Displaying publications 41 - 60 of 341 in total

Abstract:
Sort:
  1. Ding SH, Ng TYS, Chew TL, Oh PC, Ahmad AL, Ho CD
    Polymers (Basel), 2019 Oct 23;11(11).
    PMID: 31652828 DOI: 10.3390/polym11111732
    Mixed matrix membranes (MMMs) separation is a promising technology for gas permeation and separation involving carbon dioxide (CO2). However, finding a suitable type of filler for the formation of defect-free MMMs with enhancement in gas permeability remains a challenge. Current study focuses on synthesis of KIT-6 silica and followed by the incorporation of KIT-6 silica as filler into polysulfone (PSF) polymer matrix to fabricate MMMs, with filler loadings of 0-8 wt %. The effect of KIT-6 incorporation on the properties of the fabricated MMMs was evaluated via different characterization techniques. The MMMs were investigated for gas permeability and selectivity with pressure difference of 5 bar at 25 °C. KIT-6 with typical rock-like morphology was synthesized. Incorporation of 2 wt % of KIT-6 into PSF matrix produced MMMs with no void. When KIT-6 loadings in the MMMs were increased from 0 to 2 wt %, the CO2 permeability increased by ~48%, whereas the ideal CO2/CH4 selectivity remained almost constant. However, when the KIT-6 loading in PSF polymer matrix was more than 2 wt %, the formation of voids in the MMMs increased the CO2 permeability but sacrificed the ideal CO2/CH4 selectivity. In current study, KIT-6 was found to be potential filler for PSF matrix under controlled KIT-6 loading for gas permeation.
    Matched MeSH terms: Silicon Dioxide
  2. Che Aziz Ali, Kamal Roslan Mohamed
    Conglomerates of continental origin are widely distributed in the Eastern Belt of the Malay Peninsular. Murau Conglomerate is the best example. Similar deposits outcrop at Pulau Redang, Pulau Kapas and Bukit Keluang. With an exception of Pulau Redang Conglomerate, similarities in lithologic, sedimentologic and stratigraphic characters of these conglomerates suggested that they can be combined into one group. Their stratigraphic position that is overlying the Upper Paleozoic unconformities reveals that these rock units are representing the basal part of the continental sediments that are found in the Eastern Belt. The sediments have been deposited as early as in the Late Permain and the deposition continued until Triassic. This interpretation is based on the occurrence of the Upper Paleozoic unconformities in the Eastern Belt and also on the age of sediments beneath the unconformities at Pulau Redang. The uplift that gives rise to this unconformity may be attributed to the granite emplacement in the Eastern Belt in the Late Permian-Early Triassic time. This was followed by depositions of the basal conglomerate mentioned above. The basal conglomerates were then overlain by fined grained sediments which are represented by Panti Sandstone, Lotong Sandstone and other equivalent deposits of Jurassic Cretaceous age.
    Konglomerat endapan benua banyak tertabur di lalur Timur Semenanjung Malaysia. Konglomerat Murau adalah satu contoh yang terbaik. Konglomerat yang mempunyai, ciri-ciri yang sama terdapat di beberapa lokaliti di Pulau Redang, Pulau Kapas dan Bukit Keluang. Ciri-ciri litologi sedimentologi dan stratigrafi kesemua konglomerat ini mencadangkan bahawa mereka boleh dikumpulkan di dalam satu kumpulan yang. sama kecuali Konglomerat Pulau Redang. Kedudukannya langsung di atas satah ketakselarasan Paleozoik Atas mencadang unit-unit konglomerat ini merupakan bahagian dasar kepada sedimen kebenuaan yang terdapat di Jalur Timur dan mungkin juga di jalur Tengah. Sedimen ini mula terendap semenjak Perm Akhir hingga Trias berdasarkan ketakselarasan yang terdapat di Jalur Timur dan juga usia sedimen di bawah satah ketakselarasan yang terdapat di Pulau Redang. Pengangkatan yang berkaitan mungkin terhasil daripada perejahan granit di Jalur Timur semasa Perm Akhir-Trias Awal. Pengangkatan ini diikuti oleh pemendapan konglomerat dasar yang disebut di atas. Pengenapan seterusnya diikuti oleh sedimen berbutir lebih halus yang menindihnya yang diwakili oleh Batu Pasir Panti, Batu Pasir Lotong dan yang lain-lain yang setara dengannya yang mungkin berusia Jura-Kapur.
    Matched MeSH terms: Silicon Dioxide
  3. Ng TF, Raj JK, Ghani AA
    Sains Malaysiana, 2013;42:773-781.
    The Bukit Lagong area is the most important aggregate supply centre in Selangor. Geological studies were carried out in four quarries in the Bukit Lagong area and samples were subjected to petrographic examination and accelerated expansion tests to assess the potential alkali-aggregate reactivity of granite aggregates. The granitic rocks comprise mainly of coarse grained megacrystic granite, minor medium grained megacrystic granite and microgranite. Petrographic examination showed that the primary minerals in these undeformed granitic rocks are not alkali reactive. Faulting and related alteration and mineralization have produced potentially alkali reactive minerals including microcrystalline and strained quartz and fine phyllosilicates. Marginally deleterious and deleterious expansion is shown by the accelerated mortar bar tests. Although alkali reactive rocks are present in some quarries in Bukit Lagong, their volume is small. When blended with the undeformed granitic rocks, the aggregates produced are not expected to cause alkali-aggregate reaction in concrete.
    Matched MeSH terms: Silicon Dioxide
  4. Goh T, Abdul Rahim Samsudin, Abdul Ghani Rafek
    A geotechnical study needs to be carried out to determine the engineering parameters of the rock mass at the project site in executing construction projects such as tunnels, dams, highways and buildings. Design and safety factor of the construction are highly dependent on soil and rock engineering parameters which are usually determined by in-situ test such as Standard Penetration Test (SPT) and seismic tests. The SPT test which normally involves drilling and laboratory works always incur high operating cost, while seismic tests on the other hand are fast, cheap, non-destructive and an easy to operate method for rock mass characterization. The spectral analysis of surface waves (SASW) method is an in situ and non-destructive measurement that is rapid and cost effective. The aims of this study were to determine Rock Quality Designation (RQD) value, excavation classification analysis as well as site characterization by using the SASW method. WinSASW 3.1.3 was used for inversion processing of the SASW data to produce shear wave velocity (Vs) versus depth profiles. The profiles were then analyzed and correlated with rock mass engineering geological parameters such as RQD and site characterization as well as excavation classification of rock mass. Twenty (20) SASW tests were conducted on the granitic rock mass and four (4) SASW tests were conducted on a cut hill slope of metasedimentary rocks. RQD values were computed based on shear wave velocities and ultrasonic velocities of intact (fresh) rock. The differences between RQD obtained from SASW method and those from discontinuity survey were found to be less than 10%. Excavation classification for granitic rock mass at JKR Quarry was empirically determined using both SASW and ultrasonic velocities as well as RQD value of the rock mass. Site characterization for metasedimentary rocks mass at Bukit Tampoi was determined based on shear wave velocities from SASW method.
    Matched MeSH terms: Silicon Dioxide
  5. Kaewbuddee C, Chanpiwat P, Kidkhunthod P, Wantala K
    Sains Malaysiana, 2016;45:1155-1167.
    The aims of this work were to investigate the characteristics of nanoscale zero valent irons (nZVI) coupled with mesoporous
    materials (RH-MCM-41) adsorbent and to study the removal mechanisms of Pb (II) from synthetical solutions using full
    pictorial design batch experiments. Synthetic nZVI coupled with RH MCM-41 as Pb (II) adsorbent were characterized
    by XRD, TEM, BET and XANES. The results of XANES analyses confirmed the ability of RH-MCM-41 to prevent oxidations of
    Fe0
    to Fe2+ and Fe3+. XANES results also verified the oxidation states of Pb (II). The solution pH was the most significant
    positive effect in controlling Pb (II) adsorption. The equilibrium and kinetic adsorption isotherms well fitted with the
    Langmuir isotherm. The pseudo-second order kinetic adsorption indicated that the adsorption process is the rate limiting
    step for Pb (II) removal. Furthermore, Langmuir-Hinshelwood confirmed the obvious Pb (II) adsorption at the active
    site of adsorbents. The reduction rate constant (kr
    = 5,000 mg/L.min) was higher than the adsorption rate constant (Kad
    = 0.0002 L/mg). Regarding the research results, four pathways including: reduction process, adsorption on FeOOH,
    adsorption on RH-MCM-41 and complex reaction between Fe and Pb ions were suggested for Pb (II) removal by nZVI
    coupled with RH-MCM-41.
    Matched MeSH terms: Silicon Dioxide
  6. Lai OT, Md. Selim Reza, Abdul Ghani Rafek, Ailie Sofyiana Serasa, Azimah Hussin, Ern LK
    Sains Malaysiana, 2016;45:1603-1607.
    The ultimate bearing capacity is an essential requirement in design quantification for shallow foundations especially
    for structures built on large rock masses. In many engineering projects, structures built on foundation of heavily jointed
    rock masses may face issues such as instability and sudden catastrophic rock slope failure. Determination of the ultimate
    bearing capacity (Qult) of foundations resting on rock mass has traditionally been determined by employing several
    strength criterions. One of the accepted and widely implemented methods is to use the Hoek-Brown failure criterion 2002,
    where the required parameters are determined from a rock mass classification system, Geological Strength Index (GSI).
    This paper defines an assessment for ultimate bearing capacity (Qult) based on the Hoek-Brown failure criterion 2002
    for a granitic rock slope beneath a 20 m diameter concrete water tank at Bandar Mahkota Cheras, Kajang, Selangor.
    Based on the Hoek-Brown failure criterion 2002, the ultimate bearing capacity (Qult) of rock mass was 7.91 MPa. The
    actual stress acting on the rock mass was 0.32 MPa. The assessment showed that the rock mass is safe since the ultimate
    bearing capacity (Qult) is 24.7 times higher than the actual stress acting on the rock mass.
    Matched MeSH terms: Silicon Dioxide
  7. Mousavi S, Leong SW
    Sains Malaysiana, 2017;46:97-106.
    This paper investigates the compressibility characteristics of compacted clay treated with cement, peat ash and silica
    sand. For this purpose, one dimensional consolidation tests were conducted to determine the soil consolidation properties.
    The test specimens were trimmed from the compaction test specimen. The 1D consolidation test specimen was subjected
    to the normal pressures of 2.5, 5, 10, 20, 40, 80 and 160 kPa in sequence on the test specimen which was saturated with
    distilled water. At the end of the loading period of 80 kPa, the vertical load was removed and the specimen was allowed
    to expand for 24 h for the purpose of evaluating of its swelling behavior. The results showed that void ratio of the soil
    specimens decreased with increasing effective normal pressure. The laboratory investigation clearly demonstrates that,
    settlement is as the compression of a soil specimen due to vertical loading applied at the top surface of the 1D consolidation
    test specimen. It was concluded that, the compression settlement of the stabilized soil with the binder composition of
    18% cement, 2% peat ash and 5% silica sand improved by almost 1.3-fold. A notable discovery is the suitability of the
    stabilized soil for road embankment and low lying marginal area for foundation works; also solving the environmental
    problems in relation to peaty ground. However, sufficient laboratory and field testing are required.
    Matched MeSH terms: Silicon Dioxide
  8. Siew XC, Chin HC, Sarani Zakaria, Sahrim Ahmad, Siti Masrinda Tasirin
    Sains Malaysiana, 2017;46:167-173.
    Oil palm empty fruit bunch (EFB) fibres were pretreated by gamma irradiation followed by sodium carbonate (Na2
    CO3
    )
    before the acid hydrolysis process to produce reducing sugars using diluted sulphuric acid (H2
    SO4
    ). In this study, EFB
    fibres were irradiated at different doses, i.e. 0, 100 and 200 kGy. Meanwhile, the gamma irradiated sample were then
    subjected to Na2
    CO3 pretreatment with 0 and 5% total titratable alkali (TTA). The effect of the pretreatment using gamma
    irradiation and Na2
    CO3
    on the physical and chemical properties of the EFB fibres and the yield of the reducing sugar
    obtained from the acid hydrolysis process was investigated. The obtained results showed that the content of holocellulose
    was increased significantly with the increase of irradiation doses combined with Na2
    CO3 pretreatment, whereas lignin
    content of the EFB was decreased. The gamma irradiation and Na2
    CO3 pretreatment resulted in structure breakage
    and removal of silica of EFB fibres which can be due to the swelling of the fibres. A synergistic effect between gamma
    irradiation and Na2
    CO3 was observed, in which the yield of reducing sugars was increased by combining the gamma
    irradiation and Na2
    CO3 pretreatment.
    Matched MeSH terms: Silicon Dioxide
  9. Zhongwei Liu, Jinsheng Jia, Wei Feng, Fengling Ma, Cuiying Zheng
    Sains Malaysiana, 2017;46:2101-2108.
    Shear strength is currently a significant parameter in the design of cemented sand gravel and rock (CSGR) dams. Shear strength tests were carried out to compare material without layers noumenon and layer condition. The experimental results showed good linearity in the curves of shear strength and pure grinding tests with correlation coefficients of nearly 97%. The friction coefficient was similar to that of C10 roller-compacted concrete (RCC), but the cohesion value was weaker than that of RCC. The shear strength of the CSGR layers decreased by 40% when retarding mixtures were not added and the layer was paved immediately after 4 h of waiting interval.
    Matched MeSH terms: Silicon Dioxide
  10. Haq IU, Khurshid A, Inayat R, Kexin Z, Changzhong L, Ali S, et al.
    PLoS One, 2021;16(11):e0259749.
    PMID: 34752476 DOI: 10.1371/journal.pone.0259749
    The fall armyworm (Spodoptera frugiperda) is a major economic pest in the United States and has recently become a significant concern in African and Asian countries. Due to its increased resistance to current management strategies, including pesticides and transgenic corn, alternative management techniques have become more necessary. Currently, silicon (Si) is being used in many pest control systems due to its ability to increase plant resistance to biotic and abiotic factors and promote plant growth. The current experiments were carried out at the College of Plant Protection, Gansu Agricultural University, Lanzhou, China, to test the effect of Si on lifetable parameters and lipase activity of fall armyworm and vegetative and physiological parameters of maize plants. Two sources of Si (silicon dioxide: SiO2 and potassium silicate: K2SiO3) were applied on maize plants with two application methods (foliar application and soil drenching). The experiment results revealed that foliar applications of SiO2 and K2SiO3 significantly (P≤0.05) increased mortality percentage and developmental period and decreased larval and pupal biomass of fall armyworm. Similarly, both Si sources significantly (P≤0.05) reduced lipase activity of larvae, and fecundity of adults, whereas prolonged longevity of adults. Among plant parameters, a significant increase in fresh and dry weight of shoot, stem length, chlorophyll content, and antioxidant activity was observed with foliar applications of Si. Root fresh and dry weight was significantly (P ≤ 0.05) higher in plants treated with soil drenching of SiO2 and K2SiO3. Moreover, SiO2 performed better for all parameters as compared to K2SiO3 and control treatment. The study conclusively demonstrated a significant negative effect on various biological parameters of fall armyworm when plants were treated with Si, so it can be a promising strategy to control this pest.
    Matched MeSH terms: Silicon Dioxide
  11. Sadiq Aliyu A, Musa Y, Liman MS, Abba HT, Chaanda MS, Ngene NC, et al.
    Appl Radiat Isot, 2018 Jan;131:36-40.
    PMID: 29107886 DOI: 10.1016/j.apradiso.2017.10.046
    The Keffi area hosts abundant pegmatite bodies as a result of the surrounding granitic intrusions. Keffi is part of areas that are geologically classified as North Central Basement Complex. Data on the mineralogy and mineralogical zonation of the Keffi pegmatite are scanty. Hence the need to understand the geology and mineralogical zonation of Keffi pegmatites especially at different depth profiles is relevant as a study of the elemental composition of the pegmatite is essential for the estimation of its economic viability. Here, the relative standardization method of instrumental neutron activation analysis (INAA) has been used to investigate the vertical deviations of the elemental concentrations of rare earth elements (REEs) at different depth profile of Keffi pegmatite. This study adopted the following metrics in investigating the vertical variations of REEs concentrations. Namely, the total contents of rare earth elements (∑REE); ratio of light to heavy rare earth elements (LREE/HREE), which defines the enrichment or depletion of REEs; europium anomaly (Eu/Sm); La/Lu ratio relative to chondritic meteorites. The study showed no significant variations in the total content of rare elements between the vertical depth profiles (100-250m). However, higher total concentrations of REEs (~ 92.65ppm) were recorded at the upper depth of the pegmatite and the europium anomaly was consistently negative at all the depth profiles suggesting that the Keffi pegmatite is enriched with light REEs.
    Matched MeSH terms: Silicon Dioxide
  12. Bajuri, F., Mazlan, N., Ishak, M.R.
    MyJurnal
    Kenaf natural fibre is used as a sustainable form of material to reinforce polymeric composite. However, natural fibres usually do not perform as well as synthetic fibres. Silica nanoparticle is a material with high surface area and its high interfacial interaction with the matrix results in its improvement. In this research, silica nanoparticles were introduced into epoxy resin as a filler material to improve the mechanical properties of the kenaf-reinforced epoxy. They were dispersed into the epoxy using a homogeniser at 3000 rpm for 10 minutes. The composites were fabricated by spreading the silica filled epoxy evenly onto the kenaf mat before hot pressing the resin wet kenaf mat. The results show for flexural properties, composites with higher fibre and silica volume content generally had better properties with specimen 601 (60 vol% kenaf and1 vol% silica) having the highest strength at 68.9 MPa. Compressive properties were erratic with specimen 201 (20 vol% kenaf and 1 vol% silica) having the highest strength at 53.6 MPa.
    Matched MeSH terms: Silicon Dioxide
  13. Soni A, Das PK, Yusuf M, Ridha S, Kamyab H, Alam MA, et al.
    Chemosphere, 2023 May;323:138233.
    PMID: 36863626 DOI: 10.1016/j.chemosphere.2023.138233
    The diverse nature of polymers with attractive properties has replaced the conventional materials with polymeric composites. The present study was sought to evaluate the wear performance of thermoplastic-based composites under the conditions of different loads and sliding speeds. In the present study, nine different composites were developed by using low-density polyethylene (LDPE), high-density polyethylene (HDPE) and polyethylene terephthalate (PET) with partial sand replacements i.e., 0, 30, 40, and 50 wt%. The abrasive wear was evaluated as per the ASTM G65 standard test for abrasive wear through a dry-sand rubber wheel apparatus under the applied loads of 34.335, 56.898, 68.719, 79.461 and 90.742 (N) and sliding speeds of 0.5388, 0.7184, 0.8980, 1.0776 and 1.4369 (m/s). The optimum density and compressive strength were obtained to be 2.0555 g/cm3 and 46.20 N/mm2, respectively for the composites HDPE60 and HDPE50 respectively. The minimum value of abrasive wear were found to 0.02498, 0.03430, 0.03095, 0.09020 and 0.03267 (cm3) under the considered loads of 34.335, 56.898, 68.719, 79.461 and 90.742 (N), respectively. Moreover, the composites LDPE50, LDPE100, LDPE100, LDPE50PET20 and LDPE60 showed a minimum abrasive wear of 0.03267, 0.05949, 0.05949, 0.03095 and 0.10292 at the sliding speeds of 0.5388, 0.7184, 0.8980, 1.0776 and 1.4369 (m/s), respectively. The wear response varied non-linearly with the conditions of loads and sliding speeds. Micro-cutting, plastic deformations, fiber peelings, etc. were included as the possible wear mechanism. The possible correlations between wear and mechanical properties, and throughout discussions for wear behaviors through the morphological analyses of the worn-out surfaces were provided.
    Matched MeSH terms: Silicon Dioxide
  14. Karim AH, Jalil AA, Triwahyono S, Kamarudin NH, Ripin A
    J Colloid Interface Sci, 2014 May 1;421:93-102.
    PMID: 24594037 DOI: 10.1016/j.jcis.2014.01.039
    Carbon nanotubes-mesostructured silica nanoparticles (CNT-MSN) composites were prepared by a simple one step method with various loading of CNT. Their surface properties were characterized by XRD, N2 physisorption, TEM and FTIR, while the adsorption performance of the CNT-MSN composites were evaluated on the adsorption of methylene blue (MB) while varying the pH, adsorbent dosage, initial MB concentration, and temperature. The CNTs were found to improve the physicochemical properties of the MSN and led to an enhanced adsorptivity for MB. N2 physisorption measurements revealed the development of a bimodal pore structure that increased the pore size, pore volume and surface area. Accordingly, 0.05 g L(-1) CNT-MSN was able to adsorb 524 mg g(-1) (qm) of 60 mg L(-1) MB at pH 8 and 303 K. The equilibrium data were evaluated using the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models, with the Langmuir model affording the best fit to the adsorption data. The adsorption kinetics were best described by the pseudo-first order model. These results indicate the potential of CNT-MSN composites as effective new adsorbents for dye adsorption.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  15. Alahmadi S, Mohamad S, Maah MJ
    Molecules, 2014 Apr 10;19(4):4524-47.
    PMID: 24727422 DOI: 10.3390/molecules19044524
    The adsorption of tributyltin (TBT), onto three mesoporous silica adsorbents functionalized with calix[4]arene, p-tert-butylcalix[4]arene and p-sulfonatocalix[4]arene (MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S, respectively) has been compared. Batch adsorption experiments were carried out and the effect of contact time, initial TBT concentration, pH and temperature were studied. The Koble-Corrigan isotherm was the most suitable for data fitting. Based on a Langmuir isotherm model, the maximum adsorption capacities were 12.1212, 16.4204 and 7.5757 mg/g for MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S, respectively. The larger uptake and stronger affinity of MCM-TDI-PC4 than MCM-TDI-C4 and MCM-TDI-C4S probably results from van der Waals interactions and the pore size distribution of MCM-TDI-PC4. Gibbs free energies for the three adsorption processes of TBT presented a negative value, reflecting that TBT/surface interactions are thermodynamic favorable and spontaneous. The interaction processes were accompanied by an increase of entropy value for MCM-TDI-C4 and MCM-TDI-C4S (43.7192 and 120.7609 J/mol K, respectively) and a decrease for MCM-TDI-PC4 (-37.4704 J/mol K). It is obviously observed that MCM-TDI-PC4 spontaneously adsorbs TBT driven mainly by enthalpy change, while MCM-TDI-C4 and MCM-TDI-C4S do so driven mainly by entropy changes.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  16. Khari M, Kassim KA, Adnan A
    ScientificWorldJournal, 2013;2013:734292.
    PMID: 24453900 DOI: 10.1155/2013/734292
    Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratio l/d = 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing of s/d from 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio of s/d more than 6d is large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  17. Al-Amrani WA, Lim PE, Seng CE, Wan Ngah WS
    Bioresour Technol, 2013 Sep;143:584-91.
    PMID: 23835263 DOI: 10.1016/j.biortech.2013.06.055
    Bioregeneration of mono-amine modified silica gel (MAMS) adsorbent loaded with Acid Orange 7 (AO7), Acid Yellow 9 (AY9) and Acid Red 14 (AR14), respectively, was investigated under two different operational conditions, namely absence/presence of sucrose/bacto-peptone as the co-substrate and different biomass acclimation concentrations. The results revealed that the AY9- and AR14-loaded MAMS adsorbents could almost be completely bioregenerated but only in the presence of co-substrate whereas the bioregeneration of AO7-loaded MAMS could achieve up to 71% in the absence of the co-substrate. These differences could be related to the structural properties of the investigated azo dyes. In addition, the results showed that the bioregeneration duration of AO7-loaded MAMS could be progressively shortened by using biomass acclimated to increasingly higher AO7 concentration. However, the bioregeneration efficiencies were found to be relatively unchanged under different biomass acclimation concentrations.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  18. Titah HS, Abdullah SR, Mushrifah I, Anuar N, Basri H, Mukhlisin M
    Bull Environ Contam Toxicol, 2013 Jun;90(6):714-9.
    PMID: 23595348 DOI: 10.1007/s00128-013-0996-5
    Wilting, especially of the leaves, was observed as an initial symptom of arsenate [As(V)] to Ludwigia octovalvis (Jacq.) P. H. Raven. The plants tolerated As(V) levels of 39 mg kg⁻¹ for as long as 35 days of exposure. After 91 days, the maximum concentration of As uptake in the plant occurred at As(V) concentration of 65 mg kg⁻¹ while As concentration in the stems, roots and leaves were 6139.9 ± 829.5, 1284.5 ± 242.9 and 1126.1 ± 117.2 mg kg⁻¹, respectively. In conclusion, As(V) could cause toxic effects in L. octovalvis and the plants could uptake and accumulate As in plant tissues.
    Matched MeSH terms: Silicon Dioxide*
  19. Von Lau E, Gan S, Ng HK
    J Environ Manage, 2012 Sep 30;107:124-30.
    PMID: 22595079 DOI: 10.1016/j.jenvman.2012.04.029
    Experimental extraction tests are conducted to investigate feasibility of saturated palm kernel oil (PKO) and unsaturated soybean oil (SO) to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sand. The extraction rates and efficiencies for lowly contaminated (LC) and highly contaminated (HC) sands at temperatures of 30 °C and 70 °C are evaluated using empirical first order kinetic dissolution models. In LC sand, the extraction is dominated by the diffusion of PAHs adsorbed onto particle surfaces and the direct dissolution of PAH phase. In HC sand, a rapid diffusion of PAHs adsorbed onto particle surfaces and a direct dissolution of PAH phase occur followed by a slower diffusion of PAHs entrapped within the pores and micropores. Larger diffusion resistance during HC sand extractions results in an average 10.8% reduction in extraction efficiencies compared to LC sand. Increased temperature generally increases the mass transfer rates and extraction efficiencies. Additionally, the physicochemical properties of both oils and PAHs also determine the extent of PAH extraction into oil.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  20. Karim AH, Jalil AA, Triwahyono S, Sidik SM, Kamarudin NH, Jusoh R, et al.
    J Colloid Interface Sci, 2012 Nov 15;386(1):307-14.
    PMID: 22889626 DOI: 10.1016/j.jcis.2012.07.043
    In this work, mesostructured silica nanoparticles (MSN(AP)) with high adsorptivity were prepared by a modification with 3-aminopropyl triethoxysilane (APTES) as a pore expander. The performance of the MSN(AP) was tested by the adsorption of MB in a batch system under varying pH (2-11), adsorbent dosage (0.1-0.5 g L(-1)), and initial MB concentration (5-60 mg L(-1)). The best conditions were achieved at pH 7 when using 0.1 g L(-1) MSN(AP) and 60 mg L(-1)MB to give a maximum monolayer adsorption capacity of 500.1 mg g(-1) at 303 K. The equilibrium data were evaluated using the Langmuir, Freundlich, Temkin, and Harkins-Jura isotherms and fit well to the Freundlich isotherm model. The adsorption kinetics was best described by the pseudo-second order model. The results indicate the potential for a new use of mesostructured materials as an effective adsorbent for MB.
    Matched MeSH terms: Silicon Dioxide/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links