Displaying publications 41 - 60 of 206 in total

Abstract:
Sort:
  1. Shazmin, Ahmad SA, Naqvi TA, Munis MFH, Javed MT, Chaudhary HJ
    World J Microbiol Biotechnol, 2023 Mar 31;39(6):141.
    PMID: 37000294 DOI: 10.1007/s11274-023-03575-7
    Widespread and inadequate use of Monocrotophos has led to several environmental issues. Biodegradation is an ecofriendly method used for detoxification of toxic monocrotophos. In the present study, Msd2 bacterial strain was isolated from the cotton plant growing in contaminated sites of Sahiwal, Pakistan. Msd2 is capable of utilizing the monocrotophos (MCP) organophosphate pesticide as its sole carbon source for growth. Msd2 was identified as Brucella intermedia on the basis of morphology, biochemical characterization and 16S rRNA sequencing. B. intermedia showed tolerance of MCP up to 100 ppm. The presence of opd candidate gene for pesticide degradation, gives credence to B. intermedia as an effective bacterium to degrade MCP. Screening of the B. intermedia strain Msd2 for plant growth promoting activities revealed its ability to produce ammonia, exopolysaccharides, catalase, amylase and ACC-deaminase, and phosphorus, zinc and potassium solubilization. The optimization of the growth parameters (temperatures, shaking rpm, and pH level) of the MCP-degrading isolate was carried out in minimal salt broth supplemented with MCP. The optimal pH, temperature, and rpm for Msd2 growth were observed as pH 6, 35 °C, and 120 rpm, respectively. Based on optimization results, batch degradation experiment was performed. Biodegradation of MCP by B. intermedia was monitored using HPLC and recorded 78% degradation of MCP at 100 ppm concentration within 7 days of incubation. Degradation of MCP by Msd2 followed the first order reaction kinetics. Plant growth promoting and multi-stress tolerance ability of Msd2 was confirmed by molecular analysis. It is concluded that Brucella intermedia strain Msd2 could be beneficial as potential biological agent for an effective bioremediation for polluted environments.
    Matched MeSH terms: Soil Microbiology
  2. Ravintheran SK, Sivaprakasam S, Loke S, Lee SY, Manickam R, Yahya A, et al.
    Sci Data, 2019 11 25;6(1):280.
    PMID: 31767854 DOI: 10.1038/s41597-019-0289-x
    Complete genomes of xenobiotic-degrading microorganisms provide valuable resources for researchers to understand molecular mechanisms involved in bioremediation. Despite the well-known ability of Sphingomonas paucimobilis to degrade persistent xenobiotic compounds, a complete genome sequencing is lacking for this organism. In line with this, we report the first complete genome sequence of Sphingomonas paucimobilis (strain AIMST S2), an organophosphate and hydrocarbon-degrading bacterium isolated from oil-polluted soil at Kedah, Malaysia. The genome was derived from a hybrid assembly of short and long reads generated by Illumina HiSeq and MinION, respectively. The assembly resulted in a single contig of 4,005,505 bases which consisted of 3,612 CDS and 56 tRNAs. An array of genes involved in xenobiotic degradation and plant-growth promoters were identified, suggesting its' potential role as an effective microorganism in bioremediation and agriculture. Having reported the first complete genome of the species, this study will serve as a stepping stone for comparative genome analysis of Sphingomonas strains and other xenobiotic-degrading microorganisms as well as gene expression studies in organophosphate biodegradation.
    Matched MeSH terms: Soil Microbiology
  3. Abu Bakar N, Lau BYC, González-Aravena M, Smykla J, Krzewicka B, Karsani SA, et al.
    Microb Ecol, 2023 Dec 07;87(1):11.
    PMID: 38060022 DOI: 10.1007/s00248-023-02311-w
    In understanding stress response mechanisms in fungi, cold stress has received less attention than heat stress. However, cold stress has shown its importance in various research fields. The following study examined the cold stress response of six Pseudogymnoascus spp. isolated from various biogeographical regions through a proteomic approach. In total, 2541 proteins were identified with high confidence. Gene Ontology enrichment analysis showed diversity in the cold stress response pathways for all six Pseudogymnoascus spp. isolates, with metabolic and translation-related processes being prominent in most isolates. 25.6% of the proteins with an increase in relative abundance were increased by more than 3.0-fold. There was no link between the geographical origin of the isolates and the cold stress response of Pseudogymnoascus spp. However, one Antarctic isolate, sp3, showed a distinctive cold stress response profile involving increased flavin/riboflavin biosynthesis and methane metabolism. This Antarctic isolate (sp3) was also the only one that showed decreased phospholipid metabolism in cold stress conditions. This work will improve our understanding of the mechanisms of cold stress response and adaptation in psychrotolerant soil microfungi, with specific attention to the fungal genus Pseudogymnoascus.
    Matched MeSH terms: Soil Microbiology
  4. Ahmad J, Marsidi N, Sheikh Abdullah SR, Hasan HA, Othman AR, Ismail N', et al.
    Chemosphere, 2024 Feb;349:140881.
    PMID: 38048826 DOI: 10.1016/j.chemosphere.2023.140881
    Treatment of petroleum-contaminated soil to a less toxic medium via physical and chemical treatment is too costly and requires posttreatment. This review focuses on the employment of phytoremediation and mycoremediation technologies in cleaning hydrocarbon-contaminated soil which is currently rare. It is considered environmentally beneficial and possibly cost-effective as it implements the synergistic interaction between plants and biosurfactant producing mycorrhiza to degrade hydrocarbon contaminants. This review also covers possible sources of hydrocarbon pollution in water and soil, toxicity effects, and current technologies for hydrocarbon removal and degradation. In addition to these problems, this review also discusses the challenges and opportunities of transforming the resultant treated sludge and treating plants into potential by-products for a higher quality of life for future generations.
    Matched MeSH terms: Soil Microbiology
  5. Halmi MI, Hussin WS, Aqlima A, Syed MA, Ruberto L, MacCormack WP, et al.
    J Environ Biol, 2013 Nov;34(6):1077-82.
    PMID: 24555340
    A bacterium capable of biodegrading surfactant sodium dodecyl sulphate (SDS) was isolated from Antarctic soil. The isolate was tentatively identified as Pseudomonas sp. strain DRY15 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Growth characteristic studies showed that the bacterium grew optimally at 10 degrees C, 7.25 pH, 1 g l(-1) SDS as a sole carbon source and 2 g l(-1) ammonium sulphate as nitrogen source. Growth was completely inhibited at 5 g l(-1) SDS. At a tolerable initial concentration of 2 g l(-1), approximately 90% of SDS was degraded after an incubation period of eight days. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibition with a correlation coefficient value of 0.97. The maximum growth rate was 0.372 hr(-1) while the saturation constant or half velocity constant (Ks) and inhibition constant (Ki), were 0.094% and 11.212 % SDS, respectively. Other detergent tested as carbon sources at 1 g l(-1) was Tergitol NP9, Tergitol 15S9, Witconol 2301 (methyl oleate), sodium dodecylbenzene sulfonate (SDBS), benzethonium chloride, and benzalkonium chloride showed Tergitol NP9, Tergitol 15S9, Witconol 2301 and the anionic SDBS supported growth with the highest growth exhibited by SDBS.
    Matched MeSH terms: Soil Microbiology*
  6. Chen JW, Koh CL, Sam CK, Yin WF, Chan KG
    Sensors (Basel), 2013;13(10):13217-27.
    PMID: 24084115 DOI: 10.3390/s131013217
    In the bacteria kingdom, quorum sensing (QS) is a cell-to-cell communication that relies on the production of and response to specific signaling molecules. In proteobacteria, N-acylhomoserine lactones (AHLs) are the well-studied signaling molecules. The present study aimed to characterize the production of AHL of a bacterial strain A9 isolated from a Malaysian tropical soil. Strain A9 was identified as Burkholderia sp. using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rDNA nucleotide sequence analysis. AHL production by A9 was detected with two biosensors, namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Thin layer chromatography results showed N-hexanoylhomoserine lactone (C6-HSL) and N-octanoylhomoserine lactone (C8-HSL) production. Unequivocal identification of C6-HSL and C8-HSL was achieved by high resolution triple quadrupole liquid chromatography-mass spectrometry analysis. We have demonstrated that Burkholderia sp. strain A9 produces AHLs that are known to be produced by other Burkholderia spp. with CepI/CepR homologs.
    Matched MeSH terms: Soil Microbiology*
  7. Han-Jen RE, Wai-Fong Y, Kok-Gan C
    Sensors (Basel), 2013 Oct 18;13(10):14121-32.
    PMID: 24145919 DOI: 10.3390/s131014121
    Proteobacteria are known to communicate via signaling molecules and this process is known as quorum sensing. The most commonly studied quorum sensing molecules are N-acylhomoserine lactones (AHLs) that consists of a homoserine lactone moiety and an N-acyl side chain with various chain lengths and degrees of saturation at the C-3 position. We have isolated a bacterium, RB-44, from a site which was formally a landfill dumping ground. Using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis, this isolate was identified as a Pandoraea sp.which was then screened for AHL production using biosensors which indicated its quorum sensing properties. To identify the AHL profile of Pandoraea sp. RB-44, we used high resolution tandem mass spectrometry confirming that this isolate produced N-octanoylhomoserine lactone (C8-HSL). To the best of our knowledge, this is the first report that showed quorum sensing activity exhibited by Pandoraea sp. Our data add Pandoraea sp. to the growing number of bacteria that possess QS systems.
    Matched MeSH terms: Soil Microbiology*
  8. Chong TM, Koh CL, Sam CK, Choo YM, Yin WF, Chan KG
    Sensors (Basel), 2012;12(4):4846-59.
    PMID: 22666062 DOI: 10.3390/s120404846
    We report the production and degradation of quorum sensing N-acyl-homoserine lactones by bacteria isolated from Malaysian montane forest soil. Phylogenetic analysis indicated that these isolates clustered closely to the genera of Arthrobacter, Bacillus and Pseudomonas. Quorum quenching activity was detected in six isolates of these three genera by using a series of bioassays and rapid resolution liquid chromatography analysis. Biosensor screening and high resolution liquid chromatography-mass spectrometry analysis revealed the production of N-dodecanoyl-L-homoserine lactone (C12-HSL) by Pseudomonas frederiksbergensis (isolate BT9). In addition to degradation of a wide range of N-acyl-homoserine lactones, Arthrobacter and Pseudomonas spp. also degraded p-coumaroyl-homoserine lactone. To the best of our knowledge, this is the first documentation of Arthrobacter and Pseudomonas spp. capable of degrading p-coumaroyl-homoserine lactone and the production of C12-HSL by P. frederiksbergensis.
    Matched MeSH terms: Soil Microbiology*
  9. Siddiquee S, Tan SG, Yusuf UK, Fatihah NH, Hasan MM
    Mol Biol Rep, 2012 Jan;39(1):715-22.
    PMID: 21553047 DOI: 10.1007/s11033-011-0790-6
    Trichoderma species are commercially applied as biocontrol agents against numerous plant pathogenic fungi due to their production of antifungal metabolites, competition for nutrients and space, and mycoparasitism. However, currently the identification of Trichoderma species from throughout the world based on micro-morphological descriptions is tedious and prone to error. The correct identification of Trichoderma species is important as several traits are species-specific. The Random Amplified Microsatellites (RAMS) analysis done using five primers in this study showed different degrees of the genetic similarity among 42 isolates of this genus. The genetic similarity values were found to be in the range of 12.50-85.11% based on a total of 76 bands scored in the Trichoderma isolates. Of these 76 bands, 96.05% were polymorphic, 3.95% were monomorphic and 16% were exclusive bands. Two bands (250 bp and 200 bp) produced by primer LR-5 and one band (250 bp) by primer P1A were present in all the Trichoderma isolates collected from healthy and infected oil palm plantation soils. Cluster analysis based on UPGMA of the RAMS marker data showed that T. harzianum, T. virens and T. longibrachiatum isolates were grouped into different clades and lineages. In this study we found that although T. aureoviride isolates were morphologically different when compared to T. harzianum isolates, the UPGMA cluster analysis showed that the majority isolates of T. aureoviride (seven from nine) were closely related to the isolates of T. harzianum.
    Matched MeSH terms: Soil Microbiology*
  10. Mohajeri L, Aziz HA, Isa MH, Zahed MA, Mohajeri S
    Bull Environ Contam Toxicol, 2010 Jul;85(1):54-8.
    PMID: 20577869 DOI: 10.1007/s00128-010-0058-1
    Weathered crude oil (WCO) removals in shoreline sediment samples were monitored for 60 days in bioremediation experimentation. Experimental modeling was carried out using statistical design of experiments. At optimum conditions maximum of 83.13, 78.06 and 69.92% WCO removals were observed for 2, 16 and 30 g/kg initial oil concentrations, respectively. Significant variations in the crude oil degradation pattern were observed with respect to oil, nutrient and microorganism contents. Crude oil bioremediation were successfully described by a first-order kinetic model. The study indicated that the rate of hydrocarbon biodegradation increased with decrease of crude oil concentrations.
    Matched MeSH terms: Soil Microbiology*
  11. Syed MA, Sim HK, Khalid A, Shukor MY
    J Environ Biol, 2009 Jan;30(1):89-92.
    PMID: 20112868
    A stab-culture method was adapted to screen for azo dyes-decolorizing bacteria from soil and water samples. Decolorized azo dye in the lower portion of the solid media indicates the presence of anaerobic azo dyes-decolorizing bacteria, while aerobic decolorizing bacteria decolorizes the surface portion of the solid media. Of twenty soil samples tested, one soil sample shows positive results for the decolourisation of two azo dyes; Biebrich scarlet (BS) and Direct blue 71 (DB) under anaerobic conditions. A gram negative and oxidase negative bacterial isolate was found to be the principal azo dyes degrader The isolate was identified by using the Biolog identification system as Serratia marcescens.
    Matched MeSH terms: Soil Microbiology*
  12. Al-Mekhlafi MS, Atiya AS, Lim YA, Mahdy AK, Ariffin WA, Abdullah HC, et al.
    PMID: 18613540
    Despite great development in socioeconomic status throughout 50 years of independence, Malaysia is still plagued with soil-transmitted helminthiases (STH). STH continue to have a significant impact on public health particularly in rural communities. In order to determine the prevalence of STH among rural Orang Asli children and to investigate the possible risk factors affecting the pattern of this prevalence, fecal samples were collected from 292 Orang Asli primary schoolchildren (145 males and 147 females) age 7-12 years, from Pos Betau, Kuala Lipis, Pahang. The samples were examined by Kato-Katz and Harada Mori techniques. Socioeconomic data were collected using pre-tested questionnaires. The overall prevalence of ascariasis, trichuriasis, and hookworm infections were 67.8, 95.5 and 13.4%, respectively. Twenty-nine point eight percent of the children had heavy trichuriasis, while 22.3% had heavy ascariasis. Sixty-seven point seven percent of the children had mixed infections. Age > 10 years (p = 0.016), no toilet in the house (p = 0.012), working mother (p = 0.040), low household income (p = 0.033), and large family size (p = 0.028) were identified as risk factors for ascariasis. Logistic regression confirmed low income, no toilet in the house and working mother as significant risk factors for ascariasis. The prevalence of STH is still very high in rural Malaysian communities. STH may also contribute to other health problems such as micronutrient deficiencies, protein-energy malnutrition and poor educational achievement. Public health personnel need to reassess current control measures and identify innovative and integrated ways in order to reduce STH significantly in rural communities.
    Matched MeSH terms: Soil Microbiology*
  13. Sariah M, Choo CW, Zakaria H, Norihan MS
    Mycopathologia, 2005 Jan;159(1):113-7.
    PMID: 15750742
    Basal stem rot of oil palm caused by Ganoderma boninense is of major economic importance. Observations of the low incidence of disease due to Ganoderma species in natural stands, suggest that the disease is kept under control by some biological means. Trichoderma spp. are saprophytic fungi with high antagonistic activities against soil-borne pathogens. However, their abundance and distribution are soil and crop specific. Trichoderma species have been found to be concentrated in the A1 (0-30 cm) and Be soil horizons (30-60 cm), although the abundance of Trichoderma was not significantly different between the oil palm and non-oil palm ecosystems. Characterisation of Trichoderma isolates based on cultural, morphological and DNA polymorphism showed that T. harzianum, T. virens, T. koningii and T. longibrachiatum made up 72, 14, 10 and 4% of the total Trichoderma isolates isolated. As Trichoderma species are present in the oil palm ecosystem, but at lower numbers and in locations different from those desired, soil augmentation with antagonistic Trichoderma spp. can be developed as a strategy towards integrated management of basal stem rot of oil palm.
    Matched MeSH terms: Soil Microbiology*
  14. Lim SP, Gan SN, Tan IK
    Appl Biochem Biotechnol, 2005 Jul;126(1):23-33.
    PMID: 16014996
    Bacterial polyhydroxyalkanoates (PHAs) are perceived to be a suitable alternative to petrochemical plastics because they have similar material properties, are environmentally degradable, and are produced from renewable resources. In this study, the in situ degradation of medium-chain-length PHA (PHAMCL) films in tropical forest and mangrove soils was assessed. The PHAMCL was produced by Pseudomonas putida PGA1 using saponified palm kernel oil (SPKO) as the carbon source. After 112 d of burial, there was 16.7% reduction in gross weight of the films buried in acidic forest soil (FS), 3.0% in the ones buried in alkaline forest soil by the side of a stream (FSst) and 4.5% in those buried in mangrove soil (MS). There was a slight decrease in molecular weight for the films buried in FS but not for the films buried in FSst and in MS. However, no changes were observed for the melting temperature, glass transition temperature, monomer compositions, structure, and functional group analyses of the films from any of the burial sites during the test period. This means that the integral properties of the films were maintained during that period and degradation was by surface erosion. Scanning electron microscopy of the films from the three sites revealed holes on the film surfaces which could be attributed to attack by microorganisms and bigger organisms such as detritivores. For comparison purposes, films of polyhydroxybutyrate (PHB), a short-chain-length PHA, and polyethylene (PE) were buried together with the PHAMCL films in all three sites. The PHB films disintegrated completely in MS and lost 73.5% of their initial weight in FSst, but only 4.6% in FS suggesting that water movement played a major role in breaking up the brittle PHB films. The PE films did not register any weight loss in any of the test sites.
    Matched MeSH terms: Soil Microbiology*
  15. Tripathi BM, Edwards DP, Mendes LW, Kim M, Dong K, Kim H, et al.
    Mol Ecol, 2016 May;25(10):2244-57.
    PMID: 26994316 DOI: 10.1111/mec.13620
    Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes.
    Matched MeSH terms: Soil Microbiology*
  16. Ismail BS, Azlizan BA
    J Environ Sci Health B, 2002 Jul;37(4):345-53.
    PMID: 12081026
    The persistence of metsulfuron-methyl (methyl 2-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosul fonyl]benzoate) in nonautoclaved and autoclaved Selangor, Lating, and Serdang series soils incubated at different temperatures and with different moisture contents was investigated under laboratory conditions using cucumber (Cucumis sativus L.) as the bioassay species. Significant degradation of metsulfuron-methyl was observed in nonautoclaved soil compared with the autoclaved soil sample, indicating the importance of microorganisms in the breakdown process. At higher temperatures the degradation rate in nonautoclaved soil improved with increasing soil moisture content. In nonautoclaved Selangor, Lating and Serdang series soils, the half-life was reduced from 4.79 to 2.78 days, 4.9 to 3.5, and from 3.3 to 1.9 days, respectively, when the temperature was increased from 20 degrees to 30 degrees C at 80% field capacity. Similarly, in nonautoclaved soil, the half-life decreased with an increasing soil moisture from 20% to 80% at 30 degrees C in the three soils studied. In the autoclaved soil, the half-life values were slightly higher than those obtained in the nonautoclaved soils, perhaps indicating that the compound may be broken down by nonbiological processes. The fresh weight of the bioassay species was reduced significantly in Serdang series soil treated with metsulfuron-methyl at 0.1 ppm. However, the reduction in fresh weight of the seedlings was least in Lating series soil, followed by Selangor series soil.
    Matched MeSH terms: Soil Microbiology*
  17. Hidayah NI, Teoh ST, Hillman E
    PMID: 9656406
    Soil-transmitted helminthiasis is a common problem in communities with poor socio-environmental conditions. This study was undertaken to identify important socio-environmental predictors of soil-transmitted helminthiasis in Bachok, a rural community in Kelantan for the development and implementation of an effective prevention and control program. Of 363 children randomly sampled, 38.8% were infected with soil-transmitted helminthiasis. Risk predictors of soil-transmitted helminthiasis found to be significant after adjustment included poor household hygiene score and large household size. The probability of being infected was 0.58 amongst children with both of these risk factors.
    Matched MeSH terms: Soil Microbiology*
  18. Kan SP, Poon GK
    Public Health, 1987 Jul;101(4):243-51.
    PMID: 3659238
    Matched MeSH terms: Soil Microbiology*
  19. Zain NA, Ng LM, Foong CP, Tai YT, Nanthini J, Sudesh K
    Curr Microbiol, 2020 Mar;77(3):500-508.
    PMID: 31893298 DOI: 10.1007/s00284-019-01852-z
    A novel polyhydroxyalkanoate (PHA)-producing bacterium, Jeongeupia sp. USM3 (JCM 19920) was isolated from the limestone soil at Gua Tempurung, Perak, Malaysia. This is the first report on the complete genome sequence for the genus Jeongeupia. This genome consists of a circular chromosome with a size of 3,788,814 bp and contains 3557 genes. Two PHA synthase (phaC) genes encoding for the key enzyme in the polymerization of PHA monomers and other PHA-associated genes were identified from the genome. Phylogenetic analysis of the PhaC protein sequences has revealed that both PhaC1 and PhaC2 of Jeongeupia sp. USM3 are categorized as Class I PHA synthases with 56% similarity to each other. Both of the PHA synthase genes of this isolate were cloned and heterologously expressed in a PHA mutant strain Cupriavidus necator PHB-4. The ability of the transformants to accumulate PHA showed that both PhaC1 and PhaC2 were functional.
    Matched MeSH terms: Soil Microbiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links