Displaying publications 41 - 49 of 49 in total

Abstract:
Sort:
  1. Venkatesh G, Majid MI, Ramanathan S, Mansor SM, Nair NK, Croft SL, et al.
    Biomed Chromatogr, 2008 May;22(5):535-41.
    PMID: 18205140 DOI: 10.1002/bmc.965
    A simple, sensitive and specific reversed-phase high-performance liquid chromatographic method with UV detection at 251 nm was developed for quantitation of buparvaquone (BPQ) in human and rabbit plasma. The method utilizes 250 microL of plasma and sample preparation involves protein precipitation followed by solid-phase extraction. The method was validated on a C18 column with mobile phase consisting of ammonium acetate buffer (0.02 m, pH 3.0) and acetonitrile in the ratio of 18:82 (v/v) at a flow rate of 1.1 mL/min. The calibration curves were linear (correlation coefficient>or=0.998) in the selected range. The method is specific and sensitive with limit of quantitation of 50 ng/mL for BPQ. The validated method was found to be accurate and precise in the working calibration range. Stability studies were carried out at different storage conditions and BPQ was found to be stable. Partial validation studies were carried out using rabbit plasma and intra- and inter-day precision and accuracy were within 7%. This method is simple, reliable and can be routinely used for preclinical pharmacokinetic studies for BPQ.
    Matched MeSH terms: Solid Phase Extraction/methods*
  2. Chai M, Tan G, Lal A
    Anal Sci, 2008 Feb;24(2):273-6.
    PMID: 18270422
    A headspace solid-phase microextraction method has been developed for the determination of 8 pesticides in vegetables and fruits by using gas chromatography with an electron capture detector. Two types of fibers (polyacrylate, 85 microm and polydimethylsiloxane, 100 microm) have been assayed and compared. The main factors: extraction and desorption parameters, ionic strength, and the effects of dilution and organic solvents, were studied and optimized. The optimized procedures resulted in more than 80% recovery for all the investigated vegetable and fruit samples with RSD values below 10%.
    Matched MeSH terms: Solid Phase Extraction/methods*
  3. Azlan NSM, Wee SY, Ismail NAH, Nasir HM, Aris AZ
    Environ Toxicol Chem, 2020 10;39(10):1908-1917.
    PMID: 32621623 DOI: 10.1002/etc.4813
    The organophosphorus pesticides (OPPs) commonly used in agricultural practices can pose a risk of potential exposure to humans via food consumption. We describe an analytical method for solid-phase extraction coupled with high-performance liquid chromatography-diode array detector (SPE-HPLC-DAD) for the detection of OPPs (quinalphos, diazinon, and chlorpyrifos) in rice grains. The isolation of targeted residues was initiated with double extraction before SPE-HPLC-DAD, crucially reducing matrix interferences and detecting a wide range of multiple residues in rice grains. Coefficients of 0.9968 to 0.9991 showed a strong linearity, with limits of detection and quantification ranging from 0.36 to 0.68 µg/kg and from 1.20 to 2.28 µg/kg, respectively. High recoveries (80.4-110.3%) were observed at 3 spiking levels (50, 100, and 200 µg/kg), indicating good accuracy. The relative standard deviations of all residues (0.19-8.66%) validated the method precision. Sample analysis of 10 rice grain types (n = 30) available in the Asian market revealed that quinalphos, diazinon, and chlorpyrifos at concentrations of 1.08, 1.11, and 1.79 µg/kg, respectively, remained far below the maximum residue limits (0.01-0.5 mg/kg). However, regular monitoring is necessary to confirm that multiresidue occurrence remains below permissible limits while controlling pests. Environ Toxicol Chem 2020;39:1908-1917. © 2020 SETAC.
    Matched MeSH terms: Solid Phase Extraction/methods
  4. Diong SH, Mohd Yusoff NS, Sim MS, Raja Aziddin RE, Chik Z, Rajan P, et al.
    J Anal Toxicol, 2014 Nov-Dec;38(9):660-6.
    PMID: 25106416 DOI: 10.1093/jat/bku096
    Gas chromatography-mass spectrometry quantitative method was developed to monitor concentrations of methadone and its metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) in plasma and urine of patients. The developed method was simple, accurate and reproducible to quantify methadone and EDDP in plasma and urine samples in the concentration range of 15-1,000 and 50-2,000 ng/mL, respectively. The proposed analytical method was applied to plasma and urine samples obtained from 96 patients undergoing methadone maintenance treatment (MMT) with daily methadone doses of 2-120 mg/day. Urinary methadone excretion was observed to be significantly affected by pH, in which the ratio of methadone to EDDP was two times higher in acidic urine (P = 0.029). The findings of this study further enhance the guidelines for monitoring of methadone treatment among outpatients. Methadone-to-EDDP ratio in urine was found to be consistent at 24 and 4 h, hence suggesting the possibility that outpatients may be monitored with single urine sample in order to check for compliance. This study which provides data on peak concentrations of methadone and EDDP as well as the ratio of both compounds has added to the body of knowledge regarding pharmacokinetic properties of methadone among heroin-dependent patients under MMT.
    Study site: University Malaya Medical Centre (UMMC), HKL, University Malaya Centre for Addiction Sciences (UMCAS) and Rehabilitation Centre of Al-Rahman Mosque, Kuala Lumpur, Malaysia
    Matched MeSH terms: Solid Phase Extraction/methods
  5. Lawal A, Wong RCS, Tan GH, Abdulra'uf LB, Alsharif AMA
    J Chromatogr Sci, 2018 Aug 01;56(7):656-669.
    PMID: 29688338 DOI: 10.1093/chromsci/bmy032
    Fruits and vegetables constitute a major type of food consumed daily apart from whole grains. Unfortunately, the residual deposits of pesticides in these products are becoming a major health concern for human consumption. Consequently, the outcome of the long-term accumulation of pesticide residues has posed many health issues to both humans and animals in the environment. However, the residues have previously been determined using conventionally known techniques, which include liquid-liquid extraction, solid-phase extraction (SPE) and the recently used liquid-phase microextraction techniques. Despite the positive technological effects of these methods, their limitations include; time-consuming, operational difficulty, use of toxic organic solvents, low selective property and expensive extraction setups, with shorter lifespan of instrumental performances. Thus, the potential and maximum use of these methods for pesticides residue determination has resulted in the urgent need for better techniques that will overcome the highlighted drawbacks. Alternatively, attention has been drawn recently towards the use of quick, easy, cheap, effective, rugged and safe technique (QuEChERS) coupled with dispersive solid-phase extraction (dSPE) to overcome the setback challenges experienced by the previous technologies. Conclusively, the reviewed QuEChERS-dSPE techniques and the recent cleanup modifications justifiably prove to be reliable for routine determination and monitoring the concentration levels of pesticide residues using advanced instruments such as high-performance liquid chromatography, liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry.
    Matched MeSH terms: Solid Phase Extraction/methods*
  6. Omar MM, Wan Ibrahim WA, Elbashir AA
    Food Chem, 2014 Sep 1;158:302-9.
    PMID: 24731346 DOI: 10.1016/j.foodchem.2014.02.045
    A sol-gel hybrid sorbent, methyltrimethoxysilane-tetraethoxysilane (MTMOS-TEOS) was successfully used as new dispersive solid phase extraction (dSPE) sorbent material in the determination of acrylamide in several Sudanese foods and analysis using GC-MS. Several important dSPE parameters were optimised. Under the optimised conditions, excellent linearity (r(2)>0.9998) was achieved using matrix matched standard calibration in the concentration range 50-1000 μg kg(-1). The limits of detection (LOD) and limit of quantification ranged from 9.1 to 12.8 μg/kg and 27.8-38.9 μg/kg, respectively. The precision (RSD%) of the method was ⩽6.6% and recoveries of acrylamide obtained were in the range of 88-103%, (n=3). The LOD obtained is comparable with the LODs of primary secondary amine dSPE. The proposed MTMOS-TEOS dSPE method is direct and safe for acrylamide analysis, showed reliable method validation performances and good cleanup effects. It was successfully applied to the analysis of acrylamide in real food samples.
    Matched MeSH terms: Solid Phase Extraction/methods*
  7. Amiri A, Ghaemi F
    J Chromatogr A, 2021 Jul 05;1648:462168.
    PMID: 33984648 DOI: 10.1016/j.chroma.2021.462168
    In this research, the Cu-based metal-organic framework (MOF-199) was fabricated and coated on the stainless steel mesh as substrates through sol-gel procedure. Then the coated substrates were placed in a small column known as solid-phase extraction cartridge. The SPE based coated stainless steel mesh coupled with high-performance liquid chromatography-UV detector (HPLC-UV) was used for the fast extraction, and quantification of non-steroidal anti-inflammatory drugs (NSAIDs) from human plasma and water samples. To find optimum extraction conditions, the impacts of effective parameters on analytical performance like sample pH, sample volume, type, and volume of desorption solvent were optimized. At the optimized conditions, calibration graphs of analytes were linear in the concentration range of 0.03-300 ng mL-1 for water samples, and 0.1-200 ng mL-1 for plasma samples. The correlation coefficients were in the range of 0.9938 to 0.9989. Also, the limits of detection (LODs) were from 0.01 to 0.02 ng mL-1 for water samples and 0.03 to 0.1 ng mL-1 for plasma samples. The cartridge repeatability was studied at different values, and the relative standard deviations (RSDs%) were achieved between 3.5 and 5.1%. Consequently, this procedure was successfully used in the extraction and detection of NSAIDs in real water and plasma samples with relative recoveries ranged from 93.6 to 99.6%.
    Matched MeSH terms: Solid Phase Extraction/methods*
  8. Lai CS, Nair NK, Muniandy A, Mansor SM, Olliaro PL, Navaratnam V
    J Chromatogr B Analyt Technol Biomed Life Sci, 2009 Feb 15;877(5-6):558-62.
    PMID: 19147417 DOI: 10.1016/j.jchromb.2008.12.037
    With the expanded use of the combination of artesunate (AS) and amodiaquine (AQ) for the treatment of falciparum malaria and the abundance of products on the market, comes the need for rapid and reliable bioanalytical methods for the determination of the parent compounds and their metabolites. While the existing methods were developed for the determination of either AS or AQ in biological fluids, the current validated method allows simultaneous extraction and determination of AS and AQ in human plasma. Extraction is carried out on Supelclean LC-18 extraction cartridges where AS, its metabolite dihydroartemisinin (DHA) and the internal standard artemisinin (QHS) are separated from AQ, its metabolite desethylamodiaquine (DeAQ) and the internal standard, an isobutyl analogue of desethylamodiaquine (IB-DeAQ). AS, DHA and QHS are then analysed using Hypersil C4 column with acetonitrile-acetic acid (0.05M adjusted to pH 5.2 with 1.00M NaOH) (42:58, v/v) as mobile phase at flow rate 1.50ml/min. The analytes are detected with an electrochemical detector operating in the reductive mode. Chromatography of AQ, DeAQ and IB-DeAQ is carried out on an Inertsil C4 column with acetonitrile-KH(2)PO(4) (pH 4.0, 0.05M) (11:89, v/v) as mobile phase at flow rate 1.00ml/min. The analytes are detected by an electrochemical detector operating in the oxidative mode. The recoveries of AS, DHA, AQ and DeAQ vary between 79.1% and 104.0% over the concentration range of 50-1400ng/ml plasma. The accuracies of the determination of all the analytes are 96.8-103.9%, while the variation for within-day and day-to-day analysis are <15%. The lower limit of quantification for all the analytes is 20ng/ml and limit of detection is 8ng/ml. The method is sensitive, selective, accurate, reproducible and suited particularly for pharmacokinetic study of AS-AQ drug combination and can also be used to compare the bioavailability of different formulations, including a fixed-dose AS-AQ co-formulation.
    Matched MeSH terms: Solid Phase Extraction/methods*
  9. Lee TP, Saad B, Ng EP, Salleh B
    J Chromatogr A, 2012 May 11;1237:46-54.
    PMID: 22444432 DOI: 10.1016/j.chroma.2012.03.031
    Zeolite Linde Type L (LTL) crystals with different length, diameter and particle size (nanosized LTL, rod LTL, cylinder LTL and needle LTL) were synthesized, characterized and were used as sorbent in the micro-solid phase extraction of ochratoxin A (OTA) before the high performance liquid chromatography detection. Under the optimized conditions, the detection limits of OTA for coffee and cereal were 0.09 ng g(-1) and 0.03 ng g(-1), respectively, while the quantification limits were 0.28 ng g(-1) and 0.08 ng g(-1), respectively. The recoveries of OTA of coffee and cereal spiked at 0.5, 10 and 25 ng g(-1) ranged from 91.7 to 101.0%. The proposed method was applied to forty-five samples of coffee and cereal. The presence of OTA was found in twenty-five samples, ranging from 0.28 to 9.33 ng g(-1).
    Matched MeSH terms: Solid Phase Extraction/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links