Displaying publications 41 - 60 of 187 in total

Abstract:
Sort:
  1. Tong CK, Seow HF, Ramasamy R
    Med J Malaysia, 2008 Jul;63 Suppl A:77-8.
    PMID: 19024992
    The immune modulatory properties of mesenchymal stem cell (MSC) had brought a new insight in cell-based neotherapy. However, recent works of MSC are focused exclusively on bone marrow-derived MSC. We evaluated the immunogenicity of cord blood-derived MSC (CB-MSC) on T lymphocytes. Human peripheral blood mononuclear cells (PBMC) were prepared by density gradient separation and culture with the presence or absence of CB-MSC. PBMC were collected for activation analysis by flow cytometry at 24-, 48-, and 72- hours. The results showed that, CB-MSC does not stimulate nor inhibit T lymphocyte activation.
    Matched MeSH terms: Peripheral Blood Stem Cell Transplantation*; Mesenchymal Stem Cell Transplantation*
  2. Intan Juliana Abd Hamid, Zarina Thasneem Zainudeen, Ilie Fadzilah Hashim
    MyJurnal
    Primary immunodeficiency disease (PID) or inborn error of immunity is a heterogeneous group of inherited diseases affecting the immune system resulting in increased susceptibility to infections, immune dysregulation, autoimmune manifestations, lymphoproliferation and malignancy. Cases of PIDs have been reported in Malaysia since 1977 and the numbers of reported cases steadily increased for the past 30 years with more trained clinical immunologist available, better immunodiagnostic facilities, wider immunoglobulin replacement therapy availability and improved techniques in haematopoietic stem cell transplantation for PIDs. In this article, we highlight some of the limitations and challenges in the diagnosis and therapy of PID, and more recent efforts to establish PID services in Malaysia.
    Matched MeSH terms: Hematopoietic Stem Cell Transplantation
  3. An N, Purtill D, Boan P
    Open Forum Infect Dis, 2021 Feb;8(2):ofaa637.
    PMID: 33553476 DOI: 10.1093/ofid/ofaa637
    We present a case of abdominal gastric band-associated Mycobacterium abscessus infection, manifesting after the onset of acute myeloid leukemia, complicated by immune reconstitution inflammatory syndrome (IRIS), and cured while receiving an allogeneic hematopoietic stem cell transplant. IRIS should be considered in less classical situations where there is unexplained clinical deterioration.
    Matched MeSH terms: Hematopoietic Stem Cell Transplantation
  4. Lian J, Lin J, Zakaria N, Yahaya BH
    Adv Exp Med Biol, 2020;1298:149-166.
    PMID: 32424492 DOI: 10.1007/5584_2020_538
    Acute lung injury (ALI) is a severe clinical condition with high morbidity and mortality that usually results in the development of multiple organ dysfunction. The complex pathophysiology of ALI seems to provide a wide range of targets that offer numerous therapeutic options. However, despite extensive studies of ALI pathophysiology and treatment, no effective pharmacotherapy is available. Increasing evidence from both preclinical and clinical studies supports the preventive and therapeutic effects of mesenchymal stem cells (MSCs) for treating ALI. As cell-based therapy poses the risk of occlusion in microvasculature or unregulated growth, MSC-derived extracellular vesicles (MSC-EVs) have been extensively studied as a new therapeutic strategy for non-cell based therapy. It is widely accepted that the therapeutic properties of MSCs are derived from soluble factors with paracrine or endocrine effects, and EVs are among the most important paracrine or endocrine vehicles that can deliver various soluble factors with a similar phenotype as the parent cell. Therapeutic effects of MSCs have been reported for various delivery approaches, diverse doses, multiple origins, and different times of administration, and MSC-EVs treatment may include but is not limited to these choices. The mechanisms by which MSCs and MSC-EVs may contribute to ALI treatment remain elusive and need further exploration. This review provides an overview of preclinical studies that support the application of MSC-EVs for treating ALI, and it discusses emerging opportunities and their associated challenges.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation
  5. Gopurappilly R, Pal R, Mamidi MK, Dey S, Bhonde R, Das AK
    CNS Neurol Disord Drug Targets, 2011 Sep 1;10(6):741-56.
    PMID: 21838668
    Stroke causes a devastating insult to the brain resulting in severe neurological deficits because of a massive loss of different neurons and glia. In the United States, stroke is the third leading cause of death. Stroke remains a significant clinical unmet condition, with only 3% of the ischemic patient population benefiting from current treatment modalities, such as the use of thrombolytic agents, which are often limited by a narrow therapeutic time window. However, regeneration of the brain after ischemic damage is still active days and even weeks after stroke occurs, which might provide a second window for treatment. Neurorestorative processes like neurogenesis, angiogenesis and synaptic plasticity lead to functional improvement after stroke. Stem cells derived from various tissues have the potential to perform all of the aforementioned processes, thus facilitating functional recovery. Indeed, transplantation of stem cells or their derivatives in animal models of cerebral ischemia can improve function by replacing the lost neurons and glial cells and by mediating remyelination, and modulation of inflammation as confirmed by various studies worldwide. While initially stem cells seemed to work by a 'cell replacement' mechanism, recent research suggests that cell therapy works mostly by providing trophic support to the injured tissue and brain, fostering both neurogenesis and angiogenesis. Moreover, ongoing human trials have encouraged hopes for this new method of restorative therapy after stroke. This review describes up-to-date progress in cell-based therapy for the treatment of stroke. Further, as we discuss here, significant hurdles remain to be addressed before these findings can be responsibly translated to novel therapies. In particular, we need a better understanding of the mechanisms of action of stem cells after transplantation, the therapeutic time window for cell transplantation, the optimal route of cell delivery to the ischemic brain, the most suitable cell types and sources and learn how to control stem cell proliferation, survival, migration, and differentiation in the pathological environment. An integrated approach of cell-based therapy with early-phase clinical trials and continued preclinical work with focus on mechanisms of action is needed.
    Matched MeSH terms: Stem Cell Transplantation/methods*; Stem Cell Transplantation/trends*
  6. Ude CC, Miskon A, Idrus RBH, Abu Bakar MB
    Mil Med Res, 2018 02 26;5(1):7.
    PMID: 29502528 DOI: 10.1186/s40779-018-0154-9
    The dynamic nature of modern warfare, including threats and injuries faced by soldiers, necessitates the development of countermeasures that address a wide variety of injuries. Tissue engineering has emerged as a field with the potential to provide contemporary solutions. In this review, discussions focus on the applications of stem cells in tissue engineering to address health risks frequently faced by combatants at war. Human development depends intimately on stem cells, the mysterious precursor to every kind of cell in the body that, with proper instruction, can grow and differentiate into any new tissue or organ. Recent reports have suggested the greater therapeutic effects of the anti-inflammatory, trophic, paracrine and immune-modulatory functions associated with these cells, which induce them to restore normal healing and tissue regeneration by modulating immune reactions, regulating inflammation, and suppressing fibrosis. Therefore, the use of stem cells holds significant promise for the treatment of many battlefield injuries and their complications. These applications include the treatment of injuries to the skin, sensory organs, nervous system tissues, the musculoskeletal system, circulatory/pulmonary tissues and genitals/testicles and of acute radiation syndrome and the development of novel biosensors. The new research developments in these areas suggest that solutions are being developed to reduce critical consequences of wounds and exposures suffered in warfare. Current military applications of stem cell-based therapies are already saving the lives of soldiers who would have died in previous conflicts. Injuries that would have resulted in deaths previously now result in wounds today; similarly, today's permanent wounds may be reduced to tomorrow's bad memories with further advances in stem cell-based therapies.
    Matched MeSH terms: Stem Cell Transplantation/methods; Stem Cell Transplantation/trends*
  7. Srijaya TC, Ramasamy TS, Kasim NH
    J Transl Med, 2014;12:243.
    PMID: 25182194 DOI: 10.1186/s12967-014-0243-9
    The inadequacy of existing therapeutic tools together with the paucity of organ donors have always led medical researchers to innovate the current treatment methods or to discover new ways to cure disease. Emergence of cell-based therapies has provided a new framework through which it has given the human world a new hope. Though relatively a new concept, the pace of advancement clearly reveals the significant role that stem cells will ultimately play in the near future. However, there are numerous uncertainties that are prevailing against the present setting of clinical trials related to stem cells: like the best route of cell administration, appropriate dosage, duration and several other applications. A better knowledge of these factors can substantially improve the effectiveness of disease cure or organ repair using this latest therapeutic tool. From a certain perspective, it could be argued that by considering certain proven clinical concepts and experience from synthetic drug system, we could improve the overall efficacy of cell-based therapies. In the past, studies on synthetic drug therapies and their clinical trials have shown that all the aforementioned factors have critical ascendancy over its therapeutic outcomes. Therefore, based on the knowledge gained from synthetic drug delivery systems, we hypothesize that by employing many of the clinical approaches from synthetic drug therapies to this new regenerative therapeutic tool, the efficacy of stem cell-based therapies can also be improved.
    Matched MeSH terms: Stem Cell Transplantation/methods; Stem Cell Transplantation/trends*
  8. Liau MT, Amini F, Ramasamy TS
    Tissue Eng Regen Med, 2016 Oct;13(5):455-464.
    PMID: 30603427 DOI: 10.1007/s13770-016-9093-2
    Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is usually seen in those above 50 years old. Current medical treatments only provide symptomatic relief but cannot cure the disease. There are claims that PD can be cured by stem cell transplant. The present study is aimed to assess the clinical potency and safety of stem cell in treating PD. A total of eleven articles were included for analysis, with four randomised control trials (RCTs), five non-RCTs and 2 follow up studies. All the four non-RCTs showed improvement of Unified Parkinson's Disease Rating Scale with no adverse events. However, results from RCTs showed no significant differences in the rating score among the transplant group and the Sham surgery group. The secondary analysis of one study showed a significant improvement of the rating score in those patients aged 60 and younger. Transplant group also associated with an overall higher incidence of adverse events. In conclusion, the RCTs and non-RCTs produced opposite results. When the studies were performed as non-RCTs in small number of patients, they showed promising result in the patients. It could say that currently the use of stem cell/progenitor cells in treating PD need much research despite having the implanted stem cell to be able to survive and integrated. The survival of implanted dopamine neurons in the striatum, however, does not indicate a success in correcting PD symptoms. Further investigations will shed light on the application and mechanism of action of stem cells in treating PD.

    Electronic Supplementary Material: Supplementary material is available for this article at 10.1007/s13770-016-9093-2 and is accessible for authorized users.

    Matched MeSH terms: Stem Cell Transplantation
  9. Tong CK, Vidyadaran S
    Exp Biol Med (Maywood), 2016 Sep;241(15):1669-75.
    PMID: 27555616 DOI: 10.1177/1535370216664430
    Microglia begin colonizing the developing brain as early as embryonic day 9, prior to the emergence of neurons and other glia. Their ontogeny is also distinct from other central nervous system cells, as they derive from yolk sac hematopoietic progenitors and not neural progenitors. In this review, we feature these unique characteristics of microglia and assess the spatiotemporal similarities between microglia colonization of the central nervous system and embryonic neurogenesis. We also infer to existing evidence for microglia function from embryonic through to postnatal neurodevelopment to postulate roles for microglia in neurogenesis.
    Matched MeSH terms: Hematopoietic Stem Cell Transplantation
  10. Hui,J.H.P., Azura M., Lee, E.H.
    Malays Orthop J, 2009;3(1):4-12.
    MyJurnal
    Regenerative medicine using stem cell therapy has sparked much interest in this 21st century not only because of the controversies that surround the ethics involving pluripotent stem cells but their potential for use in the clinic. The ability of stem cells to repair and regenerate new tissues and organs holds tremendous promise for the treatment of many serious diseases and injuries. This review provides a brief summary of the current status of research in stem cells with special emphasis on where we are in terms of the possible clinical application of stem cell therapy in orthopaedic surgery. We look at the available evidence and examine the ethical issues and considerations associated with the clinical use of stem cells.
    Matched MeSH terms: Stem Cell Transplantation
  11. Abdul Wahid SF, Ismail NA, Wan Jamaludin WF, Muhamad NA, Abdul Hamid MKA, Harunarashid H, et al.
    Cochrane Database Syst Rev, 2018 Aug 29;8(8):CD010747.
    PMID: 30155883 DOI: 10.1002/14651858.CD010747.pub2
    BACKGROUND: Revascularisation is the gold standard therapy for patients with critical limb ischaemia (CLI). In over 30% of patients who are not suitable for or have failed previous revascularisation therapy (the 'no-option' CLI patients), limb amputation is eventually unavoidable. Preliminary studies have reported encouraging outcomes with autologous cell-based therapy for the treatment of CLI in these 'no-option' patients. However, studies comparing the angiogenic potency and clinical effects of autologous cells derived from different sources have yielded limited data. Data regarding cell doses and routes of administration are also limited.

    OBJECTIVES: To compare the efficacy and safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients.

    SEARCH METHODS: The Cochrane Vascular Information Specialist (CIS) searched the Cochrane Vascular Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE Ovid, Embase Ovid, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Allied and Complementary Medicine Database (AMED), and trials registries (16 May 2018). Review authors searched PubMed until February 2017.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) involving 'no-option' CLI patients comparing a particular source or regimen of autologous cell-based therapy against another source or regimen of autologous cell-based therapy.

    DATA COLLECTION AND ANALYSIS: Three review authors independently assessed the eligibility and methodological quality of the trials. We extracted outcome data from each trial and pooled them for meta-analysis. We calculated effect estimates using a risk ratio (RR) with 95% confidence interval (CI), or a mean difference (MD) with 95% CI.

    MAIN RESULTS: We included seven RCTs with a total of 359 participants. These studies compared bone marrow-mononuclear cells (BM-MNCs) versus mobilised peripheral blood stem cells (mPBSCs), BM-MNCs versus bone marrow-mesenchymal stem cells (BM-MSCs), high cell dose versus low cell dose, and intramuscular (IM) versus intra-arterial (IA) routes of cell implantation. We identified no other comparisons in these studies. We considered most studies to be at low risk of bias in random sequence generation, incomplete outcome data, and selective outcome reporting; at high risk of bias in blinding of patients and personnel; and at unclear risk of bias in allocation concealment and blinding of outcome assessors. The quality of evidence was most often low to very low, with risk of bias, imprecision, and indirectness of outcomes the major downgrading factors.Three RCTs (100 participants) reported a total of nine deaths during the study follow-up period. These studies did not report deaths according to treatment group.Results show no clear difference in amputation rates between IM and IA routes (RR 0.80, 95% CI 0.54 to 1.18; three RCTs, 95 participants; low-quality evidence). Single-study data show no clear difference in amputation rates between BM-MNC- and mPBSC-treated groups (RR 1.54, 95% CI 0.45 to 5.24; 150 participants; low-quality evidence) and between high and low cell dose (RR 3.21, 95% CI 0.87 to 11.90; 16 participants; very low-quality evidence). The study comparing BM-MNCs versus BM-MSCs reported no amputations.Single-study data with low-quality evidence show similar numbers of participants with healing ulcers between BM-MNCs and mPBSCs (RR 0.89, 95% CI 0.44 to 1.83; 49 participants) and between IM and IA routes (RR 1.13, 95% CI 0.73 to 1.76; 41 participants). In contrast, more participants appeared to have healing ulcers in the BM-MSC group than in the BM-MNC group (RR 2.00, 95% CI 1.02 to 3.92; one RCT, 22 participants; moderate-quality evidence). Researchers comparing high versus low cell doses did not report ulcer healing.Single-study data show similar numbers of participants with reduction in rest pain between BM-MNCs and mPBSCs (RR 0.99, 95% CI 0.93 to 1.06; 104 participants; moderate-quality evidence) and between IM and IA routes (RR 1.22, 95% CI 0.91 to 1.64; 32 participants; low-quality evidence). One study reported no clear difference in rest pain scores between BM-MNC and BM-MSC (MD 0.00, 95% CI -0.61 to 0.61; 37 participants; moderate-quality evidence). Trials comparing high versus low cell doses did not report rest pain.Single-study data show no clear difference in the number of participants with increased ankle-brachial index (ABI; increase of > 0.1 from pretreatment), between BM-MNCs and mPBSCs (RR 1.00, 95% CI 0.71 to 1.40; 104 participants; moderate-quality evidence), and between IM and IA routes (RR 0.93, 95% CI 0.43 to 2.00; 35 participants; very low-quality evidence). In contrast, ABI scores appeared higher in BM-MSC versus BM-MNC groups (MD 0.05, 95% CI 0.01 to 0.09; one RCT, 37 participants; low-quality evidence). ABI was not reported in the high versus low cell dose comparison.Similar numbers of participants had improved transcutaneous oxygen tension (TcO₂) with IM versus IA routes (RR 1.22, 95% CI 0.86 to 1.72; two RCTs, 62 participants; very low-quality evidence). Single-study data with low-quality evidence show a higher TcO₂ reading in BM-MSC versus BM-MNC groups (MD 8.00, 95% CI 3.46 to 12.54; 37 participants) and in mPBSC- versus BM-MNC-treated groups (MD 1.70, 95% CI 0.41 to 2.99; 150 participants). TcO₂ was not reported in the high versus low cell dose comparison.Study authors reported no significant short-term adverse effects attributed to autologous cell implantation.

    AUTHORS' CONCLUSIONS: Mostly low- and very low-quality evidence suggests no clear differences between different stem cell sources and different treatment regimens of autologous cell implantation for outcomes such as all-cause mortality, amputation rate, ulcer healing, and rest pain for 'no-option' CLI patients. Pooled analyses did not show a clear difference in clinical outcomes whether cells were administered via IM or IA routes. High-quality evidence is lacking; therefore the efficacy and long-term safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients, remain to be confirmed.Future RCTs with larger numbers of participants are needed to determine the efficacy of cell-based therapy for CLI patients, along with the optimal cell source, phenotype, dose, and route of implantation. Longer follow-up is needed to confirm the durability of angiogenic potential and the long-term safety of cell-based therapy.

    Matched MeSH terms: Peripheral Blood Stem Cell Transplantation/methods*; Mesenchymal Stem Cell Transplantation/methods*
  12. Kamarul T
    Expert Rev Clin Pharmacol, 2013 Jul;6(4):363-5.
    PMID: 23927663 DOI: 10.1586/17512433.2013.811804
    The World Stem Cells & Regenerative Medicine Congress Asia 2013 held in Singapore from 19-21 March 2013 was attended by over 2000 industry attendees and 5000 registered visitors. The focus of the congress was to discuss potential uses of stem cells for various diagnostic and therapeutic applications, their market opportunity and the latest R&D, which would potentially find its way into the market in not too distant future. In addition to the traditional lectures presented by academic and industry experts, there were forums, discussions, posters and exhibits, which provided various platforms for researchers, potential industry partners and even various interest groups to discuss prospective development of the stem cell-related industry.
    Matched MeSH terms: Stem Cell Transplantation/trends*
  13. Bee PC, Gan GG, Sangkar VJ, Haris AR, Chin E
    Med J Malaysia, 2011 Dec;66(5):451-5.
    PMID: 22390100 MyJurnal
    Haematopoietic stem cell transplantation (HSCT) was started in Malaysia since 1993 and it has improved the survival of patients with otherwise fatal haematological diseases. This study was initiated because quality of life of these survivors is an important tool in assessing the outcome of this treatment modality. The secondary objective was to identify factors that influenced their quality of life. The European Organization of Research and Treatment of Cancer Quality of Life Questionnaire (EORTC-30) was used to assess the quality of life of eligible patients. A total of 62 patents were recruited. The mean global health score (QoL) was 71.2. The major symptoms faced by our patients were fatigue, financial difficulty and appetite loss. Appetite loss was an independent adverse factor for lower QoL.
    Matched MeSH terms: Hematopoietic Stem Cell Transplantation*
  14. Fadilah SA, Aqilah MP
    Stem Cell Rev Rep, 2012 Dec;8(4):1254-64.
    PMID: 22836809 DOI: 10.1007/s12015-012-9401-8
    Allogeneic hematopoietic stem cell transplantation (HSCT) remains a potential curative option for many patients with hematological malignancies (HM). However, the high rate of transplantation-related mortality (TRM) restricted the use of standard myeloablative HSCT to a minority of young and fit patients. Over the past few years, it has become evident that the alloreactivity of the immunocompetent donor cells mediated anti-malignancy effects independent of the action of high dose chemoradiotherapy. The use of reduced intensity conditioning (RIC) regimens has allowed a graft-versus-malignancy (GvM) effect to be exploited in patients who were previously ineligible for HSCT on the grounds of age and comorbidity. Retrospective analysis showed that RIC has been associated with lower TRM but a higher relapse rate leading to similar intermediate term overall and progression-free survivals when compared to standard myeloablative HSCT. However, the long term antitumor effect of this approach is less well established. Prospective studies are ongoing to define which patients might most benefit from reduced toxicity stem cell transplant (RT-SCT) and which transplant protocols are suitable for the different types of HM. The advent of RT-SCT permits the delivery of a potentially curative GvM effect to the majority of patients with HM whose outcome with conventional chemotherapy would be dismal. Remaining challenges include development of effective strategies to reduce relapse rates by augmenting GvM effects without increasing toxicity.
    Matched MeSH terms: Hematopoietic Stem Cell Transplantation/methods*
  15. Chin SP, Poey AC, Wong CY, Chang SK, Tan CS, Ng MT, et al.
    Cytotherapy, 2011 Aug;13(7):814-21.
    PMID: 21526902 DOI: 10.3109/14653249.2011.574118
    BACKGROUND AIMS: Mesenchymal stromal cells (MSC) may improve cardiac function following myocardial infarction. MSC can differentiate into cardiomyocytes and endothelial cells while exerting additional paracrine effects. There is limited information regarding the efficacy of route for MSC treatment of severe dilated cardiomyopathy (DCM). The aim of this study was to demonstrate the clinical safety, feasibility and efficacy of direct intramyocardial and intracoronary administration of autologous bone marrow-derived MSC treatment for no-option patients with chronic severe refractory DCM.

    METHODS: Ten symptomatic patients with DCM and refractory cardiac function, despite maximum medical therapy, were selected. Five had ischemic DCM deemed unlikely to benefit from revascularization alone and underwent bypass operations with concurrent intramyocardial MSC injection (group A). Two patients had previous revascularization and three had non-ischemic DCM and received intracoronary MSC injection (group B).

    RESULTS: Group A and B patients received 0.5-1.0 × 10(6) and 2.0-3.0 × 10(6) MSC/kg body weight, respectively. All patients remained alive at 1 year. There were significant improvements from baseline to 6 and 12 months in left ventricular ejection fraction and other left ventricular parameters. Scar reduction was noted in six patients by 12 months.

    CONCLUSIONS: Autologous bone marrow MSC treatment is safe and feasible for treating chronic severe refractory DCM effectively, via intracoronary or direct intramyocardial administration at prescribed doses.

    Matched MeSH terms: Mesenchymal Stem Cell Transplantation*
  16. Fadilah SA
    Med J Malaysia, 2010 Sep;65(3):231-9.
    PMID: 21939177
    Progress in our understanding of multiple myeloma and its treatment has resulted in a more tailored approach to patient management, with different therapeutics regimens for different patient populations. The decision to initiate therapy depends primarily on the presence of symptoms which has to balance the chance of tumor clearance and against the risks of treatment related mortality. Selection of appropriate initial treatment should be based primarily on patient's characteristics (biologic age, co-morbidities), the disease characteristics (tumor burden and genetic risk profile) and the expected toxicity profile of the different regimens. When treatment begins, in younger transplant eligible patients the goal is to achieve high quality responses with intensive therapies as the quality of response appears to be important surrogates for long-term outcome. In the majority of myeloma patients in whom intensive treatment is not an option due to advanced age and co-morbidities, treatment should emphasize on optimal disease control to obtain symptomatic relief and to maintain a satisfactory quality of life. The introduction of novel agents has substantially changed the treatment paradigm of this otherwise incurable disease. The utilization of these drugs has moved from relapse setting to the front line setting and has benefited all patient groups. Because of these rapid developments and many treatment options we need good quality clinical studies to guide clinical practice in the management of patients with multiple myeloma. This review presents an update on current concepts of diagnosis and treatment of patients with multiple myeloma and provides recommendations on tailored therapies with particular reference to the local practice. The information presented herein may be used by the health care providers caring for myeloma patients as a guideline to counsel patients to understand their disease and the treatment better.
    Matched MeSH terms: Stem Cell Transplantation*
  17. Choong SS, Rosmanizam S, Ibrahim K, Gan GG, Ariffin H
    Int J Lab Hematol, 2011 Apr;33(2):182-6.
    PMID: 20868447 DOI: 10.1111/j.1751-553X.2010.01264.x
    Analysis of variable number tandem repeats (VNTRs) by polymerase chain reaction (PCR) is a common method used to predict engraftment status in post-allogeneic haematopoeitic stem cell transplantation (HSCT) patients. Different populations have different copies of repeated DNA sequence and hence, different percentage of informativeness between patient and donor.
    Matched MeSH terms: Hematopoietic Stem Cell Transplantation/methods*
  18. Bee PC, Gan GG, Sangkar VJ, Haris AR
    Med J Malaysia, 2008 Mar;63(1):71-2.
    PMID: 18935742 MyJurnal
    Nephrotic syndrome (NS) is a well documented complication after allogeneic peripheral blood stem cell transplantation. It is usually due to autoimmune glomerulonephritis and thought to be a clinical manifestation of graft versus host disease. NS has also been reported to be associated with other hematological malignancies. We report a case of nephrotic syndrome in a patient who relapsed after allogeneic peripheral blood stem cell transplantation (PBSCT) for chronic myeloid leukemia (CML). The renal biopsy was suggestive of minimal change disease. There was no other evidence of graft versus host disease. He was treated with high dose prednisolone, with no response and finally succumbed to the underlying disease.
    Matched MeSH terms: Peripheral Blood Stem Cell Transplantation/adverse effects*
  19. Choong SN, Ng YK, Kamalan A, Saraswathy S, Goh EH, Lee MJ, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:55-6.
    PMID: 19024981
    This study evaluates the effect of maternal age, birth weight and infant sex on two main UCB parameters for use and long-term cryopreservation: TNC and volume. Data from 1000 UCB units were collected and analyzed in this study. The results indicate that TNC is correlated to infant birth weight and sex but not maternal age at delivery. Volume is only correlated to birth weight but not maternal age and infant sex.
    Matched MeSH terms: Cord Blood Stem Cell Transplantation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links