Displaying publications 41 - 60 of 369 in total

Abstract:
Sort:
  1. Bhupatiraju L, Bethala K, Wen Goh K, Singh Dhaliwal J, Ching Siang T, Menon S, et al.
    J Med Life, 2023 Feb;16(2):307-316.
    PMID: 36937470 DOI: 10.25122/jml-2022-0151
    Food supplements are used to improve cognitive functions in age-related dementia. This study was designed to determine the Murraya koenigii leaves' effect on Alloxan-induced cognitive impairment in diabetic rats and the contents of oxidative stress biomarkers, catalase, reduced glutathione, and glutathione reductase in brain tissue homogenates. Wistar rats were divided into seven groups (six rats per group). Group I received saline water (1 ml, p.o.), Diabetes was induced in Groups II-VII with Alloxan (120 mg/kg/p.o). Group III was provided with Donepezil HCl (2.5 mg/kg/p.o.), Group IV, V, VI, and VII with Murraya koenigii ethanol extract (200 and 400 mg/kg/p.o.) and aqueous extract (200 and 400 mg/kg/p.o.), respectively, for 30 days. Behavior, acetylcholinesterase (AChE) activity, oxidative stress status, and histopathological features were determined in the hippocampus and cerebral cortex. Administration of Murraya koenigii ethanolic and aqueous extracts significantly (P<0.05, P<0.001) increased the number of holes crossed by rats from one chamber to another. There was an increase in the (1) latency to reach the solid platform, (2) number of squares traveled by rats on the 30th day, and (3) percentage of spontaneous alternation behavior compared to the control group. Administration for successive days markedly decreased AChE activity (P<0.05), decreased TBARS level, and increased catalase, GSH, and GR levels. Murayya koenigii could be a promising food supplement for people with dementia. However, more research into sub-chronic toxicity and pharmacokinetic and pharmacodynamics interactions is essential.
    Matched MeSH terms: Rats, Wistar
  2. Abdul Wahab SM, Husain K, Jantan I, Arshad L, Haque MA, Mohd Fauzi N, et al.
    Curr Pharm Biotechnol, 2023;24(11):1465-1477.
    PMID: 36545731 DOI: 10.2174/1389201024666221221113020
    BACKGROUND: Annona muricata L. (Annonaceae) (AM)'s remarkable anti-inflammatory and anti-cancer activities make it a targeted plant to be explored for its immunomodulatory properties. Traditional practitioners have employed various components of AM to cure a variety of ailments, including cancer, diabetes, and inflammation.

    OBJECTIVE: The present study evaluated the immunosuppressive effects of 80% ethanol extract of of AM leaves in male Wistar rats on different parameters of humoral and cellular immune responses.

    METHODS: AM leaf extract (AMLE) was analyzed using UHPLC-MS/MS to profile its secondary metabolites. AMLE was rich in polyphenols which include (epi)catechin-(epi)catechin-(epi) catechin, caffeic acid, coumaroylquinic acid, hyperin, kaempferol, quinic acid and rutin. The rats were administered 100, 200 and 400 mg/kg bw of the extract daily for 14 days. The effects of AMLE on innate immune responses were determined by evaluating phagocytosis, neutrophils migration, reactive oxygen species (ROS) release, CD11b/CD18 integrin expression, and ceruloplasmin, lysozyme and myeloperoxidase (MPO) levels. The adaptive immune parameters were evaluated by immunizing the rats with sheep red blood cells (sRBC) on day 0 and administered orally with AMLE for 14 days.

    RESULTS: AMLE established significant immunosuppressive effects on the innate immune parameters by inhibiting the neutrophil migration, ROS production, phagocytic activity and expression of CD11b/CD18 integrin in a dose-dependent pattern. AMLE also suppressed ceruloplasmin, MPO and lysozyme expressions in the rat plasma dose-dependently. AMLE dose-dependently inhibited T and B lymphocytes proliferation, Th1 and Th2 cytokine production, CD4+ and CD8+ co-expression in splenocytes, immunoglobulins (IgM and IgG) expression and the sRBC-induced swelling rate of rat paw in delayed-type hypersensitivity (DTH).

    CONCLUSION: The strong inhibitory effects on the different parameters of humoral and cellular responses indicate that AMLE has potential to be an important source of effective immunosuppressive agents.

    Matched MeSH terms: Rats, Wistar
  3. Anuar NS, Shafie SA, Maznan MAF, Zin NSNM, Azmi NAS, Raoof RA, et al.
    Toxicol Appl Pharmacol, 2023 Jul 01;470:116558.
    PMID: 37211320 DOI: 10.1016/j.taap.2023.116558
    Lauric acid, a 12‑carbon atom medium chain fatty acid (MCFA) has strong antioxidant and antidiabetic activities. However, whether lauric acid can ameliorate hyperglycaemia-induced male reproductive damage remains unclear. The study aimed to determine the optimal dose of lauric acid with glucose-lowering activity, antioxidant potential and tissue-protective effects on the testis and epididymis of streptozotocin (STZ)-induced diabetic rats. Hyperglycaemia was induced in Sprague Dawley rats by an intravenous injection of STZ at a dose of 40 mg/kg body weight (bwt). Lauric acid (25, 50 and 100 mg/kg bwt) was administered orally for eight weeks. Weekly fasting blood glucose (FBG), glucose tolerance and insulin sensitivity were examined. Hormonal profiles (insulin and testosterone), lipid peroxidation (MDA) and antioxidant enzyme (SOD and CAT) activities were measured in the serum, testis and epididymis. The reproductive analyses were evaluated based on sperm quality and histomorphometry. Lauric acid administration significantly improved FBG levels, glucose tolerance, hormones-related fertility and oxidant-antioxidant balance in the serum, testis and epididymis compared to untreated diabetic rats. Treatment with lauric acid preserved the testicular and epididymal histomorphometry, along with the significant improvements in sperm characteristics. It is shown for the first time that lauric acid treatment at 50 mg/kg bwt is the optimal dose for ameliorating hyperglycaemia-induced male reproductive complications. We conclude that lauric acid reduced hyperglycaemia by restoring insulin and glucose homeostasis, which attributes to the regeneration of tissue damage and sperm quality in STZ-induced diabetic rats. These findings support the correlation between oxidative stress and hyperglycaemia-induced male reproductive dysfunctions.
    Matched MeSH terms: Rats, Wistar
  4. Kamath S, Rao SG, Murthy KD, Bairy KL, Bhat S
    Indian J Exp Biol, 2006 Nov;44(11):902-4.
    PMID: 17205711
    Contribution and role of a pyramid/square box on the wound healing suppressant effect of dexamethasone was studied in rats of either sex using excision wound model to record the wound contraction rate and epithelization period. The results showed enhanced wound contraction rate and decreased epithelization period in the pyramid-exposed rats as compared to controls. Thus, it appears that pyramid environment facilitates the process of wound healing. Also, the wound healing suppressant effects of dexamethasone were significantly reduced.
    Matched MeSH terms: Rats, Wistar
  5. Hardiany NS, Dewi PKK, Dewi S, Tejo BA
    Sci Rep, 2024 Jan 05;14(1):603.
    PMID: 38182767 DOI: 10.1038/s41598-024-51221-5
    In this study, the potential neuroprotective ability of coriander seeds (Coriandrum sativum L.) ethanolic extract (CSES) as a neuroprotectant agent in the brains of high-fat diet-induced obese rats was analyzed. The study investigated how CSES impacts oxidative stress markers (i.e., malondialdehyde/MDA, glutathione/GSH and catalase), inflammation marker (i.e., Interleukin-6/IL-6), cellular senescence markers (i.e., senescence-associated β-galactoside/SA-β-Gal activity and p16), brain damage marker (i.e., Neuron-specific Enolase/NSE), and neurogenesis markers (i.e., mature Brain-derived Neurotropic Factor/BDNF, pro-BDNF, and mature/pro-BDNF ratio). Male adult Wistar rats were fed a high-fat diet and given CSES once daily, at 100 mg/kg body weight, for 12 weeks. CSES significantly reduced MDA concentration (p = 
    Matched MeSH terms: Rats, Wistar
  6. Titisari N, Fauzi A, Razak ISA, Samsulrizal N, Ahmad H
    Open Vet J, 2023 Aug;13(8):983-990.
    PMID: 37701670 DOI: 10.5455/OVJ.2023.v13.i8.4
    BACKGROUND: Fish oil, which is regarded as the primary source of omega-3 fatty acids, has been long studied for its potential as an antidiabetic therapy. However, its protective ability against insulin resistance and pancreatic islet alteration remains unclear and controversial.

    AIM: To investigate the beneficial effects of fish oil consumption on the progression of insulin resistance and pancreatic islet dysfunction in a rat model of diabetes.

    METHODS: Diabetic rats model (n = 30) were divided into five groups and received; 1) NS injection + NS oral (normal control); 2) NS injection + 3 g/kg fish oil (fish oil control); 3) streptozotocin (STZ) injection + NS oral [diabetes control (DC)]; 4) STZ injection + 1 g/kg fish oil (DFO1); and 5) STZ injection + 3 g/kg fish oil (DFO3). Fasting blood insulin was analyzed by commercial rat insulin enzyme-linked immunosorbent assay; meanwhile, the determination of insulin sensitivity was calculated by homeostatic model assessment of insulin resistance (HOMA-IR) and homeostatic model assessment of beta-cell function. A histological study was conducted on pancreas tissue using H and E staining.

    RESULTS: Fish oil supplementation reduced hyperglycemia and ameliorated HOMA-IR in STZ-induced animal models indicating that fish oil supplementation improved insulin sensitivity. Furthermore, animals treated with fish oil at a dose of 3 g/kg (DFO3) showed an enhancement in pancreatic islets, which was displayed by less abnormal structures than DC animals. This could imply that the administration of fish oil, especially rich in bioactive omega-3 fatty acids effectively inhibits insulin resistance and restore islet of Langerhans alteration in rats injected with STZ.

    CONCLUSION: Thus, the current study suggested that fish oil supplementation could support the treatment of diabetes but should not be considered as an alternative therapy.

    Matched MeSH terms: Rats, Wistar
  7. Astuti SD, Mawaddah A, Kusumawati I, Mahmud AF, Nasution AMT, Purwanto B, et al.
    Lasers Med Sci, 2024 Feb 23;39(1):79.
    PMID: 38393433 DOI: 10.1007/s10103-024-04020-3
    The study investigates the effect of diode laser exposure on curcumin's skin penetration, using turmeric extraction as a light-sensitive chemical and various laser light sources. It uses an in vivo skin analysis method on Wistar strain mice. The lasers are utilized at wavelengths of 403 nm, 523 nm, 661 nm, and 979 nm. The energy densities of the lasers are 20.566 J/cm2, 20.572 J/cm2, 21.162 J/cm2, and 21.298 J/cm2, which are comparable to one another. The experimental animals were divided into three groups: base cream (BC), turmeric extract cream (TEC), and the combination laser (L), BC, and TEC treatment group. Combination light source (LS) with cream (C) was performed with 8 combinations namely 523 nm ((L1 + BC) and (L1 + TEC)), 661 nm ((L2 + BC) and (L2 + TEC)), 403 nm ((L3 + BC) and (L3 + TEC)), and 979 nm ((L4 + BC) and (L4 + TEC)). The study involved applying four laser types to cream-covered and turmeric extract-coated rat skin, with samples scored for analysis. The study found that both base cream and curcumin cream had consistent pH values of 7-8, within the skin's range, and curcumin extract cream had lower viscosity. The results of the statistical analysis of Kruskal-Wallis showed a significant value (p  0.05), while the treatment using BC and TEC showed a significant difference (p 
    Matched MeSH terms: Rats, Wistar
  8. Ahmed R, Tanvir EM, Hossen MS, Afroz R, Ahmmed I, Rumpa NE, et al.
    PMID: 28261310 DOI: 10.1155/2017/5370545
    Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP) has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and ferric reducing antioxidant power (FRAP) values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO-) induced myocardial infarction in rats. Male Wistar rats (n = 32) were pretreated orally with an ethanol extract of MP (100 mg/kg/day) for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.
    Matched MeSH terms: Rats, Wistar
  9. Lokman FE, Gu HF, Wan Mohamud WN, Yusoff MM, Chia KL, Ostenson CG
    PMID: 24319481 DOI: 10.1155/2013/727602
    Aims. To evaluate the antidiabetic properties of borapetol B known as compound 1 (C1) isolated from Tinospora crispa in normoglycemic control Wistar (W) and spontaneously type 2 diabetic Goto-Kakizaki (GK) rats. Methods. The effect of C1 on blood glucose and plasma insulin was assessed by an oral glucose tolerance test. The effect of C1 on insulin secretion was assessed by batch incubation and perifusion experiments using isolated pancreatic islets. Results. An acute oral administration of C1 improved blood glucose levels in treated versus placebo groups with areas under glucose curves 0-120 min being 72 ± 17 versus 344 ± 10 mmol/L (P < 0.001) and 492 ± 63 versus 862 ± 55 mmol/L (P < 0.01) in W and GK rats, respectively. Plasma insulin levels were increased by 2-fold in treated W and GK rats versus placebo group at 30 min (P < 0.05). C1 dose-dependently increased insulin secretion from W and GK isolated islets at 3.3 mM and 16.7 mM glucose. The perifusions of isolated islets indicated that C1 did not cause leakage of insulin by damaging islet beta cells (P < 0.001). Conclusion. This study provides evidence that borapetol B (C1) has antidiabetic properties mainly due to its stimulation of insulin release.
    Matched MeSH terms: Rats, Wistar
  10. Abu MN, Samat S, Kamarapani N, Nor Hussein F, Wan Ismail WI, Hassan HF
    PMID: 25821506 DOI: 10.1155/2015/985042
    The antidiabetic properties of Tinospora crispa, a local herb that has been used in traditional Malay medicine and rich in antioxidant, were explored based on obesity-linked insulin resistance condition. Male Wistar rats were randomly divided into four groups, namely, the normal control (NC) which received standard rodent diet, the high fat diet (HFD) which received high fat diet only, the high fat diet treated with T. crispa (HFDTC), and the high fat diet treated with orlistat (HFDO). After sixteen weeks of treatment, blood and organs were harvested for analyses. Results showed that T. crispa significantly (p < 0.05) reduced the body weight (41.14 ± 1.40%), adiposity index serum levels (4.910 ± 0.80%), aspartate aminotransferase (AST: 161 ± 4.71 U/L), alanine aminotransferase (ALT: 100.95 ± 3.10 U/L), total cholesterol (TC: 18.55 ± 0.26 mmol/L), triglycerides (TG: 3.70 ± 0.11 mmol/L), blood glucose (8.50 ± 0.30 mmo/L), resistin (0.74 ± 0.20 ng/mL), and leptin (17.428 ± 1.50 ng/mL) hormones in HFDTC group. The insulin (1.65 ± 0.07 pg/mL) and C-peptide (136.48 pmol/L) hormones were slightly decreased but within normal range. The histological results showed unharmed and intact liver tissues in HFDTC group. As a conclusion, T. crispa ameliorates insulin resistance-associated with obesity in Wistar rats fed with high fat diet.
    Matched MeSH terms: Rats, Wistar
  11. D'Souza UJ
    Malays J Med Sci, 2003 Jan;10(1):43-5.
    PMID: 23365499 MyJurnal
    The antimetabolite, 5-fluorouracil is widely used in the treatment of cancers. Although its toxic effects on testis causing germinal epithelial sloughing, tubular atrophy and generation of multinucleated cells were reported, its effect on spermatogenesis has not been studied. Hence the present study was conducted to evaluate the effects of 5-fluorouracil on epididymal sperm count. Male Wistar rats were employed in the study (n=5 per group). The animals were injected (i.p) with five consecutive doses of 5-fluorouracil (10, 20, 30mg/kg b.w) at an interval of 24h and the control with 0.1ml-distilled water. Samples were obtained at 14, 35, 42 and 70 days after injection. Rats were sacrificed, a laparatomy was performed and epididymes were collected in 1ml phosphate buffered saline (pH 7.2), minced, filtered and stained with 1% aqueous eosin Y. An aliquot was taken in leucocyte pipette, diluted with phosphate buffered saline and sperm count was done as per the standard procedure. Data were analyzed by Mann Whitney U test. The results of this study revealed that 5 - fluorouracil significantly decreased the sperm count in a dose- and time-dependent manner.
    Matched MeSH terms: Rats, Wistar
  12. Habybabady RH, Mortazavi SB, Khavanin A, Mirzaei R, Arab MR, Mesbahzadeh B, et al.
    Malays J Med Sci, 2018 Sep;25(5):48-58.
    PMID: 30914862 DOI: 10.21315/mjms2018.25.5.5
    Background: Noise exposure causes loss of cochlea hair cells, leading to permanent sensorineural hearing loss, and initiates pathological changes to the bipolar primary auditory neurons (ANs). This study focuses on the effects of N-acetyl-l-cysteine (NAC) in protecting the density of spiral ganglion cells and in histological changes induced by continuous noise exposure in rats.

    Methods: Twenty-four male Wistar rats were randomly allocated into four experimental groups to receive NAC, saline, noise, or both noise and NAC. Noise exposure continued for ten days. Saline and NAC were injected daily during the noise exposure, and 2 days before and after the noise exposure. Evaluation of cochlear histopathology and the density of spiral ganglion cells was performed 21 days after exposure.

    Results: In the animals exposed to noise, a reduction in the density of spiral ganglion cells was evident in both the basal and middle turns of the cochlea. This improved on receiving NAC treatment (P = 0.046). In the histopathology evaluation, some histological changes, such as disorganised architecture of the outer hair and supporting cells and a slightly thickened basilar membrane, were found in the basal turns in the noise group.

    Conclusion: NAC offered partial protection against noise exposure by improving the density of spiral ganglion cells and reducing morphological changes.

    Matched MeSH terms: Rats, Wistar
  13. Azuma H, Okamoto M, Oku Y, Kamiya M
    Parasitol Res, 1995;81(2):103-8.
    PMID: 7731915
    The intraspecific variation of four laboratory-reared isolates of Taenia taeniaformis the SRN and KRN isolates from Norway rats, Rattus norvegicus, captured in Japan and Malaysia, respectively; the BMM isolated from a house mouse, Mus musculus, captured in Belgium; and the ACR isolate from a gray red-backed vole, Clethrionomys rufocanus bedfordiae, captured in Japan was examined by various criteria. Eggs of each of the four isolates were orally inoculated into several species of intermediate host. They were most infective to the rodent species from which the original metacestode of each isolate had been isolated in the field, and only the ACR isolate was infective to the gray red-backed vole. Although little difference was found between the SRN, KRN, and BMM isolates by the other criteria, including the morphology of rostellar hooks, the protein composition of the metacestode, and restriction endonuclease analysis of DNA, the ACR isolate was clearly different from the others. It was considered that the ACR isolate was independent as a strain distinct from the other three isolates.
    Matched MeSH terms: Rats, Wistar/parasitology
  14. Kumar J, Hapidin H, Get Bee YT, Ismail Z
    Alcohol, 2016 Feb;50:9-17.
    PMID: 26626323 DOI: 10.1016/j.alcohol.2015.10.001
    Withdrawal from long-term ethanol consumption results in overexcitation of glutamatergic neurotransmission in the amygdala, which induces an anxiety-like syndrome. Most alcoholics that suffer from such symptoms frequently depend on habitual drinking as self-medication to alleviate their symptoms. Metabotropic glutamate receptor subtype 5 (mGlu5) and protein kinase C (PKC) epsilon have been reported to mediate acute and chronic effects of ethanol. This study explores the changes in mGlu5 and PKC epsilon in the amygdala following acute administration of ethanol during ethanol withdrawal (EW) induced anxiety. Male Wistar rats were fed a modified liquid diet containing low-fat cow milk, sucrose, and maltodextrin, with a gradual introduction of 2.4%, 4.8% and 7.2% ethanol for 20 days. Six hours into EW, the rats were intraperitoneally injected with normal saline and ethanol (2.5 g/kg, 20% v/v), and exposed to open-field and elevated plus maze tests. Then, amygdala tissue was dissected from the rat brain for Western blot and gene expression studies. EW-induced anxiety was accompanied by a significant increase in mGlu5, total PKC epsilon, and phosphorylated PKC epsilon protein levels, and also of mRNA of mGlu5 (GRM5) in the amygdala. Acute administration of ethanol significantly attenuated EW-induced anxiety as well as an EW-induced increase in GRM5. The acute challenge of ethanol to EW rats had little effect on the phosphorylated and total protein levels of PKC epsilon in the amygdala. Our results demonstrate that amygdala PKC epsilon may not be directly involved in the development of anxiety following EW.
    Matched MeSH terms: Rats, Wistar
  15. Radford R, Rcom-H'cheo-Gauthier A, Wong MB, Eaton ED, Quilty M, Blizzard C, et al.
    Mol. Cell. Neurosci., 2015 Mar;65:68-81.
    PMID: 25731829 DOI: 10.1016/j.mcn.2015.02.015
    Multiple system atrophy (MSA) exhibits widespread astrogliosis together with α-synuclein (α-syn) glial cytoplasmic inclusions (GCIs) in mature oligodendrocytes. We quantified astrocyte activation by morphometric analysis of MSA cases, and investigated the correlation to GCI proximity. Using Imaris software, we obtained "skinned" three-dimensional models of GFAP-positive astrocytes in MSA and control tissue (n=75) from confocal z-stacks and measured the astrocyte process length and thickness and radial distance to the GCI. Astrocytes proximal to GCI-containing oligodendrocytes (r<25μm) had significantly (p, 0.05) longer and thicker processes characteristic of activation than distal astrocytes (r>25μm), with a reciprocal linear correlation (m, 90μm(2)) between mean process length and radial distance to the nearest GCI (R(2), 0.7). In primary cell culture studies, α-syn addition caused ERK-dependent activation of rat astrocytes and perinuclear α-syn inclusions in mature (MOSP-positive) rat oligodendrocytes. Activated astrocytes were also observed in close proximity to α-syn deposits in a unilateral rotenone-lesion mouse model. Moreover, unilateral injection of MSA tissue-derived α-syn into the mouse medial forebrain bundle resulted in widespread neuroinflammation in the α-syn-injected, but not sham-injected hemisphere. Taken together, our data suggests that the action of localized concentrations of α-syn may underlie both astrocyte and oligodendrocyte MSA pathological features.
    Matched MeSH terms: Rats, Wistar
  16. Pamidi N, Nayak S
    Biomed J, 2014 Jul-Aug;37(4):225-31.
    PMID: 25116719 DOI: 10.4103/2319-4170.125651
    BACKGROUND: Environmental enrichment (EE) exposure is known to influence the structural changes in the neuronal network of hippocampus. In the present study, we evaluated the effects of EE exposure on the streptozotocin (STZ)-induced diabetic and stressed rat hippocampus.
    METHODS: Male albino rats of Wistar strain (4-5 weeks old) were grouped into normal control (NC), vehicle control (VC), diabetes (DI), diabetes + stress (DI + S), diabetes + EE (DI + E), and diabetes + stress + EE (DI + S + E) groups (n = 8 in each group). Rats were exposed to stress and EE after inducing diabetes with STZ (40 mg/kg). Rats were sacrificed on Day 30 and brain sections were processed for cresyl violet staining to quantify the number of surviving neurons in the CA1, CA3, and dentate hilus (DH) regions of hippocampus.
    RESULTS: A significant (p < 0.001) decrease in the number of survived neurons was noticed in DI (CA1, 34.06 ± 3.2; CA3, 36.1 ± 3.62; DH, 9.83 ± 2.02) as well as DI + S (CA1, 14.03 ± 3.12; CA3, 20.27 ± 4.09; DH, 6.4 ± 1.21) group rats compared to NC rats (CA1, 53.64 ± 2.96; CA3, 62.1 ± 3.34; DH, 21.11 ± 1.03). A significant (p < 0.001) increase in the number of survived neurons was observed in DI + E (CA1, 42.3 ± 3.66; CA3, 46.73 ± 4.74; DH, 17.03 ± 2.19) and DI + S + E (CA1, 29.69 ± 4.47; CA3, 36.73 ± 3.89; DH, 12.23 ± 2.36) group rats compared to DI and DI + S groups, respectively.
    CONCLUSIONS: EE exposure significantly reduced the amount of neuronal damage caused by complications of diabetes and stress to the neurons of hippocampus.
    Matched MeSH terms: Rats, Wistar
  17. Feng Z, Wagatsuma Y, Kikuchi M, Kosawada T, Nakamura T, Sato D, et al.
    Biomaterials, 2014 Sep;35(28):8078-91.
    PMID: 24976242 DOI: 10.1016/j.biomaterials.2014.05.072
    Fibroblast-mediated compaction of collagen gels attracts extensive attention in studies of wound healing, cellular fate processes, and regenerative medicine. However, the underlying mechanism and the cellular mechanical niche still remain obscure. This study examines the mechanical behaviour of collagen fibrils during the process of compaction from an alternative perspective on the primary mechanical interaction, providing a new viewpoint on the behaviour of populated fibroblasts. We classify the collagen fibrils into three types - bent, stretched, and adherent - and deduce the respective equations governing the mechanical behaviour of each type; in particular, from a putative principle based on the stationary state of the instantaneous Hamiltonian of the mechanotransduction system, we originally quantify the stretching force exerted on each stretched fibrils. Via careful verification of a structural elementary model based on this classification, we demonstrate a clear physical picture of the compaction process, quantitatively elucidate the panorama of the micro mechanical niche and reveal an intrinsic biphasic relationship between cellular traction force and matrix elasticity. Our results also infer the underlying mechanism of tensional homoeostasis and stress shielding of fibroblasts. With this study, and sequel investigations on the putative principle proposed herein, we anticipate a refocus of the research on cellular mechanobiology, in vitro and in vivo.
    Matched MeSH terms: Rats, Wistar
  18. Sellamuthu PS, Arulselvan P, Fakurazi S, Kandasamy M
    Pak J Pharm Sci, 2014 Jan;27(1):161-7.
    PMID: 24374436
    Salacia chinensis L. is a traditional Southeast Asian herbal medicine and used in the treatment of diabetes. To investigate the antidiabetic properties of mangiferin from Salacia chinensis and its beneficial effect on toxicological and hematological parameters in streptozotocin induced diabetic rats. Mangiferin was orally treated with the dose of 40 mg/kg body weight/day for 30 days to diabetic rats. Biochemical (blood glucose, uric acid, urea and creatinine), toxicological (AST, ALT and ALP) and hematological parameters (red and white blood cells) and their functional indices were evaluated in diabetic treated groups with mangiferin and glibenclamide. Mangiferin treated diabetic rats significantly (p<0.05) lowered the level of blood glucose, in addition, altered the levels of biochemical parameters including urea, uric acid, and creatinine. Toxicological parameters including AST, ALT and ALP were also significantly reduced after treatment with mangiferin in diabetic rats. Similarly, the levels of red blood, white blood cells and their functional indices were significantly improved through the administration of mangiferin. Thus, our results indicate that mangiferin present in S. chinensis possesses antidiabetic properties and nontoxic nature against chemically induced diabetic rats. Further experimental investigations are warrant to make use of its relevant therapeutic effect to substantiate its ethno-medicinal usage.
    Matched MeSH terms: Rats, Wistar
  19. Mohamad Fairuz Y, Azian A, Nursiati MT, Srijit D, Hamzaini AH, Wan Zurinah WN, et al.
    Clin Ter, 2013;164(2):119-24.
    PMID: 23698204 DOI: 10.7417/CT.2013.1529
    Aging is attributed to neuronal loss associated with increased oxidative stress. Vitamin E, and in particular, tocotrienol are potent antioxidants, which have been shown to be neuroprotective. The main aim of the present study was to observe the effect of long term intake of vitamin E in the form of tocotrienol rich fraction (TRF) and refined, bleached, deodorized palm olein (RBDPO) on the brain of experimental rats.
    Matched MeSH terms: Rats, Wistar
  20. Narayanan SN, Kumar RS, Paval J, Kedage V, Bhat MS, Nayak S, et al.
    Neurol Sci, 2013 Jul;34(7):1117-24.
    PMID: 22976773 DOI: 10.1007/s10072-012-1189-4
    In the current study the modulatory role of mobile phone radio-frequency electromagnetic radiation (RF-EMR) on emotionality and locomotion was evaluated in adolescent rats. Male albino Wistar rats (6-8 weeks old) were randomly assigned into the following groups having 12 animals in each group. Group I (Control): they remained in the home cage throughout the experimental period. Group II (Sham exposed): they were exposed to mobile phone in switch-off mode for 28 days, and Group III (RF-EMR exposed): they were exposed to RF-EMR (900 MHz) from an active GSM (Global system for mobile communications) mobile phone with a peak power density of 146.60 μW/cm(2) for 28 days. On 29th day, the animals were tested for emotionality and locomotion. Elevated plus maze (EPM) test revealed that, percentage of entries into the open arm, percentage of time spent on the open arm and distance travelled on the open arm were significantly reduced in the RF-EMR exposed rats. Rearing frequency and grooming frequency were also decreased in the RF-EMR exposed rats. Defecation boli count during the EPM test was more with the RF-EMR group. No statistically significant difference was found in total distance travelled, total arm entries, percentage of closed arm entries and parallelism index in the RF-EMR exposed rats compared to controls. Results indicate that mobile phone radiation could affect the emotionality of rats without affecting the general locomotion.
    Matched MeSH terms: Rats, Wistar
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links