the critical analysis of current literature, a hypothesis is put forward to explain the possible involvement of enzymes in assisting the final non-enzymatic transformation step leading to ART formation. This review highlights the critical factors limiting the success of elicitor-induced modulation of ART metabolism, that will help inform strategies for future improvement of ART production. Additionally, new avenues for future research based on the proposed hypothesis will lead to exciting perspectives in this research area and continue to enhance our understanding of this intricate metabolic process.
    Matched MeSH terms: Oxidative Stress/drug effects*; Oxidative Stress/genetics
  14. Liow KY, Chow SC
    Naunyn Schmiedebergs Arch Pharmacol, 2018 Jan;391(1):71-82.
    PMID: 29085973 DOI: 10.1007/s00210-017-1436-6
    The cathepsin B inhibitor benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was recently found to induce apoptosis at low concentrations in Jurkat T cells, while at higher concentrations, the cells die of necrosis. In the present study, we showed that z-FA-CMK readily depletes intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) generation. The toxicity of z-FA-CMK in Jurkat T cells was completely abrogated by N-acetylcysteine (NAC), suggesting that the toxicity mediated by z-FA-CMK is due to oxidative stress. We found that L-buthionine sulfoximine (BSO) which depletes intracellular GSH through the inhibition of GSH biosynthesis in Jurkat T cells did not promote ROS increase or induce cell death. However, NAC was still able to block z-FA-CMK toxicity in Jurkat T cells in the presence of BSO, indicating that the protective effect of NAC does not involve GSH biosynthesis. This is further corroborated by the protective effect of the non-metabolically active D-cysteine on z-FA-CMK toxicity. Furthermore, in BSO-treated cells, z-FA-CMK-induced ROS increased which remains unchanged, suggesting that the depletion of GSH and increase in ROS generation mediated by z-FA-CMK may be two separate events. Collectively, our results demonstrated that z-FA-CMK toxicity is mediated by oxidative stress through the increase in ROS generation.
    Matched MeSH terms: Oxidative Stress/drug effects*; Oxidative Stress/physiology
  15. Zhang Y, Yan W, Collins MA, Bednar F, Rakshit S, Zetter BR, et al.
    Cancer Res, 2013 Oct 15;73(20):6359-74.
    PMID: 24097820 DOI: 10.1158/0008-5472.CAN-13-1558-T
    Pancreatic cancer, one of the deadliest human malignancies, is almost invariably associated with the presence of an oncogenic form of Kras. Mice expressing oncogenic Kras in the pancreas recapitulate the stepwise progression of the human disease. The inflammatory cytokine interleukin (IL)-6 is often expressed by multiple cell types within the tumor microenvironment. Here, we show that IL-6 is required for the maintenance and progression of pancreatic cancer precursor lesions. In fact, the lack of IL-6 completely ablates cancer progression even in presence of oncogenic Kras. Mechanistically, we show that IL-6 synergizes with oncogenic Kras to activate the reactive oxygen species detoxification program downstream of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling cascade. In addition, IL-6 regulates the inflammatory microenvironment of pancreatic cancer throughout its progression, providing several signals that are essential for carcinogenesis. Thus, IL-6 emerges as a key player at all stages of pancreatic carcinogenesis and a potential therapeutic target.
    Matched MeSH terms: Oxidative Stress/genetics; Oxidative Stress/physiology*
  16. Tarmizi AH, Ismail R
    Food Sci Nutr, 2014 Jan;2(1):28-38.
    PMID: 24804062 DOI: 10.1002/fsn3.76
    Binary blends of palm olein (PO) with sunflower oil (SFO), canola oil (CNO), and cottonseed oil (CSO) were formulated to assess their stability under continuous frying conditions. The results were then compared with those obtained in PO. The oil blends studied were: (1) 60:40 for PO + SFO; (2) 70:30 for PO + CNO; and (3) 50:50 for PO + CSO. The PO and its blends were used to fry potato chips at 180°C for a total of 56 h of operation. The evolution of analytical parameters such as tocols, induction period, color, p-anisidine value, free fatty acid, smoke point, polar compounds, and polymer compounds were evaluated over the frying time. Blending PO with unsaturated oils was generally proved to keep most qualitative parameters comparable to those demonstrated in PO. Indeed, none of the oils surpassed the legislative limits for used frying. Overall, it was noted that oil containing PO and SFO showed higher resistance toward oxidative and hydrolytic behaviors as compared to the other oil blends.
    Matched MeSH terms: Oxidative Stress
  17. Yamamoto T, Tsunematsu Y, Hara K, Suzuki T, Kishimoto S, Kawagishi H, et al.
    Angew Chem Int Ed Engl, 2016 05 17;55(21):6207-10.
    PMID: 27072782 DOI: 10.1002/anie.201600940
    Geometric isomerization can expand the scope of biological activities of natural products. The observed chemical diversity among the pseurotin-type fungal secondary metabolites is in part generated by a trans to cis isomerization of an olefin. In vitro characterizations of pseurotin biosynthetic enzymes revealed that the glutathione S-transferase PsoE requires participation of the bifunctional C-methyltransferase/epoxidase PsoF to complete the trans to cis isomerization of the pathway intermediate presynerazol. The crystal structure of the PsoE/glutathione/presynerazol complex indicated stereospecific glutathione-presynerazol conjugate formation is the principal function of PsoE. Moreover, PsoF was identified to have an additional, unexpected oxidative isomerase activity, thus making it a trifunctional enzyme which is key to the complexity generation in pseurotin biosynthesis. Through the study, we identified a novel mechanism of accomplishing a seemingly simple trans to cis isomerization reaction.
    Matched MeSH terms: Oxidative Stress
  18. Tan SN, Sim SP, Khoo AS
    Cell Biosci, 2016;6:35.
    PMID: 27231526 DOI: 10.1186/s13578-016-0103-9
    Genetic aberrations have been identified in nasopharyngeal carcinoma (NPC), however, the underlying mechanism remains elusive. There are increasing evidences that the apoptotic nuclease caspase-activated deoxyribonuclease (CAD) is one of the players leading to translocation in leukemia. Oxidative stress, which has been strongly implicated in carcinogenesis, is a potent apoptotic inducer. Most of the NPC etiological factors are known to induce oxidative stress. Although apoptosis is a cell death process, cells possess the potential to survive apoptosis upon DNA repair. Eventually, the surviving cells may carry rearranged chromosomes. We hypothesized that oxidative stress-induced apoptosis may cause chromosomal breaks mediated by CAD. Upon erroneous DNA repair, cells that survive apoptosis may harbor chromosomal rearrangements contributing to NPC pathogenesis. This study focused on the AF9 gene at 9p22, a common deletion region in NPC. We aimed to propose a possible model for molecular mechanism underlying the chromosomal rearrangements in NPC.
    Matched MeSH terms: Oxidative Stress
  19. Vikneswaran R, Syafiq MS, Eltayeb NE, Kamaruddin MN, Ramesh S, Yahya R
    PMID: 26046495 DOI: 10.1016/j.saa.2015.05.087
    Copper ion recognition and DNA interaction of a newly synthesized fluorescent Schiff base (HPyETSC) were investigated using UV-vis and fluorescent spectroscopy. Examination using these two techniques revealed that the detection of copper by HPyETSC is highly sensitive and selective, with a detection limit of 0.39 μm and the mode of interaction between HPyETSC and DNA is electrostatic, with a binding constant of 8.97×10(4) M(-1). Furthermore, gel electrophoresis studies showed that HPyETSC exhibited nuclease activity through oxidative pathway.
    Matched MeSH terms: Oxidative Stress
  20. Lee WJ, Tan CP, Sulaiman R, Hee YY, Chong GH
    Food Chem, 2020 Jan 30;304:125427.
    PMID: 31494501 DOI: 10.1016/j.foodchem.2019.125427
    Solution-enhanced dispersion by supercritical carbon dioxide (SEDS) and spray drying (SD) were used to microencapsulate red palm oil (RPO) to prolong the functionality of carotenes and vitamin E. The protective effects provided by SEDS and SD were evaluated in terms of the oxidative stability (65 °C for 35 days), fatty acid compositions, color change and degradation kinetics of carotenes and vitamin E (25 °C, 45 °C, 65 °C, and 85 °C for up to 198 days). SEDS microcapsules (SEDS-M) were the most oxidatively stable (total oxidation (Totox): 26.5), followed by SD microcapsules (SD-M) (34.9) and RPO (56.7). Degradation of carotenes and vitamin E fitted well a first-order kinetic model (average absolute relative deviation = 2-16%). SEDS-M offered better protection to vitamin E (Ea = 36 kJ/mol), whereas SD-M provided better protection for α + β carotene (Ea = 29 kJ/mol). Overall, encapsulation protected RPO during storage, with SEDS-microencapsulated RPO performing better than SD-microencapsulated RPO.
    Matched MeSH terms: Oxidative Stress
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links