Displaying publications 41 - 60 of 233 in total

Abstract:
Sort:
  1. Parvizpour S, Razmara J, Ramli AN, Md Illias R, Shamsir MS
    J Comput Aided Mol Des, 2014 Jun;28(6):685-98.
    PMID: 24849507 DOI: 10.1007/s10822-014-9751-1
    The structure of a novel psychrophilic β-mannanase enzyme from Glaciozyma antarctica PI12 yeast has been modelled and analysed in detail. To our knowledge, this is the first attempt to model a psychrophilic β-mannanase from yeast. To this end, a 3D structure of the enzyme was first predicted using a threading method because of the low sequence identity (<30%) using MODELLER9v12 and simulated using GROMACS at varying low temperatures for structure refinement. Comparisons with mesophilic and thermophilic mannanases revealed that the psychrophilic mannanase contains longer loops and shorter helices, increases in the number of aromatic and hydrophobic residues, reductions in the number of hydrogen bonds and salt bridges and numerous amino acid substitutions on the surface that increased the flexibility and its efficiency for catalytic reactions at low temperatures.
    Matched MeSH terms: Sequence Alignment
  2. Tan TT, Chen M, Harikrishna JA, Khairuddin N, Mohd Shamsudin MI, Zhang G, et al.
    Fish Shellfish Immunol, 2013 Oct;35(4):1061-9.
    PMID: 23816854 DOI: 10.1016/j.fsi.2013.06.017
    MicroRNAs (miRNAs) are ~20-22 nucleotides, non protein-coding RNA regulatory genes that post-transcriptionally regulate many protein-coding genes, influencing critical biological and metabolic processes. While the number of known microRNA is increasing, there is currently no published data for miRNA from giant freshwater prawns, Macrobrachium rosenbergii (M. rosenbergii), a commercially cultured and economically important food species. In this study, we identified novel miRNAs in the gill and hepatopancreas of M. rosenbergii. Through a deep parallel sequencing analysis and an in silico data analysis approach, 327 miRNA families were identified from small RNA libraries with reference to both the de novo transcriptome of M. rosenbergii obtained from RNA-Seq and to miRBase (Release 18.0, November 2012). Based on the identified mature miRNA and recovered precursor sequences that form appropriate hairpin structures, three conserved miRNA (miR125, miR750, miR993) and 27 novel miRNA candidates encoding messenger-like non-coding RNA were identified. miR-125, miR-750, G-m0002/H-m0009, G-m0005, G-m0008/H-m0016, G-m0011/H-m0027 and G-m0015 were selected for experimental validation with stem-loop quantitative RT-PCR and were found to be coherent with the expression profile of deep sequencing data as evaluated with Pearson's correlation coefficient (r = 0.835178 for miRNA in gill, r = 0.724131 for miRNA in hepatopancreas). Using a combinatorial approach of pathway enrichment analysis and inverse expression relationship of miRNA and mRNA, four co-expressed novel miRNA candidates (G-m0005, G-m0008/H-m0016, G-m0011/H-m0027, and G-m0015) were found to be associated with energy metabolism. In addition, the expression of the three novel miRNA candidates (G-m0005, G-m0008/H-m0016, and G-m0011/H-m0027) were also found to be significantly reduced at 9 and 24 h post infection in M. rosenbergii challenged with infectious hypodermal and hematopoietic necrosis virus, suggesting a functional role of these miRNAs in crustacean immune defense.
    Matched MeSH terms: Sequence Alignment
  3. Appasamy SD, Ramlan EI, Firdaus-Raih M
    PLoS One, 2013;8(9):e73984.
    PMID: 24040136 DOI: 10.1371/journal.pone.0073984
    The tertiary motifs in complex RNA molecules play vital roles to either stabilize the formation of RNA 3D structure or to provide important biological functionality to the molecule. In order to better understand the roles of these tertiary motifs in riboswitches, we examined 11 representative riboswitch PDB structures for potential agreement of both motif occurrences and conservations. A total of 61 unique tertiary interactions were found in the reference structures. In addition to the expected common A-minor motifs and base-triples mainly involved in linking distant regions the riboswitch structures three highly conserved variants of A-minor interactions called G-minors were found in the SAM-I and FMN riboswitches where they appear to be involved in the recognition of the respective ligand's functional groups. From our structural survey as well as corresponding structure and sequence alignments, the agreement between motif occurrences and conservations are very prominent across the representative riboswitches. Our analysis provide evidence that some of these tertiary interactions are essential components to form the structure where their sequence positions are conserved despite a high degree of diversity in other parts of the respective riboswitches sequences. This is indicative of a vital role for these tertiary interactions in determining the specific biological function of riboswitch.
    Matched MeSH terms: Sequence Alignment
  4. Goh PH, Illias RM, Goh KM
    Int J Mol Sci, 2012;13(5):5307-23.
    PMID: 22754298 DOI: 10.3390/ijms13055307
    Studies related to the engineering of calcium binding sites of CGTase are limited. The calcium binding regions that are known for thermostability function were subjected to site-directed mutagenesis in this study. The starting gene-protein is a variant of CGTase Bacillus sp. G1, reported earlier and denoted as "parent CGTase" herein. Four CGTase variants (S182G, S182E, N132R and N28R) were constructed. The two variants with a mutation at residue 182, located adjacent to the Ca-I site and the active site cleft, possessed an enhanced thermostability characteristic. The activity half-life of variant S182G at 60 °C was increased to 94 min, while the parent CGTase was only 22 min. This improvement may be attributed to the formation of a shorter α-helix and the alleviation of unfavorable steric strains by glycine at the corresponding region. For the variant S182E, an extra ionic interaction at the A/B domain interface increased the half-life to 31 min, yet it reduced CGTase activity. The introduction of an ionic interaction at the Ca-I site via the mutation N132R disrupted CGTase catalytic activity. Conversely, the variant N28R, which has an additional ionic interaction at the Ca-II site, displayed increased cyclization activity. However, thermostability was not affected.
    Matched MeSH terms: Sequence Alignment
  5. Fong MY, Noordin R, Lau YL, Cheong FW, Yunus MH, Idris ZM
    Parasitology, 2013 Jan;140(1):39-45.
    PMID: 22917270 DOI: 10.1017/S0031182012001242
    Brugia malayi is one of the parasitic worms which causes lymphatic filariasis in humans. Its geographical distribution includes a large part of Asia. Despite its wide distribution, very little is known about the genetic variation and molecular epidemiology of this species. In this study, the internal transcribed spacer 1 (ITS1) nucleotide sequences of B. malayi from microfilaria-positive human blood samples in Northeast Borneo Island were determined, and compared with published ITS1 sequences of B. malayi isolated from cats and humans in Thailand. Multiple alignment analysis revealed that B. malayi ITS1 sequences from Northeast Borneo were more similar to each other than to those from Thailand. Phylogenetic trees inferred using Neighbour-Joining and Maximum Parsimony methods showed similar topology, with 2 distinct B. malayi clusters. The first cluster consisted of Northeast Borneo B. malayi isolates, whereas the second consisted of the Thailand isolates. The findings of this study suggest that B. malayi in Borneo Island has diverged significantly from those of mainland Asia, and this has implications for the diagnosis of B. malayi infection across the region using ITS1-based molecular techniques.
    Matched MeSH terms: Sequence Alignment
  6. Zaki NM, Singh R, Rosli R, Ismail I
    Int J Mol Sci, 2012;13(4):4069-88.
    PMID: 22605966 DOI: 10.3390/ijms13044069
    Species-specific simple sequence repeat (SSR) markers are favored for genetic studies and marker-assisted selection (MAS) breeding for oil palm genetic improvement. This report characterizes 20 SSR markers from an Elaeis oleifera genomic library (gSSR). Characterization of the repeat type in 2000 sequences revealed a high percentage of di-nucleotides (63.6%), followed by tri-nucleotides (24.2%). Primer pairs were successfully designed for 394 of the E. oleifera gSSRs. Subsequent analysis showed the ability of the 20 selected E. oleifera gSSR markers to reveal genetic diversity in the genus Elaeis. The average Polymorphism Information Content (PIC) value for the SSRs was 0.402, with the tri-repeats showing the highest average PIC (0.626). Low values of observed heterozygosity (H(o)) (0.164) and highly positive fixation indices (F(is)) in the E. oleifera germplasm collection, compared to the E. guineensis, indicated an excess of homozygosity in E. oleifera. The transferability of the markers to closely related palms, Elaeis guineensis, Cocos nucifera and ornamental palms is also reported. Sequencing the amplicons of three selected E. oleifera gSSRs across both species and palm taxa revealed variations in the repeat-units. The study showed the potential of E. oleifera gSSR markers to reveal genetic diversity in the genus Elaeis. The markers are also a valuable genetic resource for studying E. oleifera and other genus in the Arecaceae family.
    Matched MeSH terms: Sequence Alignment
  7. Schaeffner BC, Gasser RB, Beveridge I
    Syst Parasitol, 2011 Sep;80(1):1-15.
    PMID: 21805386 DOI: 10.1007/s11230-011-9309-8
    A new genus of trypanorhynch cestode is described from two species of sharks, the sliteye shark Loxodon macrorhinus Müller & Henle and the straight-tooth weasel shark Paragaleus tengi (Chen) collected in the Makassar Strait (off Indonesian Borneo) and Sulu Sea (off Malaysian Borneo). Ancipirhynchus afossalis n. g., n. sp. possesses two bothria and a heteroacanthous, heteromorphous tentacular armature with three distinctive files of hooks on the external tentacle surface but lacks prebulbar organs and gland cells within the tentacular bulbs. The hook arrangement of alternating files on the external surface of the tentacle resembles that seen in the superfamily Otobothrioidea Dollfus, 1942 in the genus Fossobothrium Beveridge & Campbell, 2005. However, the new species lacks the defining characteristic of this group, i.e. the paired bothrial pits. A Bayesian inference (BI) analysis of 37 LSU sequences of trypanorhynchs from three superfamilies provided evidence supporting the taxonomic placement of Ancipirhynchus afossalis n. g., n. sp. within the Otobothrioidea.
    Matched MeSH terms: Sequence Alignment
  8. Ang KC, Leow JW, Yeap WK, Hood S, Mahani MC, Md-Zain BM
    Genet. Mol. Res., 2011;10(2):640-9.
    PMID: 21491374 DOI: 10.4238/vol10-2gmr1011
    Malaysia remains as a crossroad of different cultures and peoples, and it has long been recognized that studying its population history can provide crucial insight into the prehistory of Southeast Asia as a whole. The earliest inhabitants were the Orang Asli in Peninsular Malaysia and the indigenous groups in Sabah and Sarawak. Although they were the earliest migrants in this region, these tribes are divided geographically by the South China Sea. We analyzed DNA sequences of 18 Orang Asli using mitochondrial DNA extracted from blood samples, each representing one sub-tribe, and from five Sarawakian Iban. Mitochondrial DNA was extracted from hair samples in order to examine relationships with the main ethnic groups in Malaysia. The D-loop region and cytochrome b genes were used as the candidate loci. Phylogenetic relationships were investigated using maximum parsimony and neighbor joining algorithms, and each tree was subjected to bootstrap analysis with 1000 replicates. Analyses of the HVS I region showed that the Iban are not a distinct group from the Orang Asli; they form a sub-clade within the Orang Asli. Based on the cytochrome b gene, the Iban clustered with the Orang Asli in the same clade. We found evidence for considerable gene flow between Orang Asli and Iban. We concluded that the Orang Asli, Iban and the main ethnic groups of Malaysia are probably derived from a common ancestor. This is in agreement with a single-route migration theory, but it does not dismiss a two-route migration theory.
    Matched MeSH terms: Sequence Alignment
  9. Shariff FM, Rahman RN, Basri M, Salleh AB
    Int J Mol Sci, 2011;12(5):2917-34.
    PMID: 21686158 DOI: 10.3390/ijms12052917
    A thermophilic lipolytic bacterium identified as Bacillus sp. L2 via 16S rDNA was previously isolated from a hot spring in Perak, Malaysia. Bacillus sp. L2 was confirmed to be in Group 5 of bacterial classification, a phylogenically and phenotypically coherent group of thermophilic bacilli displaying very high similarity among their 16S rRNA sequences (98.5-99.2%). Polymerase chain reaction (PCR) cloning of L2 lipase gene was conducted by using five different primers. Sequence analysis of the L2 lipase gene revealed an open reading frame (ORF) of 1251 bp that codes for 417 amino acids. The signal peptides consist of 28 amino acids. The mature protein is made of 388 amino acid residues. Recombinant lipase was successfully overexpressed with a 178-fold increase in activity compared to crude native L2 lipase. The recombinant L2 lipase (43.2 kDa) was purified to homogeneity in a single chromatography step. The purified lipase was found to be reactive at a temperature range of 55-80 °C and at a pH of 6-10. The L2 lipase had a melting temperature (Tm) of 59.04 °C when analyzed by circular dichroism (CD) spectroscopy studies. The optimum activity was found to be at 70 °C and pH 9. Lipase L2 was strongly inhibited by ethylenediaminetetraacetic acid (EDTA) (100%), whereas phenylmethylsulfonyl fluoride (PMSF), pepstatin-A, 2-mercaptoethanol and dithiothreitol (DTT) inhibited the enzyme by over 40%. The CD spectra of secondary structure analysis showed that the L2 lipase structure contained 38.6% α-helices, 2.2% ß-strands, 23.6% turns and 35.6% random conformations.
    Matched MeSH terms: Sequence Alignment
  10. Al-Mekhlafi AM, Mahdy MA, A Azazy A, Fong MY
    Parasit Vectors, 2010 Nov 19;3:110.
    PMID: 21092097 DOI: 10.1186/1756-3305-3-110
    BACKGROUND: Malaria is an endemic disease in Yemen and is responsible for 4.9 deaths per 100,000 population per year and 43,000 disability adjusted life years lost. Although malaria in Yemen is caused mainly by Plasmodium falciparum and Plasmodium vivax, there are no sequence data available on the two species. This study was conducted to investigate the distribution of the Plasmodium species based on the molecular detection and to study the molecular phylogeny of these parasites.

    METHODS: Blood samples from 511 febrile patients were collected and a partial region of the 18 s ribosomal RNA (18 s rRNA) gene was amplified using nested PCR. From the 86 positive blood samples, 13 Plasmodium falciparum and 4 Plasmodium vivax were selected and underwent cloning and, subsequently, sequencing and the sequences were subjected to phylogenetic analysis using the neighbor-joining and maximum parsimony methods.

    RESULTS: Malaria was detected by PCR in 86 samples (16.8%). The majority of the single infections were caused by P. falciparum (80.3%), followed by P. vivax (5.8%). Mixed infection rates of P. falciparum + P. vivax and P. falciparum + P. malariae were 11.6% and 2.3%, respectively. All P. falciparum isolates were grouped with the strain 3D7, while P. vivax isolates were grouped with the strain Salvador1. Phylogenetic trees based on 18 s rRNA placed the P. falciparum isolates into three sub-clusters and P. vivax into one cluster. Sequence alignment analysis showed 5-14.8% SNP in the partial sequences of the 18 s rRNA of P. falciparum.

    CONCLUSIONS: Although P. falciparum is predominant, P. vivax, P. malariae and mixed infections are more prevalent than has been revealed by microscopy. This overlooked distribution should be considered by malaria control strategy makers. The genetic polymorphisms warrant further investigation.

    Matched MeSH terms: Sequence Alignment
  11. Matsui M, Hamidy A, Murphy RW, Khonsue W, Yambun P, Shimada T, et al.
    Mol Phylogenet Evol, 2010 Jul;56(1):259-72.
    PMID: 20302957 DOI: 10.1016/j.ympev.2010.03.014
    By investigating genealogical relationships, we estimated the phylogenetic history and biogeography in the megophryid genus Leptobrachium (sensu lato, including Vibrissaphora) from southern China, Indochina, Thailand and the Sundaland. The genealogical relationships among the 30 named and unnamed taxa were estimated using 2009 bp of sequences from the mitochondrial DNA genes 12S rRNA, tRNA(val), and 16S rRNA using maximum parsimony, maximum likelihood, and Bayesian inference methods. The genus Leptobrachium was a well-supported monophyletic group that contained two major clades. One clade had three subclades primarily from disjunct regions including Borneo, Peninsular Malaysia and Java, and Thailand. The Bornean subclade included one species each from the Philippines and Sumatra. The other major clade consisted of two subclades, one from Indochina and the other from southern China (Vibrissaphora). Divergence times estimated an old evolutionary history of each subclade, one that could not be explained by the geohistory of Southeast Asian major landmasses.
    Matched MeSH terms: Sequence Alignment
  12. Zheng Y, Fu J, Li S
    Mol Phylogenet Evol, 2009 Jul;52(1):70-83.
    PMID: 19348953 DOI: 10.1016/j.ympev.2009.03.026
    Several anuran groups of Laurasian origin are each co-distributed in four isolated regions of the Northern Hemisphere: central/southern Europe and adjacent areas, Korean Peninsula and adjacent areas, Indo-Malaya, and southern North America. Similar distribution patterns have been observed in diverse animal and plant groups. Savage [Savage, J.M., 1973. The geographic distribution of frogs: patterns and predictions. In: Vial, J.L. (Ed.), Evolutionary Biology of the Anurans. University of Missouri Press, Columbia, pp. 351-445] hypothesized that the Miocene global cooling and increasing aridities in interiors of Eurasia and North America caused a southward displacement and range contraction of Laurasian frogs (and other groups). We use the frog genus Bombina to test Savage's biogeographical hypothesis. A phylogeny of Bombina is reconstructed based on three mitochondrial and two nuclear gene fragments. The genus is divided into three major clades: an Indo-Malaya clade includes B. fortinuptialis, B. lichuanensis, B. maxima, and B. microdeladigitora; a European clade includes B. bombina, B. pachypus, and B. variegata; and a Korean clade contains B. orientalis. The European and Korean clades form sister-group relationship. Molecular dating of the phylogenetic tree using the penalized likelihood and Bayesian analyses suggests that the divergence between the Indo-Malaya clade and other Bombina species occurred 5.9-28.6 million years ago. The split time between the European clade and the Korean clade is estimated at 5.1-20.9 million years ago. The divergence times of these clades are not significantly later than the timing of Miocene cooling and drying, and therefore can not reject Savage's hypothesis. Some other aspects of biogeography of Bombina also are discussed. The Korean Peninsula and the Shandong Peninsula might have supplied distinct southern refugia for B. orientalis during the Pleistocene glacial maxima. In the Indo-Malaya clade, the uplift of the Tibetan Plateau might have promoted the split between B. maxima and the other species.
    Matched MeSH terms: Sequence Alignment
  13. Lim BS, Chong CE, Zamrod Z, Nathan S, Mohamed R
    In Silico Biol. (Gedrukt), 2007;7(4-5):389-97.
    PMID: 18391231
    Many members of the AraC/XylS family transcription regulator have been proven to play a critical role in regulating bacterial virulence factors in response to environmental stress. By using the Hidden Markov Model (HMM) profile built from the alignment of a 99 amino acid conserved domain sequence of 273 AraC/XylS family transcription regulators, we detected a total of 45 AraC/XylS family transcription regulators in the genome of the Gram-negative pathogen, Burkholderia pseudomallei. Further in silico analysis of each detected AraC/XylS family transcription regulatory protein and its neighboring genes allowed us to make a first-order guess on the role of some of these transcription regulators in regulating important virulence factors such as those involved in three type III secretion systems and biosynthesis of pyochelin, exopolysaccharide (EPS) and phospholipase C. This paper has demonstrated an efficient and systematic genome-wide scale prediction of the AraC/XylS family that can be applied to other protein families.
    Matched MeSH terms: Sequence Alignment
  14. Zulperi ZM, Omar AR, Arshad SS
    Virus Genes, 2009 Jun;38(3):383-91.
    PMID: 19242786 DOI: 10.1007/s11262-009-0337-2
    Two Malaysian infectious bronchitis virus isolates, MH5365/95 and V9/04 were characterized based on sequence and phylogenetic analyses of S1, S2, M, and N genes. Nucleotide sequence alignments revealed many point mutations, short deletions, and insertions in S1 region of both IBV isolates. Phylogenetic analysis of S1 gene and sequences analysis of M gene indicated that MH5365/95 and V9/04 belong to non-Massachusetts strain. However, both isolates share only 77% identity. Analysis based on S1 gene showed that MH5365/95 shared more than 87% identity to several Chinese strains. Meanwhile, V9/04 showed only 67-77% identity to all the previously studied IBV strains included in this study suggesting it is a variant of IBV isolate that is unique to Malaysia. Phylogenetic analysis suggests, although both isolates were isolated 10 years apart from different states in Malaysia, they shared a common origin. Analysis based on S2 and N genes indicated that both strains are highly related to each other, and there are fewer mutations which occurred in the respective genes.
    Matched MeSH terms: Sequence Alignment
  15. Tan SL, Mohd-Adnan A, Mohd-Yusof NY, Forstner MR, Wan KL
    Gene, 2008 Mar 31;411(1-2):77-86.
    PMID: 18280674 DOI: 10.1016/j.gene.2008.01.008
    Using a novel library of 5637 expressed sequence tags (ESTs) from the brain tissue of the Asian seabass (Lates calcarifer), we first characterized the brain transcriptome for this economically important species. The ESTs generated from the brain of L. calcarifer yielded 2410 unique transcripts (UTs) which comprise of 982 consensi and 1428 singletons. Based on database similarity, 1005 UTs (41.7%) can be assigned putative functions and were grouped into 12 functional categories related to the brain function. Amongst others, we have identified genes that are putatively involved in energy metabolism, ion pumps and channels, synapse related genes, neurotransmitter and its receptors, stress induced genes and hormone related genes. Subsequently we selected a putative preprocGnRH-II precursor for further characterization. The complete cDNA sequence of the gene obtained was found to code for an 85-amino acid polypeptide that significantly matched preprocGnRH-II precursor sequences from other vertebrates, and possesses structural characteristics that are similar to that of other species, consisting of a signal peptide (23 residues), a GnRH decapeptide (10 residues), an amidation/proteolytic-processing signal (glycine-lysine-argine) and a GnRH associated peptide (GAP) (49 residues). Phylogenetic analysis showed that this putative L. calcarifer preprocGnRH-II sequence is a member of the subcohort Euteleostei and divergent from the sequences of the subcohort Otocephalan. These findings provide compelling evidence that the putative L. calcarifer preprocGnRH-II precursor obtained in this study is orthologous to that of other vertebrates. The functional prediction of this preprocGnRH-II precursor sequence through in silico analyses emphasizes the effectiveness of the EST approach in gene identification in L. calcarifer.
    Matched MeSH terms: Sequence Alignment
  16. Phipps M, Jinam T
    Tissue Antigens, 2009 Mar;73(3):279-80.
    PMID: 19144089 DOI: 10.1111/j.1399-0039.2008.01195.x
    A novel human leukocyte antigen-B allele officially named B*3589, was found in an indigenous individual of Jehai ethnicity when sequencing was performed to investigate human genome variation in a research project. B*3589 differs form B*3505 in a point mutation at codon 169 (CGC to TGC) resulting in an amino acid change from Arg to Cys.
    Matched MeSH terms: Sequence Alignment
  17. Aliza D, Ismail IS, Kuah MK, Shu-Chien AC, Tengku Muhammad TS
    Fish Physiol Biochem, 2008 Jun;34(2):129-38.
    PMID: 18649030 DOI: 10.1007/s10695-007-9153-6
    Copper is one of the major heavy metal pollutants found in the aquatic environment. Therefore, it is important for determining the genes that play a key role in copper metabolism in aquatic organisms. This study, thus, aimed to identify a new copper-inducible gene in swordtail fish, Xiphophorus helleri. Using ACP-based RT-PCR coupled with RLM-RACE, we cloned Wap65, a mammalian homologue of hemopexin gene. The gene exhibits high identity at amino acid levels with the Wap65 gene of other fish species (42-68%) and mammalian hemopexin gene (35-37%). In addition, ten cysteine and two histidine residues are conserved in the swordtail fish Wap65 gene. These cysteine residues are vital for structural integrity, and histidine residues provide high binding affinity towards heme. As revealed by RT-PCR, the gene was upregulated in swordtail fish that were exposed to copper in a dose- and time-dependent manner. Therefore, the identification of Wap65, a mammalian homologue of hemopexin, as a new copper-inducible gene will provide greater insight into the role of this gene in copper metabolism.
    Matched MeSH terms: Sequence Alignment
  18. Tsukaya H
    J Plant Res, 2005 Feb;118(1):13-8.
    PMID: 15654504
    Molecular variations of Spiranthes sinensis Ames var. australis (R.Br.) H. Hara et Kitam. ex Kitam. in Japan were examined to evaluate the validity of the seasonally differentiated groups and a dwarf form of the species, which is endemic to Yakushima Island, Japan. Sequence differences in the plastid trnL-F locus clearly distinguished Japanese S. sinensis var. australis from S. sinensis var. sinensis collected from Ryukyu. In contrast, the trnL-F sequence of S. sinensis var. australis from Sabah, Malaysia, clearly differed from that of Japanese S. sinensis var. australis, suggesting genetic heterogeneity of Spiranthes sinensis var. australis in Asia. Moreover, a molecular analysis based on the sequences of nuclear ITS1 regions indicated that there are two major groups of S. sinensis var. australis in Japan, with a geographic distribution boundary on Kyushu Island. However, the trnL-F and ITS1 sequences did not support the genetic differentiation of the seasonally differentiated groups or the dwarf form from the other Japanese individuals. Based on these molecular data, the systematic treatment of physiological and morphological variations in the Japanese population of S. sinensis. var. australis is discussed.
    Matched MeSH terms: Sequence Alignment
  19. Kusumaningtyas E, Tan WS, Zamrod Z, Eshaghi M, Yusoff K
    Arch Virol, 2004 Sep;149(9):1859-65.
    PMID: 15593426
    Nucleotide sequence comparison of the L gene of the Malaysian neurotropic-viscerotropic velogenic NDV strain AF2240 with other NDV strains revealed a single nucleotide insertion at position 3870. This mutation is compensated by a nucleotide deletion downstream at position 3958 which results in two forms of the L proteins containing a 30-amino acid substitution in Domain V. This compensatory mutation does not correlate with the pathogenicity of the viral strains but it may affect the viral replication as Domain V is believed to play an important role in the replication of paramyxoviruses.
    Matched MeSH terms: Sequence Alignment
  20. Tan CH, Tan KY, Fung SY, Tan NH
    BMC Genomics, 2015;16:687.
    PMID: 26358635 DOI: 10.1186/s12864-015-1828-2
    The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS.
    Matched MeSH terms: Sequence Alignment
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links