Displaying publications 41 - 60 of 71 in total

Abstract:
Sort:
  1. Latif MA, Zaki MZ, Leng TM, Rahman NH, Arshad SA, Hamid A
    J Ethnopharmacol, 2015 Dec 24;176:258-67.
    PMID: 26519202 DOI: 10.1016/j.jep.2015.10.036
    A. denudata is traditionally used to treat various skin disorders, including wounds. It is widely used by the traditional healers as an effective wound treatment.
    Matched MeSH terms: Skin/drug effects*
  2. Abood WN, Al-Henhena NA, Najim Abood A, Al-Obaidi MM, Ismail S, Abdulla MA, et al.
    Bosn J Basic Med Sci, 2015 05 12;15(2):25-30.
    PMID: 26042509 DOI: 10.17305/bjbms.2015.39
    The wound-healing potential of Phaleria macrocarpa was evaluated by monitoring the levels of inflammatory mediators, collagen, and antioxidant enzymes. Experimentally, two-centimeter-wide full-thickness-deep skin excision wounds were created on the posterior neck area of the rats. The wounds were topically treated with gum acacia as a vehicle in the control group, intrasite gel in the reference group, and 100 and 200 mg/mL P. macrocarpa ‎fruit extract in the treatment group. Granulation tissues were excised on the 15th day and were further processed for histological and biochemical analyzes. Wound healing was evaluated by measuring the contractions and protein contents of the wounds. Cellular redistribution and collagen deposition were assessed morphologically using Masson's trichrome stain. Superoxide dismutase (SOD) and catalase (CAT) activities, along with malondialdehyde (MDA) level were determined in skin tissue homogenates of the dermal wounds. Serum levels of transforming growth factor beta 1 (TGF-β1) and tumor necrosis factor alpha (TNF-α) were evaluated in all the animals. A significant decrease in wound area was caused by a significant increase in TGF-β1 level in the treated groups. Decrease in TNF-α level and increase in the collagen formation were also observed in the treated groups. Topical treatment with P. macrocarpa fruit extract increased the SOD and CAT activities in the healing wounds, thereby significantly increasing MDA level. The topical treatment with P. macrocarpa fruit extract showed significant healing effect on excision wounds and demonstrated an important role in the inflammation process by increasing antioxidant enzyme activities, thereby accelerating the wound healing process and reducing tissue injury.
    Matched MeSH terms: Skin/drug effects*
  3. Vergnano M, Mockenhaupt M, Benzian-Olsson N, Paulmann M, Grys K, Mahil SK, et al.
    Am J Hum Genet, 2020 09 03;107(3):539-543.
    PMID: 32758448 DOI: 10.1016/j.ajhg.2020.06.020
    The identification of disease alleles underlying human autoinflammatory diseases can provide important insights into the mechanisms that maintain neutrophil homeostasis. Here, we focused our attention on generalized pustular psoriasis (GPP), a potentially life-threatening disorder presenting with cutaneous and systemic neutrophilia. Following the whole-exome sequencing of 19 unrelated affected individuals, we identified a subject harboring a homozygous splice-site mutation (c.2031-2A>C) in MPO. This encodes myeloperoxidase, an essential component of neutrophil azurophil granules. MPO screening in conditions phenotypically related to GPP uncovered further disease alleles in one subject with acral pustular psoriasis (c.2031-2A>C;c.2031-2A>C) and in two individuals with acute generalized exanthematous pustulosis (c.1705C>T;c.2031-2A>C and c.1552_1565del;c.1552_1565del). A subsequent analysis of UK Biobank data demonstrated that the c.2031-2A>C and c.1705C>T (p.Arg569Trp) disease alleles were also associated with increased neutrophil abundance in the general population (p = 5.1 × 10-6 and p = 3.6 × 10-5, respectively). The same applied to three further deleterious variants that had been genotyped in the cohort, with two alleles (c.995C>T [p.Ala332Val] and c.752T>C [p.Met251Thr]) yielding p values < 10-10. Finally, treatment of healthy neutrophils with an MPO inhibitor (4-Aminobenzoic acid hydrazide) increased cell viability and delayed apoptosis, highlighting a mechanism whereby MPO mutations affect granulocyte numbers. These findings identify MPO as a genetic determinant of pustular skin disease and neutrophil abundance. Given the recent interest in the development of MPO antagonists for the treatment of neurodegenerative disease, our results also suggest that the pro-inflammatory effects of these agents should be closely monitored.
    Matched MeSH terms: Skin/drug effects
  4. Abd Gani SS, Basri M, Rahman MB, Kassim A, Abd Rahman RN, Salleh AB, et al.
    Biosci Biotechnol Biochem, 2010;74(6):1188-93.
    PMID: 20530909
    Formulations containing engkabang fat and engkabang fat esters, F10 and E15 respectively were prepared using a high-shear homogenizer, followed by a high-pressure homogenizer. Both formulations were stable at room temperature, at 45 degrees C, and after undergoing freeze-thaw cycles. The particle sizes of F10 and E15 after high pressure were 115.75 nm and 148.41 nm respectively. The zeta potentials of F10 and E15 were -36.4 mV and -48.8 mV respectively, while, the pH values of F10 and E15 were 5.59 and 5.81 respectively. The rheology of F10 and E15 showed thixotropy and pseudoplastic behavior respectively. There were no bacteria or fungal growths in the samples. The short-term moisturizing effect on 20 subjects analyzed by analysis of variance (ANOVA), gave p-values of 7.35 x 10(-12) and 2.77 x 10(-15) for F10 and E15 respectively. The hydration of the skins increased after application of F10 and E15 with p-value below 0.05.
    Matched MeSH terms: Skin/drug effects*
  5. Noor NM, Sheikh K, Somavarapu S, Taylor KMG
    Eur J Pharm Biopharm, 2017 Aug;117:372-384.
    PMID: 28412472 DOI: 10.1016/j.ejpb.2017.04.012
    Dutasteride, used for treating benign prostate hyperplasia (BPH), promotes hair growth. To enhance delivery to the hair follicles and reduce systemic effects, in this study dutasteride has been formulated for topical application, in a nanostructured lipid carrier (NLC) coated with chitosan oligomer-stearic acid (CSO-SA). CSO-SA has been successfully synthesized, as confirmed using1H NMR and FTIR. Formulation of dutasteride-loaded nanostructured lipid carriers (DST-NLCs) was optimized using a 23full factorial design. This formulation was coated with different concentrations of stearic acid-chitosan solution. Coating DST-NLCs with 5% SA-CSO increased mean size from 187.6±7.0nm to 220.1±11.9nm, and modified surface charge, with zeta potentials being -18.3±0.9mV and +25.8±1.1mV for uncoated and coated DST-NLCs respectively. Transmission electron microscopy showed all formulations comprised approximately spherical particles. DST-NLCs, coated and uncoated with CSO-SA, exhibited particle size stability over 60days, when stored at 4-8°C. However, NLCs coated with CSO (without conjugation) showed aggregation when stored at 4-8°C after 30days. The measured particle size for all formulations stored at 25°C suggested aggregation, which was greatest for DST-NLCs coated with 10% CSO-SA and 5% CSO. All nanoparticle formulations exhibited rapid release in an in vitro release study, with uncoated NLCs exhibiting the fastest release rate. Using a Franz diffusion cell, no dutasteride permeated through pig ear skin after 48h, such that it was not detected in the receptor chamber for all samples. The amount of dutasteride in the skin was significantly different (p<0.05) for DST-NLCs (6.09±1.09μg/cm2) without coating and those coated with 5% CSO-SA (2.82±0.40μg/cm2), 10% CSO-SA (2.70±0.35μg/cm2) and CSO (2.11±0.64μg/cm2). There was a significant difference (p<0.05) in the cytotoxicity (IC50) between dutasteride alone and in the nanoparticles. DST-NLCs coated and uncoated with CSO-SA increased the maximum non-toxic concentration by 20-fold compared to dutasteride alone. These studies indicate that a stearic acid-chitosan conjugate was successfully prepared, and modified the surface charge of DST-NLCs from negative to positive. These stable, less cytotoxic, positively-charged dutasteride-loaded nanostructured lipid carriers, with stearic acid-chitosan oligomer conjugate, are appropriate for topical delivery and have potential for promotion of hair growth.
    Matched MeSH terms: Skin/drug effects
  6. Rajinikanth PS, Chellian J
    Int J Nanomedicine, 2016 Oct 5;11:5067-5077.
    PMID: 27785014
    The aim of this study was to develop a nanostructured lipid carrier (NLC)-based hydrogel and study its potential for the topical delivery of 5-fluorouracil (5-FU). Precirol(®) ATO 5 (glyceryl palmitostearate) and Labrasol(®) were selected as the solid and liquid lipid phases, respectively. Poloxamer 188 and Solutol(®) HS15 (polyoxyl-15-hydroxystearate) were selected as surfactants. The developed lipid formulations were dispersed in 1% Carbopol(®) 934 (poly[acrylic acid]) gel medium in order to maintain the topical application consistency. The average size, zeta potential, and polydispersity index for the 5-FU-NLC were found to be 208.32±8.21 nm, -21.82±0.40 mV, and 0.352±0.060, respectively. Transmission electron microscopy study revealed that 5-FU-NLC was <200 nm in size, with a spherical shape. In vitro drug permeation studies showed a release pattern with initial burst followed by sustained release, and the rate of 5-FU permeation was significantly improved for 5-FU-NLC gel (10.27±1.82 μg/cm(2)/h) as compared with plain 5-FU gel (2.85±1.12 μg/cm(2)/h). Further, skin retention studies showed a significant retention of 5-FU from the NLC gel (91.256±4.56 μg/cm(2)) as compared with that from the 5-FU plain gel (12.23±3.86 μg/cm(2)) in the rat skin. Skin irritation was also significantly reduced with 5-FU-NLC gel as compared with 5-FU plain gel. These results show that the prepared 5-FU-loaded NLC has high potential to improve the penetration of 5-FU through the stratum corneum, with enormous retention and with minimal skin irritation, which is the prerequisite for topically applied formulations.
    Matched MeSH terms: Skin/drug effects*
  7. Ishak WMW, Katas H, Yuen NP, Abdullah MA, Zulfakar MH
    Drug Deliv Transl Res, 2019 04;9(2):418-433.
    PMID: 29667150 DOI: 10.1007/s13346-018-0522-8
    Wound healing is a physiological event that generates reconstitution and restoration of granulation tissue that ends with scar formation. As omega fatty acids are part of membrane phospholipids and participate in the inflammatory response, we investigated the effects of omega-3, omega-6, and omega-9 fatty acids in the form of oils on wound healing. Linseed (LO), evening primrose (EPO), and olive oils (OO) rich in omega-3, omega-6, and omega-9 fatty acids were formulated into emulsions and were topically applied on rats with excision wounds. All omega-3-, omega-6-, and omega-9-rich oil formulations were found to accelerate wound closure compared to untreated, with significant improvement (p 
    Matched MeSH terms: Skin/drug effects*
  8. Nawaz A, Wong TW
    J Invest Dermatol, 2018 11;138(11):2412-2422.
    PMID: 29857069 DOI: 10.1016/j.jid.2018.04.037
    5-Fluorouracil delivery profiles in the form of chitosan-folate submicron particles through skin and melanoma cells in vitro were examined using microwaves as the penetration enhancer. The in vivo pharmacokinetic profile of 5-fluorouracil was also determined. Chitosan-carboxymethyl-5-fluorouracil-folate conjugate was synthesized and processed into submicron particles by spray-drying technique. The size, zeta potential, morphology, drug content, and drug release, as well as skin permeation and retention, pharmacokinetics, in vitro SKMEL-28 melanoma cell line cytotoxicity, and intracellular trafficking profiles of drug/particles, were examined as a function of skin/melanoma cell treatment by microwaves at 2,450 MHz for 5 + 5 minutes. The level of skin drug/particle retention in vitro and in vivo increased in skin treated by microwaves. This was facilitated by the drug conjugating to chitosan and microwaves fluidizing both the protein and lipid domains of epidermis and dermis. The uptake of chitosan-folate particles by melanoma cells was mediated via lipid raft route. It was promoted by microwaves, which fluidized the lipid and protein regimes of the cell membrane, and this increased drug cytotoxicity. In vivo pharmacokinetic study indicated skin treatment by microwave-enhanced drug retention but not permeation. The combination of microwaves and submicron particles synergized skin drug retention and intracellular drug delivery.
    Matched MeSH terms: Skin/drug effects
  9. Norbäck D, Hashim JH, Hashim Z, Ali F
    Sci Total Environ, 2017 Aug 15;592:153-160.
    PMID: 28319702 DOI: 10.1016/j.scitotenv.2017.02.215
    This paper studied associations between volatile organic compounds (VOC), formaldehyde, nitrogen dioxide (NO2) and carbon dioxide (CO2) in schools in Malaysia and rhinitis, ocular, nasal and dermal symptoms, headache and fatigue among students. Pupils from eight randomly selected junior high schools in Johor Bahru, Malaysia (N=462), participated (96%). VOC, formaldehyde and NO2 were measured by diffusion sampling (one week) and VOC also by pumped air sampling during class. Associations were calculated by multi-level logistic regression adjusting for personal factors, the home environment and microbial compounds in the school dust. The prevalence of weekly rhinitis, ocular, throat and dermal symptoms were 18.8%, 11.6%, 15.6%, and 11.1%, respectively. Totally 20.6% had weekly headache and 22.1% fatigue. Indoor CO2 were low (range 380-690 ppm). Indoor median NO2 and formaldehyde concentrations over one week were 23μg/m3 and 2.0μg/m3, respectively. Median indoor concentration of toluene, ethylbenzene, xylene, and limonene over one week were 12.3, 1.6, 78.4 and 3.4μg/m3, respectively. For benzaldehyde, the mean indoor concentration was 2.0μg/m3 (median<1μg/m3). Median indoor levels during class of benzene and cyclohexane were 4.6 and 3.7μg/m3, respectively. NO2 was associated with ocular symptoms (p<0.001) and fatigue (p=0.01). Formaldehyde was associated with ocular (p=0.004), throat symptoms (p=0.006) and fatigue (p=0.001). Xylene was associated with fatigue (p<0.001) and benzaldehyde was associated with headache (p=0.03). In conclusion, xylene, benzaldehyde, formaldehyde and NO2 in schools can be risk factors for ocular and throat symptoms and fatigue among students in Malaysia. The indoor and outdoor levels of benzene were often higher than the EU standard of 5μg/m3.
    Matched MeSH terms: Skin/drug effects
  10. Bakhsheshi-Rad HR, Ismail AF, Aziz M, Akbari M, Hadisi Z, Omidi M, et al.
    Int J Biol Macromol, 2020 Apr 15;149:513-521.
    PMID: 31954780 DOI: 10.1016/j.ijbiomac.2020.01.139
    Skin and soft tissue infections are major concerns with respect to wound repair. Recently, anti-bacterial wound dressings have been emerging as promising candidates to reduce infection, thus accelerating the wound healing process. This paper presents our work to develop and characterize poly(vinyl alcohol) (PVA)/chitosan (CS)/silk sericin (SS)/tetracycline (TCN) porous nanofibers, with diameters varying from 305 to 425 nm, both in vitro and in vivo for potential applications as wound dressings. The fabricated nanofibers possess a considerable capacity to take up water through swelling (~325-650%). Sericin addition leads to increased hydrophilicity and elongation at break while decreasing fiber diameter and mechanical strength. Moreover, fibroblasts (L929) cultured on the nanofibers with low sericin content (PVA/CS/1-2SS) displayed greater proliferation compared to those on nanofibers without sericin (PVA/CS). Nanofibers loaded with high sericin and tetracycline content significantly inhibited the growth of Escherichia coli and Staphylococcus aureus. In vivo examination revealed that PVA/CS/2SS-TCN nanofibers enhance wound healing, re-epithelialization, and collagen deposition compared to traditional gauze and nanofibers without sericin. The results of this study demonstrate that the PVA/CS/2SS-TCN nanofiber creates a promising alternative to traditional wound dressing materials.
    Matched MeSH terms: Skin/drug effects
  11. Lajis AFB, Ariff AB
    J Cosmet Dermatol, 2019 Jun;18(3):703-727.
    PMID: 30866156 DOI: 10.1111/jocd.12900
    Human skin pigmentation is a result of constitutive and facultative pigmentation. Facultative pigmentation is frequently stimulated by UV radiation, pharmacologic drugs, and hormones whereby leads to the development of abnormal skin hyperpigmentation. To date, many state-of-art depigmenting compounds have been studied using in vitro model to treat hyperpigmentation problems for cosmetic dermatological applications; little attention has been made to compare the effectiveness of these depigmenting compounds and their mode of actions. In this present article, new and recent depigmenting compounds, their melanogenic pathway targets, and modes of action are reviewed. This article compares the effectiveness of these new depigmenting compounds to modulate several melanogenesis-regulatory enzymes and proteins such as tyrosinase (TYR), TYR-related protein-1 (TRP1), TYR-related protein-2 (TRP2), microphthalmia-associated transcription factor (MITF), extracellular signal-regulated kinase (ERK) and N-terminal kinases (JNK) and mitogen-activated protein kinase p38 (p38 MAPK). Other evidences from in vitro assays such as inhibition on melanosomal transfer, proteasomes, nitric oxide, and inflammation-induced melanogenesis are also highlighted. This article also reviews analytical techniques in different assays performed using in vitro model as well as their advantages and limitations. This article also provides an insight on recent finding and re-examination of some protocols as well as their effectiveness and reliability in the evaluation of depigmenting compounds. Evidence and support from related patents are also incorporated in this present article to give an overview on current patented technology, latest trends, and intellectual values of some depigmenting compounds and protocols, which are rarely highlighted in the literatures.
    Matched MeSH terms: Skin/drug effects
  12. Shahid N, Siddique MI, Razzaq Z, Katas H, Waqas MK, Rahman KU
    Drug Dev Ind Pharm, 2018 Dec;44(12):2061-2070.
    PMID: 30081679 DOI: 10.1080/03639045.2018.1509081
    OBJECTIVE: This study was designed to optimize and develop matrix type transdermal drug delivery system (TDDS) containing tizanidine hydrochloride (TZH) using different polymers by solvent evaporation method.

    SIGNIFICANCE: A strong need exists for the development of transdermal patch having improved bioavailability at the site of action with fewer side effects at off-target organs.

    METHODS: The patches were physically characterized by texture analysis (color, flexibility, smoothness, transparency, and homogeneity), in vitro dissolution test and FTIR analysis. Furthermore, functional properties essential for TDDS, in vitro percentage of moisture content, percentage of water uptake, in vitro permeation by following different kinetic models, in vivo drug content estimation and skin irritation were determined using rabbit skin.

    RESULTS: The optimized patches were soft, of uniform texture and thickness as well as pliable in nature. Novel transdermal patch showed ideal characteristics in terms of moisture content and water uptake. FTIR analysis confirmed no interaction between TZH and cellulose acetate phthalate (CAP). The patch showed sustained release of the drug which increased the availability of short acting TZH at the site of action. The patch also showed its biocompatibility to the in vivo model of rabbit skin.

    CONCLUSIONS: The results demonstrated that topically applied transdermal patch will be a potential medicated sustain release patch for muscle pain which will improve patient compliance.

    Matched MeSH terms: Skin/drug effects
  13. Liu X, Zhang R, Shi H, Li X, Li Y, Taha A, et al.
    Mol Med Rep, 2018 05;17(5):7227-7237.
    PMID: 29568864 DOI: 10.3892/mmr.2018.8791
    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in skin, resulting in photoaging. Natural botanicals have gained considerable attention due to their beneficial protection against the harmful effects of UV irradiation. The present study aimed to evaluate the ability of curcumin (Cur) to protect human dermal fibroblasts (HDFs) against ultraviolet A (UVA)‑induced photoaging. HDFs were treated with 0‑10 µM Cur for 2 h and subsequently exposed to various intensities of UVA irradiation. The cell viability and apoptotic rate of HDFs were investigated by MTT and flow cytometry assays, respectively. The effect of UVA and Cur on the formation of reactive oxygen species (ROS), malondialdehyde levels, which are an indicator of ROS, and the levels/activity of antioxidative defense proteins, including glutathione, superoxide dismutase and catalase, were evaluated using 2',7'-dichlorofluorescin diacetate and commercial assay kits. Furthermore, western blotting was performed to determine the levels of proteins associated with endoplasmic reticulum (ER) stress, the apoptotic pathway, inflammation and the collagen synthesis pathway. The results demonstrated that Cur reduced the accumulation of ROS and restored the activity of antioxidant defense enzymes, indicating that Cur minimized the damage induced by UVA irradiation in HDFs. Furthermore, western blot analysis demonstrated that Cur may attenuate UVA‑induced ER stress, inflammation and apoptotic signaling by downregulating the protein expression of glucose‑regulated protein 78, C/EBP‑homologous protein, nuclear factor‑κB and cleaved caspase‑3, while upregulating the expression of Bcl‑2. Additionally, it was demonstrated that Cur may regulate collagen metabolism by decreasing the protein expression of matrix metalloproteinase (MMP)‑1 and MMP‑3, and may promote the repair of cells damaged as a result of UVA irradiation through increasing the protein expression of transforming growth factor‑β (TGF‑β) and Smad2/3, and decreasing the expression of the TGF‑β inhibitor, Smad7. In conclusion, the results of the present study indicate the potential benefits of Cur for the protection of HDFs against UVA‑induced photoaging and highlight the potential for the application of Cur in skin photoprotection.
    Matched MeSH terms: Skin/drug effects*
  14. Md Roduan MR, Hamid RA, Sulaiman H, Mohtarrudin N
    Biomed Pharmacother, 2017 Oct;94:481-488.
    PMID: 28779710 DOI: 10.1016/j.biopha.2017.07.133
    Annona muricata, locally known as soursop has been reported to exhibit antiproliferative activities against various cancer cell lines. In this current study, we have investigated the antitumor promotion of various fractions of Annona muricata leaves (AML); hexane (AMLH), dichloromethane (AMLD) and methanol (AMLM) fraction respectively on 7, 12-dimethylbenz[α]anthracene (DMBA) induced and 12-0-tetradecaboylphorbol-13-acetate (TPA) promoted skin tumorigenesis in mice via morphological assessment, biochemical analysis and histopathological evaluation. The results of the study revealed significant inhibition in tumor incidence, tumor burden and tumor volume in the groups received AMLH and AMLD, respectively, and suppressive effects in group received AMLM compared with carcinogen control group at week 21. Superoxide dismutase, catalase, and lipid peroxidation levels were returned to near normal by administration of AML to DMBA/TPA-induced mice. The above findings were supported by histopathological studies, in which the extensive epidermal hyperplasia in carcinogen control group was restored to normal in AML treated groups. Whilst, annonacin, a major annaonaceous acetogenin was found to be the highest in AMLH and AMLD. From the present study, it can be inferred that AML supressed DMBA/TPA-induced skin tumor and this antitumor-promoting activity may be linked to the antioxidant/free radical-scavenging constituents of the extract and annonacin contained in the extracts.
    Matched MeSH terms: Skin/drug effects
  15. Siddique MI, Katas H, Jamil A, Mohd Amin MCI, Ng SF, Zulfakar MH, et al.
    Drug Deliv Transl Res, 2019 04;9(2):469-481.
    PMID: 29159691 DOI: 10.1007/s13346-017-0439-7
    Hydrocortisone (HC), topical glucocorticoid along with hydroxytyrosol (HT), and anti-microbial- and anti-oxidant-loaded chitosan nanoparticles (CSNPs) were prepared in large scale and analyzed for their adverse effects on healthy human skin followed by repeated applications. Ten subjects were randomized to receive test (HC-HT CSNPs) and vehicle samples (aqueous (AQ) cream). They were applied on the arms for 28 days, and transepidermal water loss (TEWL), erythema intensity, and irritation score were measured. Blood samples were analyzed for blood hematology, blood biochemistry, and adrenal cortico-thyroid hormone (ACTH) levels. Skin biopsy was obtained to assess histopathological changes in the skin. HC-HT CSNP AQ cream was stored at 4, 25, and 45 °C for a period of 1 year, and its stability was assessed by monitoring their physical appearances, particle size, and pH. Spherical-shaped NPs were successfully upscaled using spinning-disc technology, with insignificant changes in particle size, zeta potential, and incorporation of drugs as compared to the well-established laboratory method. Particle size of HC-HT CSNPs was skin irritation scoring system and skin hematoxylin and eosin (H&E) staining results. Comparative results of blood hematology, blood biochemistry, and adrenal cortico-thyroid hormone level at day 0 and day 28 were not significant, indicating non-systemic toxicity. In conclusion, HC-HT CSNP AQ cream is safe, well-tolerated, and non-toxic, which may be useful in treating atopic dermatitis.
    Matched MeSH terms: Skin/drug effects
  16. Khor AH, Lim KS, Tan CT, Kwan Z, Ng CC
    PMID: 27763865 DOI: 10.18176/jiaci.0085
    Matched MeSH terms: Skin/drug effects*
  17. Nair HKR
    Int J Low Extrem Wounds, 2018 Mar;17(1):54-61.
    PMID: 29564953 DOI: 10.1177/1534734618762225
    The management of chronic nonhealing ulcers pose a great challenge because they are associated with morbidity and increased costs. This report presents the observations of standard management along with application of modified collagen with glycerin (MCG) in the periwound area for management of nonhealing wounds. This observational report included 50 patients (33 male, 17 female) aged 24 to 94 years having nonhealing wounds. All wounds were treated using standard treatment protocols (TIME concept), whereas the periwound severity was assessed using the Harikrishna Periwound Skin Classification (HPSC). All patients received once-daily application of MCG lotion directly in the periwound areas and compression bandaging until there was complete wound healing. Patient compliance was ensured by regular follow-up and counseling. All diabetic patients were counseled to ensure glycemic control during the entire follow-up period. The criteria used for wound healing were based on clinical observation, and proper epithelialization of the wound was the end point. The median age of the wounds was 12.0 weeks (95% CI = 8.00 - 58.08). Majority of the non-healing wounds were diabetic foot ulcers with age of wound between 4 weeks to 15 years. The median time to complete wound healing was 12.71 (95% CI = 10.00-16.67) weeks. Standard treatment protocol of TIME principle with periwound area assessment based on HPSC 2015 and treatment accordingly with topical application of MCG along with additional measures has shown complete healing of nonhealing wounds. However, further large-scale comparative studies are needed to substantiate these effects on a larger population.
    Matched MeSH terms: Skin/drug effects*
  18. Harun AM, Awang H, Noor NFM, Makhatar NM, Yusoff ME, Affandi NDN, et al.
    Biomed Res Int, 2021;2021:6173143.
    PMID: 34859102 DOI: 10.1155/2021/6173143
    BACKGROUND: Potential antibacterial substances, such as titanium dioxide (TiO2), are being extensively studied throughout the research world. A modified hydrothermal nanotitania extraction was shown to inhibit Staphylococcus aureus growth in the laboratory. However, the toxicity effect of the extract on rats is unknown. In this study, we observed the effects of a modified hydrothermal nanotitania extraction on the skin and behavior of Sprague-Dawley rats.

    METHODS: Sprague-Dawley (Rattus norvegicus) rats were used as the experimental animals. The skin around the dorsum of the tested animals was shaved and pasted with 0.1 mg and 0.5 mg of the nanotitania extraction. The color and condition of the pasted area and the behavior of the animals were observed.

    RESULTS: 0.1 mg nanotitania extraction application on the dorsum of the rat produced no skin color changes at day 1, day 3, day 5, or day 7 postapplication. There were no changes in their behavior up to day 7 with no skin rashes or skin scratches seen or fur changes. However, 0.5 mg of nanotitania extraction resulted in redness and less fur regrowth at day 7.

    CONCLUSIONS: A 0.1 mg modified nanotitania extraction was observed to have no effect on the skin of Sprague-Dawley rats.

    Matched MeSH terms: Skin/drug effects*
  19. Lai HY, Lim YY, Kim KH
    BMC Complement Altern Med, 2011 Aug 12;11:62.
    PMID: 21835039 DOI: 10.1186/1472-6882-11-62
    BACKGROUND: Blechnum orientale Linn. (Blechnaceae) is used ethnomedicinally to treat wounds, boils, blisters or abscesses and sores, stomach pain and urinary bladder complaints. The aim of the study was to validate the ethnotherapeutic claim and to evaluate the effects of B. orientale water extract on wound healing activity.

    METHODS: Water extract of B. orientale was used. Excision wound healing activity was examined on Sprague-Dawley rats, dressed with 1% and 2% of the water extract. Control groups were dressed with the base cream (vehicle group, negative control) and 10% povidone-iodine (positive control) respectively. Healing was assessed based on contraction of wound size, mean epithelisation time, hydroxyproline content and histopathological examinations. Statistical analyses were performed using one way ANOVA followed by Tukey HSD test.

    RESULTS: Wound healing study revealed significant reduction in wound size and mean epithelisation time, and higher collagen synthesis in the 2% extract-treated group compared to the vehicle group. These findings were supported by histolopathological examinations of healed wound sections which showed greater tissue regeneration, more fibroblasts and angiogenesis in the 2% extract-treated group.

    CONCLUSIONS: The ethnotherapeutic use of this fern is validated. The water extract of B. orientale is a potential candidate for the treatment of dermal wounds. Synergistic effects of both strong antioxidant and antibacterial activities in the extract are deduced to have accelerated the wound repair at the proliferative phase of the healing process.

    Matched MeSH terms: Skin/drug effects*
  20. Quah CC, Kim KH, Lau MS, Kim WR, Cheah SH, Gundamaraju R
    PMID: 25392585
    BACKGROUND: The preference for a fairer skin-tone has become a common trend among both men and women around the world. In this study, seaweeds Sargassum polycystum and Padina tenuis were investigated for their in vitro and in vivo potentials in working as skin whitening agents. Seaweed has been used as a revolutionary skin repairing agent in both traditional and modern preparations. The high antioxidant content is one of the prime reasons for its potent action. It has been employed in traditional Chinese and Japanese medicine. For centuries, most medical practitioners in the Asian cultures have known seaweed as an organic source of vitamins, minerals, fatty acids like omega-3 and omega-6 and antioxidants. The present objective of the study was to evaluate the potent dermal protective effect of the two seaweeds Sargassum polycystum and Padina tenuis on human cell lines and guinea pigs.

    MATERIAL AND METHODS: Seaweeds were extracted with ethanol and further fractionated with hexane, ethyl acetate and water. The extracts were tested for mushroom tyrosinase inhibitory activity, cytotoxicity in human epidermal melanocyte (HEM), and Chang cells. Extracts with potent melanocytotoxicity were formulated into cosmetic cream and tested on guinea pigs in dermal irritation tests and de-pigmentation assessments.

    RESULTS: Both Sargassum polycystum and Padina tenuis seaweeds showed significant inhibitory effect on mushroom tyrosinase in the concentration tested. SPEt showed most potent cytotoxicity on HEM (IC50 of 36µg/ml), followed by SPHF (65µg/ml), and PTHF (78.5µg/ml). SPHF and SPEt reduced melanin content in skin of guinea pigs when assessed histologically.

    CONCLUSION: SPEt, SPHF and PTHF were able to inhibit HEM proliferation in vitro, with SPHF being most potent and did not cause any dermal irritation in guinea pigs. The results obtained indicate that SPHF is a promising pharmacological or cosmetic agent.

    Matched MeSH terms: Skin/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links