Displaying publications 41 - 57 of 57 in total

Abstract:
Sort:
  1. Moshikur RM, Chowdhury MR, Wakabayashi R, Tahara Y, Moniruzzaman M, Goto M
    Int J Pharm, 2018 Jul 30;546(1-2):31-38.
    PMID: 29751143 DOI: 10.1016/j.ijpharm.2018.05.021
    The technological utility of active pharmaceutical ingredients (APIs) is greatly enhanced when they are transformed into ionic liquids (ILs). API-ILs have better solubility, thermal stability, and the efficacy in topical delivery than solid or crystalline drugs. However, toxicological issue of API-ILs is the main challenge for their application in drug delivery. To address this issue, 11 amino acid esters (AAEs) were synthesized and investigated as biocompatible counter cations for the poorly water-soluble drug salicylic acid (Sal) to form Sal-ILs. The AAEs were characterized using 1H and 13C NMR, FTIR, elemental, and thermogravimetric analyses. The cytotoxicities of the AAE cations, Sal-ILs, and free Sal were investigated using mammalian cell lines (L929 and HeLa). The toxicities of the AAE cations greatly increased with inclusion of long alkyl chains, sulfur, and aromatic rings in the side groups of the cations. Ethyl esters of alanine, aspartic acid, and proline were selected as a low cytotoxic AAE. The cytotoxicities of the Sal-ILs drastically increased compared with the AAEs on incorporation of Sal into the cations, and were comparable to that of free Sal. Interestingly, the water miscibilities of the Sal-ILs were higher than that of free Sal, and the Sal-ILs were miscible with water at any ratio. A skin permeation study showed that the Sal-ILs penetrated through skin faster than the Sal sodium salt. These results suggest that AAEs could be used in biomedical applications to eliminate the use of traditional toxic solvents for transdermal delivery of poorly water-soluble drugs.
    Matched MeSH terms: Skin Absorption
  2. Ng SF, Rouse JJ, Sanderson FD, Eccleston GM
    Arch Pharm Res, 2012 Mar;35(4):579-93.
    PMID: 22553050 DOI: 10.1007/s12272-012-0401-7
    Synthetic membranes are composed of thin sheets of polymeric macromolecules that can control the passage of components through them. Generally, synthetic membranes used in drug diffusion studies have one of two functions: skin simulation or quality control. Synthetic membranes for skin simulation, such as the silicone-based membranes polydimethylsiloxane and Carbosil, are generally hydrophobic and rate limiting, imitating the stratum corneum. In contrast, synthetic membranes for quality control, such as cellulose esters and polysulfone, are required to act as a support rather than a barrier. These synthetic membranes also often contain pores; hence, they are called porous membranes. The significance of Franz diffusion studies and synthetic membranes in quality control studies involves an understanding of the fundamentals of synthetic membranes. This article provides a general overview of synthetic membranes, including a brief background of the history and the common applications of synthetic membranes. This review then explores the types of synthetic membranes, the transport mechanisms across them, and their relevance in choosing a synthetic membrane in Franz diffusion cell studies for formulation assessment purposes.
    Matched MeSH terms: Skin Absorption
  3. Romes NB, Abdul Wahab R, Abdul Hamid M, Oyewusi HA, Huda N, Kobun R
    Sci Rep, 2021 10 21;11(1):20851.
    PMID: 34675286 DOI: 10.1038/s41598-021-00409-0
    Nanoemulsion is a delivery system used to enhance bioavailability of plant-based compounds across the stratum corneum. Elaeis guineensis leaves are rich source of polyphenolic antioxidants, viz. gallic acid and catechin. The optimal E. guineensis leaves extract water-in-oil nanoemulsion was stable against coalescence, but it was under significant influence of Ostwald ripening over 90 days at 25 °C. The in-vitro permeability revealed a controlled and sustained release of the total phenolic compounds (TPC) of EgLE with a cumulative amount of 1935.0 ± 45.7 µgcm-2 after 8 h. The steady-state flux and permeation coefficient values were 241.9 ± 5.7 µgcm-2 h-1 and 1.15 ± 0.03 cm.h-1, respectively. The kinetic release mechanism for TPC of EgLE was best described by the Korsmeyer-Peppas model due to the highest linearity of R2 = 0.9961, indicating super case II transport mechanism. The in-silico molecular modelling predicted that the aquaporin-3 protein in the stratum corneum bonded preferably to catechin over gallic acid through hydrogen bonds due to the lowest binding energies of - 57.514 kcal/mol and - 8.553 kcal/mol, respectively. Thus, the in-silico study further verified that catechin could improve skin hydration. Therefore, the optimal nanoemulsion could be used topically as moisturizer to enhance skin hydration based on the in-silico prediction.
    Matched MeSH terms: Skin Absorption
  4. Md Moshikur R, Shimul IM, Uddin S, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2022 Dec 21;14(50):55332-55341.
    PMID: 36508194 DOI: 10.1021/acsami.2c15636
    The transdermal delivery of hydrophilic drugs remains challenging owing to their poor ability to permeate the skin; formulation with oil media is difficult without adding chemical permeation enhancers or co-solvents. Herein, we synthesized 12 oil-miscible ionic liquid (IL) drugs comprising lidocaine-, imipramine-, and levamisole (Lev)-hydrochloride with fatty acid permeation enhancers, i.e., laurate, oleate, linoleate, and stearate as counterions. A set of in vitro and in vivo studies was performed to investigate the potency and deliverability of the transdermal drug formulations. All of the synthesized compounds were freely miscible with pharmaceutically acceptable solvents/agents (i.e., ethanol, N-methyl pyrrolidone, Tween 20, and isopropyl myristate (IPM)). In vitro permeation studies revealed that the oleate-based Lev formulation had 2.6-fold higher skin permeation capability than the Lev salts and also superior ability compared with the laurate-, linoleate-, and stearate-containing samples. Upon in vivo transdermal administration to mice, the peak plasma concentration, elimination half-life, and area under the plasma concentration curve values of Lev-IL were 4.6-, 2.9-, and 5.4-fold higher, respectively, than those of the Lev salt. Furthermore, in vitro skin irritation and in vivo histological studies have demonstrated that Lev-IL has excellent biocompatibility compared with a conventional ionic liquid-based carrier. The results indicate that oil-miscible IL-based drugs provide a simple and scalable strategy for the design of effective transdermal drug delivery systems.
    Matched MeSH terms: Skin Absorption
  5. Tamilvanan S, Baskar R
    Pharm Dev Technol, 2013 Jul-Aug;18(4):761-71.
    PMID: 23668371 DOI: 10.3109/10837450.2011.586038
    Celecoxib (CXB, 0.2 g)-loaded anionic and cationic nanosized emulsions were prepared by a well-established combined emulsification method.
    Matched MeSH terms: Skin Absorption*
  6. Ali MK, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2021 May 05;13(17):19745-19755.
    PMID: 33891816 DOI: 10.1021/acsami.1c03111
    Chemotherapeutic cytotoxic agents such as paclitaxel (PTX) are considered essential for the treatment of various cancers. However, PTX injection is associated with severe systemic side effects and high rates of patient noncompliance. Micelle formulations (MFs) are nano-drug delivery systems that offer a solution to these problems. Herein, we report an advantageous carrier for the transdermal delivery of PTX comprising a new MF that consists of two biocompatible surfactants: cholinium oleate ([Cho][Ole]), which is a surface-active ionic liquid (SAIL), and sorbitan monolaurate (Span-20). A solubility assessment confirmed that PTX was readily solubilized in the SAIL-based micelles via multipoint hydrogen bonding and cation-π and π-π interactions between PTX and SAIL[Cho][Ole]. Dynamic light scattering (DLS) and transmission electron microscopy revealed that in the presence of PTX, the MF formed spherical PTX-loaded micelles that were well-distributed in the range 8.7-25.3 nm. According to DLS, the sizes and size distributions of the micelle droplets did not change significantly over the entire storage period, attesting to their physical stability. In vitro transdermal assessments using a Franz diffusion cell revealed that the MF absorbed PTX 4 times more effectively than a Tween 80-based formulation and 6 times more effectively than an ethanol-based formulation. In vitro and in vivo skin irritation tests revealed that the new carrier had a negligible toxicity profile compared with a conventional ionic liquid-based carrier. Based on these findings, we believe that the SAIL[Cho][Ole]-based MF has potential as a biocompatible nanocarrier for the effective transdermal delivery of poorly soluble chemotherapeutics such as PTX.
    Matched MeSH terms: Skin Absorption
  7. Mahmood S, Mandal UK, Chatterjee B
    Int J Pharm, 2018 May 05;542(1-2):36-46.
    PMID: 29501737 DOI: 10.1016/j.ijpharm.2018.02.044
    Raloxifene HCl belongs to a class of selective estrogen receptor modulators (SERMs) which is used for the management of breast cancer. The major problem reported with raloxifene is its poor bioavailability which is only up to 2%. The main objective of the present work was to formulate raloxifene loaded ethosomal preparation for transdermal application and compare it with an oral formulation of the drug. Five ethosomal formulations with different concentrations of ethanol and a conventional liposomes formulation were prepared by rotary evaporation method. The prepared systems were characterised by high resolution transmission electron microscopy (HRTEM), force emission electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and 31P NMR study. All these advanced characterization study established that the ethosome formulation was well defined by its size, shape and its bilayer formation. Transdermal flux of the optimized ethosome formulation was 22.14 ± 0.83 µg/ml/cm2 which was 21 times higher when compared to the conventional liposomes. Confocal microscopy study revealed an enhanced permeation of coumarin-6 dye loaded ethosomes to much deeper layers of skin when compared with conventional liposomes. The gel was found to be pseudoplastic with elastic behaviour. In-vivo studies on rats showed a higher bioavailability of RXL (157% times) for ethosomal formulation when compared with the oral formulation. In conclusion, RXL loaded ethosomal formulation via transdermal route showed superior drug delivery properties as compared to oral formulation.
    Matched MeSH terms: Skin Absorption
  8. Ahmad K, Win T, Jaffri JM, Edueng K, Taher M
    AAPS PharmSciTech, 2018 Jan;19(1):371-383.
    PMID: 28744617 DOI: 10.1208/s12249-017-0843-9
    This study aims to investigate the use of palm olein as the oil phase for betamethasone 17-valerate (BV) emulsions. The physicochemical properties of the formulations were characterized. In vitro drug release study was performed with the Hanson Vertical Diffusion Cell System; the samples were quantified with HPLC and the results were compared with commercial products. Optimized emulsion formulations were subjected to stability studies for 3 months at temperatures of 4, 25, and 40°C; the betamethasone 17-valerate content was analyzed using HPLC. The formulations produced mean particle size of 2-4 μm, viscosities of 50-250 mPa.s, and zeta potential between -45 and -68 mV. The rheological analyses showed that the emulsions exhibited pseudoplastic and viscoelastic behavior. The in vitro release of BV from palm olein emulsion through cellulose acetate was 4.5 times higher than that of commercial products and more BV molecules deposited in rat skin. Less than 4% of the drug was degraded in the formulations during the 3-month period when they were subjected to the three different temperatures. These findings indicate that palm olein-in-water emulsion can be an alternative vehicle for topical drug delivery system with superior permeability.
    Matched MeSH terms: Skin Absorption
  9. Tou KAS, Rehman K, Ishak WMW, Zulfakar MH
    Drug Dev Ind Pharm, 2019 Sep;45(9):1451-1458.
    PMID: 31216907 DOI: 10.1080/03639045.2019.1628042
    Objective: The aim of this study was to develop a coenzyme Q10 nanoemulsion cream, characterize and to determine the influence of omega fatty acids on the delivery of coenzyme Q10 across model skin membrane via ex vivo and in silico techniques. Methods: Coenzyme Q10 nanoemulsion creams were prepared using natural edible oils such as linseed, evening primrose, and olive oil. Their mechanical features and ability to deliver CoQ10 across rat skin were characterized. Computational docking analysis was performed for in silico evaluation of CoQ10 and omega fatty acid interactions. Results: Linseed, evening primrose, and olive oils each produced nano-sized emulsion creams (343.93-409.86 nm) and exhibited excellent rheological features. The computerized docking studies showed favorable interactions between CoQ10 and omega fatty acids that could improve skin permeation. The three edible-oil nanoemulsion creams displayed higher ex vivo skin permeation and drug flux compared to the liquid-paraffin control cream. The linseed oil formulation displayed the highest skin permeation (3.97 ± 0.91 mg/cm2) and drug flux (0.19 ± 0.05 mg/cm2/h). Conclusion: CoQ10 loaded-linseed oil nanoemulsion cream displayed the highest skin permeation. The highest permeation showed by linseed oil nanoemulsion cream may be due to the presence of omega-3, -6, and -9 fatty acids which might serve as permeation enhancers. This indicated that the edible oil nanoemulsion creams have potential as drug vehicles that enhance CoQ10 delivery across skin.
    Matched MeSH terms: Skin Absorption
  10. Zulfakar MH, Chan LM, Rehman K, Wai LK, Heard CM
    AAPS PharmSciTech, 2018 Apr;19(3):1116-1123.
    PMID: 29181705 DOI: 10.1208/s12249-017-0923-x
    Coenzyme Q10 (CoQ10) is a vitamin-like oil-soluble molecule that has anti-oxidant and anti-ageing effects. To determine the most optimal CoQ10 delivery vehicle, CoQ10 was solubilised in both water and fish oil, and formulated into hydrogel, oleogel and bigel. Permeability of CoQ10 from each formulation across porcine ear skin was then evaluated. Furthermore, the effects of the omega-3 fatty eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids from fish oil on skin permeation were investigated by means of nuclear magnetic resonance (NMR) and computerised molecular modelling docking experiments. The highest drug permeation was achieved with the bigel formulation that proved to be the most effective vehicle in delivering CoQ10 across the skin membrane due to a combination of its adhesive, viscous and lipophilic properties. Furthermore, the interactions between CoQ10 and fatty acids revealed by NMR and molecular modelling experiments likely accounted for skin permeability of CoQ10. NMR data showed dose-dependent changes in proton chemical shifts in EPA and DHA. Molecular modelling revealed complex formation and large binding energies between fatty acids and CoQ10. This study advances the knowledge about bigels as drug delivery vehicles and highlights the use of NMR and molecular docking studies for the prediction of the influence of drug-excipient relationships at the molecular level.
    Matched MeSH terms: Skin Absorption
  11. Rehman K, Mohd Amin MC, Zulfakar MH
    J Oleo Sci, 2014;63(10):961-70.
    PMID: 25252741
    Polymer-Fish oil bigel (hydrogel/oleogel colloidal mixture) was developed by using fish oil and natural (sodium alginate) and synthetic (hydroxypropyl methylcellulose) polymer for pharmaceutical purposes. The bigels were closely monitored and thermal, rheological and mechanical properties were compared with the conventional hydrogels for their potential use as an effective transdermal drug delivery vehicle. Stability of the fish oil fatty acids (especially eicosapentanoic acid, EPA and docosahexanoic acid, DHA) was determined by gas chromatography and the drug content (imiquimod) was assessed with liquid chromatography. Furthermore, in vitro permeation study was conducted to determine the capability of the fish oil-bigels as transdermal drug delivery vehicle. The bigels showed pseudoplastic rheological features, with excellent mechanical properties (adhesiveness, peak stress and hardness), which indicated their excellent spreadability for application on the skin. Bigels prepared with mixture of sodium alginate and fish oil (SB1 and SB2), and the bigels prepared with the mixture of hydroxypropyl methylcellulose and fish oil (HB1-HB3) showed high cumulative permeation and drug flux compared to hydrogels. Addition of fish oil proved to be beneficial in increasing the drug permeation and the results were statistically significant (p < 0.05, one-way Anova, SPSS 20.0). Thus, it can be concluded that bigel formulations could be used as an effective topical and transdermal drug delivery vehicle for pharmaceutical purposes.
    Matched MeSH terms: Skin Absorption
  12. Rehman K, Tan CM, Zulfakar MH
    Drug Res (Stuttg), 2014 Mar;64(3):159-65.
    PMID: 24026957 DOI: 10.1055/s-0033-1355351
    Topical keratolytic agents such as benzoyl peroxide (BP) and salicylic acid (SA) are one of the common treatments for inflammatory skin diseases. However, the amount of drug delivery through the skin is limited due to the stratum corneum. The purposes of this study were to investigate the ability of fish oil to act as penetration enhancer for topical keratolytic agents and to determine the suitable gelator for formulating stable fish oil oleogels. 2 types of gelling agents, beeswax and sorbitan monostearate (Span 60), were used to formulate oleogels. To investigate the efficacy of fish oil oleogel permeation, commercial hydrogels of benzoyl peroxide (BP) and salicylic acid (SA) were used as control, and comparative analysis was performed using Franz diffusion cell. Stability of oleogels was determined by physical assessments at 20°C and 40°C storage. Benzoyl peroxide (BP) fish oil oleogels containing beeswax were considered as better formulations in terms of drug permeation and cumulative drug release. All the results were found to be statistically significant (p<0.05, ANOVA) and it was concluded that the beeswax-fish oil combination in oleogel can prove to be beneficial in terms of permeation across the skin and stability.
    Matched MeSH terms: Skin Absorption
  13. Hussain Z, Katas H, Mohd Amin MC, Kumolosasi E, Buang F, Sahudin S
    Int J Pharm, 2013 Feb 28;444(1-2):109-19.
    PMID: 23337632 DOI: 10.1016/j.ijpharm.2013.01.024
    In this study, hydroxytyrosol (HT; a potent antioxidant) was co-administered with hydrocortisone (HC) to mitigate the systemic adverse effects of the latter and to provide additional anti-inflammatory and antioxidant benefits in the treatment of atopic dermatitis (AD). The co-loaded nanoparticles (NPs) prepared had shown different particle sizes, zeta potentials, loading efficiencies, and morphology, when the pH of the chitosan solution was increased from 3.0 to 7.0. Ex vivo permeation data showed that the co-loaded NPs formulation significantly reduced the corresponding flux (17.04μg/cm(2)/h) and permeation coefficient (3.4×10(-3)cm/h) of HC across full-thickness NC/Nga mouse skin. In addition, the NPs formulation showed higher epidermal (1560±31μg/g of skin) and dermal (880±28μg/g of skin) accumulation of HC than did a commercial HC formulation. Moreover, an in vivo study using an NC/Nga mouse model revealed that compared to the other treatment groups, the group treated with the NPs formulation efficiently controlled transepidermal water loss (13±2g/m(2)/h), intensity of erythema (207±12), and dermatitis index (mild). In conclusion, NPs co-loaded with HC/HT is proposed as a promising system for the percutaneous co-delivery of anti-inflammatory and antioxidative agents in the treatment of AD.
    Matched MeSH terms: Skin Absorption
  14. Nawaz A, Wong TW
    J Invest Dermatol, 2018 11;138(11):2412-2422.
    PMID: 29857069 DOI: 10.1016/j.jid.2018.04.037
    5-Fluorouracil delivery profiles in the form of chitosan-folate submicron particles through skin and melanoma cells in vitro were examined using microwaves as the penetration enhancer. The in vivo pharmacokinetic profile of 5-fluorouracil was also determined. Chitosan-carboxymethyl-5-fluorouracil-folate conjugate was synthesized and processed into submicron particles by spray-drying technique. The size, zeta potential, morphology, drug content, and drug release, as well as skin permeation and retention, pharmacokinetics, in vitro SKMEL-28 melanoma cell line cytotoxicity, and intracellular trafficking profiles of drug/particles, were examined as a function of skin/melanoma cell treatment by microwaves at 2,450 MHz for 5 + 5 minutes. The level of skin drug/particle retention in vitro and in vivo increased in skin treated by microwaves. This was facilitated by the drug conjugating to chitosan and microwaves fluidizing both the protein and lipid domains of epidermis and dermis. The uptake of chitosan-folate particles by melanoma cells was mediated via lipid raft route. It was promoted by microwaves, which fluidized the lipid and protein regimes of the cell membrane, and this increased drug cytotoxicity. In vivo pharmacokinetic study indicated skin treatment by microwave-enhanced drug retention but not permeation. The combination of microwaves and submicron particles synergized skin drug retention and intracellular drug delivery.
    Matched MeSH terms: Skin Absorption
  15. Mahdi ES, Noor AM, Sakeena MH, Abdullah GZ, Abdulkarim MF, Sattar MA
    Int J Nanomedicine, 2011;6:2499-512.
    PMID: 22072884 DOI: 10.2147/IJN.S22337
    BACKGROUND: Recently there has been a remarkable surge of interest about natural products and their applications in the cosmetic industry. Topical delivery of antioxidants from natural sources is one of the approaches used to reverse signs of skin aging. The aim of this research was to develop a nanoemulsion cream for topical delivery of 30% ethanolic extract derived from local Phyllanthus urinaria (P. urinaria) for skin antiaging.

    METHODS: Palm kernel oil esters (PKOEs)-based nanoemulsions were loaded with P. urinaria extract using a spontaneous method and characterized with respect to particle size, zeta potential, and rheological properties. The release profile of the extract was evaluated using in vitro Franz diffusion cells from an artificial membrane and the antioxidant activity of the extract released was evaluated using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method.

    RESULTS: Formulation F12 consisted of wt/wt, 0.05% P. urinaria extract, 1% cetyl alcohol, 0.5% glyceryl monostearate, 12% PKOEs, and 27% Tween 80/Span 80 (9/1) with a hydrophilic lipophilic balance of 13.9, and a 59.5% phosphate buffer system at pH 7.4. Formulation F36 was comprised of 0.05% P. urinaria extract, 1% cetyl alcohol, 1% glyceryl monostearate, 14% PKOEs, 28% Tween 80/Span 80 (9/1) with a hydrophilic lipophilic balance of 13.9, and 56% phosphate buffer system at pH 7.4 with shear thinning and thixotropy. The droplet size of F12 and F36 was 30.74 nm and 35.71 nm, respectively, and their nanosizes were confirmed by transmission electron microscopy images. Thereafter, 51.30% and 51.02% of the loaded extract was released from F12 and F36 through an artificial cellulose membrane, scavenging 29.89% and 30.05% of DPPH radical activity, respectively.

    CONCLUSION: The P. urinaria extract was successfully incorporated into a PKOEs-based nanoemulsion delivery system. In vitro release of the extract from the formulations showed DPPH radical scavenging activity. These formulations can neutralize reactive oxygen species and counteract oxidative injury induced by ultraviolet radiation and thereby ameliorate skin aging.

    Matched MeSH terms: Skin Absorption
  16. Abdullah GZ, Abdulkarim MF, Mallikarjun C, Mahdi ES, Basri M, Sattar MA, et al.
    Pak J Pharm Sci, 2013 Jan;26(1):75-83.
    PMID: 23261730
    Micro-emulsions and sometimes nano-emulsions are well known candidates to deliver drugs locally. However, the poor rheological properties are marginally affecting their acceptance pharmaceutically. This work aimed to modify the poor flow properties of a nano-scaled emulsion comprising palm olein esters as the oil phase and ibuprofen as the active ingredient for topical delivery. Three Carbopol ® resins: 934, 940 and Ultrez 10, were utilized in various concentrations to achieve these goals. Moreover, phosphate buffer and triethanolamine solutions pH 7.4 were used as neutralizing agents to assess their effects on the gel-forming and swelling properties of Carbopol ® 940. The addition of these polymers caused the produced nano-scaled emulsion to show a dramatic droplets enlargement of the dispersed globules, increased intrinsic viscosity, consistent zeta potential and transparent-to-opaque change in appearance. These changes were relatively influenced by the type and the concentration of the resin used. Carbopol ® 940 and triethanolamine appeared to be superior in achieving the proposed tasks compared to other materials. The higher the pH of triethanolamine solution, the stronger the flow-modifying properties of Carbopol ® 940. Transmission electron microscopy confirmed the formation of a well-arranged gel network of Carbopol ® 940, which was the major cause for all realized changes. Later in vitro permeation studies showed a significant decrease in the drug penetration, thus further modification using 10% w/w menthol or limonene as permeation promoters was performed. This resulted in in vitro and in vivo pharmacodynamics properties that are comparably higher than the reference chosen for this study.
    Matched MeSH terms: Skin Absorption
  17. Carran M, Shaw IC
    N Z Med J, 2012;125(1358):52-63.
    PMID: 22864157
    It is well known that the endocrine-disrupting chemical (EDC) dibutylphthalate (DBP) inhibits testosterone synthesis and can lead to feminisation in male laboratory animals. Moreover, it has long been speculated that human exposure would result in the similar effects, but this is difficult to study because specific human exposure cohorts are rare. We report increases in the incidences of hypospadias (p<0.05), cryptorchidism (p<0.05) and breast cancer (p<0.05) in the children of New Zealand soldiers who served in Malaya (1948-1960) and were exposed to DBP applied daily to their clothing as an acaricide to prevent tick-transmitted bush typhus. In addition, we modelled absorption of DBP from the soldiers' clothing and using published data for skin absorption, and calculated a large theoretical absorbed dose of 64 mg/kg body weight/day which is similar to DBP's lowest observed adverse effect level (LOAEL) of 50 mg/kg body weight/day and thus indicates a biological effect is possible. This is the first report of a multigenerational developmental effect following DBP exposure in human males.
    Matched MeSH terms: Skin Absorption
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links