Displaying publications 41 - 60 of 81 in total

Abstract:
Sort:
  1. Habib SH, Makpol S, Abdul Hamid NA, Das S, Ngah WZ, Yusof YA
    Clinics (Sao Paulo), 2008 Dec;63(6):807-13.
    PMID: 19061005
    OBJECTIVE: To evaluate the effect of ginger extract on the expression of NFkappaB and TNF-alpha in liver cancer-induced rats.

    METHODS: Male Wistar rats were randomly divided into 5 groups based on diet: i) control (given normal rat chow), ii) olive oil, iii) ginger extract (100mg/kg body weight), iv) choline-deficient diet + 0.1% ethionine to induce liver cancer and v) choline-deficient diet + ginger extract (100mg/kg body weight). Tissue samples obtained at eight weeks were fixed with formalin and embedded in paraffin wax, followed by immunohistochemistry staining for NFkappaB and TNF-alpha.

    RESULTS: The expression of NFkappaB was detected in the choline-deficient diet group, with 88.3 +/- 1.83% of samples showing positive staining, while in the choline-deficient diet supplemented with ginger group, the expression of NFkappaB was significantly reduced, to 32.35 +/- 1.34% (p<0.05). In the choline-deficient diet group, 83.3 +/- 4.52% of samples showed positive staining of TNF-alpha, which was significantly reduced to 7.94 +/- 1.32% (p<0.05) when treated with ginger. There was a significant correlation demonstrated between NFkappaB and TNF-alpha in the choline-deficient diet group but not in the choline-deficient diet treated with ginger extract group.

    CONCLUSION: In conclusion, ginger extract significantly reduced the elevated expression of NFkappaB and TNF-alpha in rats with liver cancer. Ginger may act as an anti-cancer and anti-inflammatory agent by inactivating NFkappaB through the suppression of the pro-inflammatory TNF-alpha.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  2. Batumalaie K, Amin MA, Murugan DD, Sattar MZ, Abdullah NA
    Sci Rep, 2016 06 02;6:27236.
    PMID: 27250532 DOI: 10.1038/srep27236
    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  3. Bukhari SN, Lauro G, Jantan I, Bifulco G, Amjad MW
    Bioorg Med Chem, 2014 Aug 1;22(15):4151-61.
    PMID: 24938495 DOI: 10.1016/j.bmc.2014.05.052
    Arachidonic acid and its metabolites have generated high level of interest among researchers due to their vital role in inflammation. The inhibition of enzymes involved in arachidonic acid metabolism has been considered as synergistic anti-inflammatory effect. A series of novel α,β-unsaturated carbonyl based compounds were synthesized and evaluated for their inhibitory activity on secretory phospholipase A₂ (sPLA₂), cyclooxygenases (COX), soybean lipoxygenase (LOX) in addition to proinflammatory cytokines comprising IL-6 and TNF-α. Six α,β-unsaturated carbonyl based compounds (2, 3, 4, 12, 13 and 14) exhibited strong inhibition of sPLA₂ activity, with IC₅₀ values in the range of 2.19-8.76 μM. Nine compounds 1-4 and 10-14 displayed inhibition of COX-1 with IC₅₀ values ranging from 0.37 to 1.77 μM (lower than that of reference compound), whereas compounds 2, 10, 13 and 14 strongly inhibited the COX-2. The compounds 10-14 exhibited strong inhibitory activity against LOX enzyme. All compounds were evaluated for the inhibitory activities against LPS-induced TNF-α and IL-6 release in the macrophages. On the basis of screening results, five active compounds 3, 4, 12, 13 and 14 were found strong inhibitors of TNF-α and IL-6 release in a dose-dependent manner. Molecular docking experiments were performed to clarify the molecular aspects of the observed COX and LOX inhibitory activities of the investigated compounds. Present findings increases the possibility that these α,β-unsaturated carbonyl based compounds might serve as beneficial starting point for the design and development of improved anti-inflammatory agents.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  4. Jose S, Tan SW, Ooi YY, Ramasamy R, Vidyadaran S
    J Neuroinflammation, 2014;11:149.
    PMID: 25182840 DOI: 10.1186/s12974-014-0149-8
    Progression of neurodegenerative diseases occurs when microglia, upon persistent activation, perpetuate a cycle of damage in the central nervous system. Use of mesenchymal stem cells (MSC) has been suggested as an approach to manage microglia activation based on their immunomodulatory functions. In the present study, we describe the mechanism through which bone marrow-derived MSC modulate the proliferative responses of lipopolysaccharide-stimulated BV2 microglia.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism*
  5. Hussein SZ, Mohd Yusoff K, Makpol S, Mohd Yusof YA
    PLoS One, 2013;8(8):e72365.
    PMID: 24015236 DOI: 10.1371/journal.pone.0072365
    The activation of nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of a number of inflammatory diseases. In this study, we investigated the anti-inflammatory mechanism of Gelam honey in inflammation induced rats via NF-κB signalling pathway. Rats paw edema was induced by subplantar injection of 1% carrageenan into the right hind paw. Rats were pre-treated with Gelam honey at different doses (1 or 2 g/kg, p.o.) and NSAID Indomethacin (10 mg/kg, p.o.), in two time points (1 and 7 days). Our results showed that Gelam honey at both concentrations suppressed the gene expressions of NF-κB (p65 & p50) and IκBα in inflamed rats paw tissues. In addition, Gelam honey inhibited the nuclear translocation and activation of NF-κB and decreased the cytosolic degradation of IκBα dose dependently in inflamed rats paw tissues. The immunohistochemical expressions of pro-inflammatory mediators COX-2 and TNF-α were also decreased in inflamed rats paw tissues when treated with Gelam honey. The results of our findings suggest that Gelam honey exhibits its inhibitory effects by attenuating NF-κB translocation to the nucleus and inhibiting IκBα degradation, with subsequent decrease of inflammatory mediators COX-2 and TNF-α.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  6. Sakthiswary R, Das S
    Curr Drug Targets, 2013 Dec;14(13):1552-7.
    PMID: 23848441
    Osteoporosis is a common complication observed in rheumatoid arthritis (RA). Accelerated bone loss is always a matter of concern. The pathogenesis of RA may be important for better understanding of the bone loss. The mechanism involved in the bone loss in RA is not well understood although cytokines such as interleukin 1 and tumour necrosis factor α (TNF α) have been strongly implicated. TNF α antagonists have revolutionised the treatment of RA in the recent years. Beyond the control of disease activity in RA, accumulating evidence suggests that this form of therapy may provide beneficial effects to the bone metabolism and remodeling. An extensive search of the literature was performed in the Medline, Scopus and EBSCO databases to evaluate the documented research on the effects of TNF α antagonists in RA on bone mineral density and bone turnover markers. The available data based on our systematic review, depict a significant association between TNF α antagonists treatment and suppression of bone resorption.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  7. Muniandy S, Qvist R, Yan GO, Bee CJ, Chu YK, Rayappan AV
    J. Med. Invest., 2009 Feb;56(1-2):6-10.
    PMID: 19262007
    Hyperglycemia and insulin resistance are common in many critically ill patients. Hyperglycemia increases the production of reactive oxygen species in cells, stimulates the production of the potent proinflammatory cytokines IL-8 and TNF-alpha, and enhances the expression of haem oxygenase-1, an inducible stress protein. It has been shown that administration of insulin and the semi-essential amino acid glutamine have been beneficial to the septic patient. The aim of our study is to test whether these two molecules, glutamine and insulin used in combination attenuate the proinflammatory responses in endothelial cells which have been triggered by hyperglycaemia. Our results demonstrate that a combination of insulin and glutamine are significantly more effective in reducing the expression of IL-8, TNF-alpha and HO-1 than insulin or glutamine alone.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  8. Lim WS, Ng DL, Kor SB, Wong HK, Tengku-Muhammad TS, Choo QC, et al.
    Cytokine, 2013 Jan;61(1):266-74.
    PMID: 23141142 DOI: 10.1016/j.cyto.2012.10.007
    Peroxisome proliferator activated receptor-alpha (PPARα) plays a major role in the regulation of lipid and glucose homeostasis, and inflammatory responses. The objectives of the study were to systematically investigate the effects of TNF-α and its regulatory pathway on PPARα expression in HepG2 cells using Real-Time RT-PCR and western blot analysis. Here, TNF-α suppressed PPARα mRNA expression in a dose- and time-dependent manner at the level of gene transcription. Pre-treatment of cells with 10μM of Wedelolactone for 2h was sufficient to restore PPARα expression to basal levels and also affected the expression of PPARα-regulated genes. This study also demonstrated that TNF-α represses PPARα expression by augmenting the activity of canonical NF-κB signalling pathway. This was shown by the abrogation of TNF-α-mediated PPARα down-regulation, after both p65 and p50 were knocked down via siRNA. The IKK contributes to IκBα degradation and mediates inducible phosphorylation of p105 at Ser933. Surprisingly, phosphorylation of p65 at Ser468 and Ser536 were severely abrogated with Wedelolactone inhibition, suggesting that Ser468 and Ser536, but not Ser276, may mediate the TNF-α inhibitory action on PPARα gene expression. These results suggest that TNF-α might, at least in part, suppress PPARα expression through activation of IKK/p50/p105/p65 pathway. Furthermore, phosphorylation of p65 at Ser468 and Ser536 may play a crucial role in the mechanism that limits PPARα production in the human HepG2 cells.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism*
  9. Looi CY, Arya A, Cheah FK, Muharram B, Leong KH, Mohamad K, et al.
    PLoS One, 2013;8(2):e56643.
    PMID: 23437193 DOI: 10.1371/journal.pone.0056643
    Centratherum anthelminticum (L.) seeds (CA) is a well known medicinal herb in Indian sub-continent. We recently reported anti-oxidant property of chloroform fraction of Centratherum anthelminticum (L.) seeds (CACF) by inhibiting tumor necrosis factor-α (TNF-α)-induced growth of human breast cancer cells. However, the active compounds in CACF have not been investigated previously.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  10. Chan PM, Tan YS, Chua KH, Sabaratnam V, Kuppusamy UR
    PLoS One, 2015;10(10):e0139593.
    PMID: 26427053 DOI: 10.1371/journal.pone.0139593
    Amauroderma rugosum, commonly known as "Jiǎzī" in China, is a wild mushroom traditionally used by the Chinese to reduce inflammation, to treat diuretic and upset stomach, and to prevent cancer. It is also used by the indigenous communities in Malaysia to prevent epileptic episodes and incessant crying by babies. The aim of this study was to compare the wild and domesticated basidiocarps of A. rugosum for antioxidant and in vitro anti-inflammatory effects in LPS-stimulated RAW264.7 cells. The wild basidiocarps of A. rugosum were collected from the Belum Forest, Perak, Malaysia and the domesticated basidiocarps of A. rugosum were cultivated in the mushroom house located in the University of Malaya, Kuala Lumpur, Malaysia. Both the wild and domesticated basidiocarps were subjected to ethanolic extraction and the extracts were tested for antioxidant and anti-inflammatory activities. In this study, the crude ethanolic extract of wild (WB) and domesticated (DB) basidiocarps of A. rugosum had comparable total phenolic content and DPPH scavenging activity. However, WB (EC50 = 222.90 μg/mL) displayed a better ABTS cation radical scavenging activity than DB (EC50 = 469.60 μg/mL). Both WB and DB were able to scavenge nitric oxide (NO) radical and suppress the NO production in LPS-stimulated RAW264.7 cells and this effect was mediated through the down-regulation of inducible nitric oxide synthase (iNOS) gene. In addition, both WB and DB caused down-regulation of the inflammatory gene TNF-α and the up-regulation of the anti-inflammatory gene IL-10. There was no inhibitory effect of WB and DB on nuclear translocation of NF-κB p65. In conclusion, the wild and domesticated basidiocarps of A. rugosum possessed antioxidant and in vitro anti-inflammatory properties. WB and DB inhibited downstream inflammatory mediators (TNF-α and NO) and induced anti-inflammatory cytokine IL-10 production. No inhibitory effects shown on upstream nuclear translocation of NF-κB p65. WB and DB exhibited antioxidant activity and attenuation of proinflammatory mediators and therefore, A. rugosum may serve as a potential therapeutic agent in the management of inflammation.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism*
  11. Zulaziz N, Azhim A, Himeno N, Tanaka M, Satoh Y, Kinoshita M, et al.
    Hum. Cell, 2015 Oct;28(4):159-66.
    PMID: 25997703 DOI: 10.1007/s13577-015-0118-2
    Antibacterial photodynamic therapy (PDT) has come to attract attention as an alternative therapy for drug-resistant bacteria. Recent reports revealed that antibacterial PDT induces innate immune response and stimulates abundant cytokine secretion as a part of inflammatory responses. However, the underlying mechanism how antibacterial PDT interacts with immune cells responsible for cytokine secretion has not been well outlined. In this study, we aimed to clarify the difference in gene expression and cytokine secretion between combined culture of fibroblasts and macrophages and their independent cultures. SCRC-1008, mouse fibroblast cell line and J774, mouse macrophage-like cell line were co-cultured and PDT treatments with different parameters were carried out. After various incubation periods (1-24 h), cells and culture medium were collected, and mRNA and protein levels for cytokines were measured using real-time PCR and ELISA, respectively. Our results showed that fibroblasts and macrophages interact with each other to mediate the immune response. We propose that fibroblasts initially respond to PDT by expressing Hspa1b, which regulates the NF-κB pathway via Tlr2 and Tlr4. Activation of the NF-κB pathway then results in an enhanced secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and neutrophil chemoattractant MIP-2 and KC from macrophages.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  12. Harun A, Vidyadaran S, Lim SM, Cole AL, Ramasamy K
    PMID: 26047814 DOI: 10.1186/s12906-015-0685-5
    Excessive production of inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokines like tumour necrosis factor-alpha (TNF-α) from activated microglia contributes to uncontrolled inflammation in neurodegenerative diseases. This study investigated the protective role of five endophytic extracts (HAB16R12, HAB16R13, HAB16R14, HAB16R18 and HAB8R24) against LPS-induced inflammatory events in vitro. These endophytic extracts were previously found to exhibit potent neuroprotective effect against LPS-challenged microglial cells.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  13. Prakash A, Kumar A, Ming LC, Mani V, Majeed AB
    J Mol Neurosci, 2015 Jul;56(3):739-50.
    PMID: 25854775 DOI: 10.1007/s12031-015-0508-7
    Alzheimer's disease (AD) is a neurodegenerative disease characterized by impaired memory function and oxidative damage. NO is a major signaling molecule produced in the central nervous system to modulate neurological activity through modulating nitric oxide synthase. Recently, PPAR-γ agonists have shown neuroprotective effects in neurodegenerative disorders. However, there have been only a few studies identifying mechanisms through which cognitive benefits may be exerted. The present study was designed to investigate the possible nitric oxide mechanism in the protective effect of pioglitazone against streptozotocin (STZ)-induced memory dysfunction. Wistar rats were intracerebroventricularly (ICV) injected with STZ. Then rats were treated with pioglitazone, NO modulators [L-arginine and nitro-L-arginine methyl ester (L-NAME)] for 21 days. Behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and mito-oxidative parameters, TNF-α, IL-6, and caspase-3 activity were measured. STZ-treated rats showed a memory deficit and significantly increased in mito-oxidative damage and inflammatory mediators and apoptosis in the hippocampus. Chronic treatment of pioglitazone significantly improved memory retention and attenuated mito-oxidative damage parameters, inflammatory markers, and apoptosis in STZ-treated rats. However, L-arginine pretreatment with lower dose of pioglitazone has not produced any protective effect as compared to per se. Furthermore, pretreatment of L-NAME significantly potentiated its protective effect, which indicates the involvement of nitric oxide for activation of PPAR-γ action. These results demonstrate that pioglitazone offers protection against STZ-induced memory dysfunction possibly due to its antioxidant, anti-inflammatory, and anti-apoptotic action mediating nitric oxide pathways and, therefore, could have a therapeutic potential in AD.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  14. Jayasingh Chellammal HS, Veerachamy A, Ramachandran D, Gummadi SB, Manan MM, Yellu NR
    Biomed Pharmacother, 2019 Jan;109:1454-1461.
    PMID: 30551397 DOI: 10.1016/j.biopha.2018.10.189
    The progressive accumulation of amyloid beta (Aβ) peptide is neurotoxic and leads to Alzheimer's type dementia. Accumulation of Aβ has been associated with dysfunction of hypothalamic-pituitary-adrenal (HPA) axis and elevated pro-inflammatory cytokines. In this study, we investigated the effect of 1`δ-1`-acetoxyeugenol acetate (DAEA), isolated from Alpinia galanga (L.), on Aβ(25-35) induced neurodegeneration in mice. Mice were treated with three different doses of DAEA (12.5 mg/kg, 25 mg/kg and 50 mg/kg) for 28 days. Aβ(25-35) was injected by intracerebroventricular (i.c.v.) injection on the 15th day of 28 days. Open field, water maze and step-down inhibitory tests were performed on the 27th day to determine the habituation memory, spatial learning, and short- and long-term memory, respectively. Acetylcholinesterase (AChE), Corticosterone, biogenic amines (serotonin and dopamine), tumour necrosis factor-α (TNF-α), and antioxidant parameters such as superoxide dismutase, catalase, glutathione peroxidase and vitamin C were evaluated in brain homogenates after behavioural tests to ascertain the cognitive improvement through neuro-immune-endocrine modulation. The DAEA treatment with 25 mg/kg and 50 mg/kg resulted in significant (p < 0.001) improvement of habituation memory and step-down inhibitory avoidance task. In spatial learning, the cognitive improvement was significantly improved (p < 0.001) by reduction in escape latency. In the biochemical study, the significant (p < 0.001) reduction of AChE indicates the preeminent neuroprotection. Corticosterone and TNF-α were significantly (p < 0.01) reduced and biogenic amines were increased with antioxidant markers, which signify the potential influence of DAEA on neuroprotection. Our investigation revealed that the drug DAEA attenuates stress mediated through the HPA axis and regulates the neuroendocrine and neuroimmune function to improve the cognition. DAEA could be a potential lead candidate for the treatment of neurodegeneration.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  15. Subramani T, Yeap SK, Ho WY, Ho CL, Omar AR, Aziz SA, et al.
    J Cell Mol Med, 2014 Feb;18(2):305-13.
    PMID: 24266867 DOI: 10.1111/jcmm.12188
    Vitamin C is generally thought to enhance immunity and is widely taken as a supplement especially during cancer treatment. Tamoxifen (TAM) has both cytostatic and cytotoxic properties for breast cancer. TAM engaged mitochondrial oestrogen receptor beta in MCF-7 cells and induces apoptosis by activation of pro-caspase-8 followed by downstream events, including an increase in reactive oxygen species and the release of pro-apoptotic factors from the mitochondria. In addition to that, TAM binds with high affinity to the microsomal anti-oestrogen-binding site and inhibits cholesterol esterification at therapeutic doses. This study aimed to investigate the role of vitamin C in TAM-mediated apoptosis. Cells were loaded with vitamin C by exposure to dehydroascorbic acid, thereby circumventing in vitro artefacts associated with the poor transport and pro-oxidant effects of ascorbic acid. Pre-treatment with vitamin C caused a dose-dependent attenuation of cytotoxicity, as measured by acridine-orange/propidium iodide (AO/PI) and Annexin V assay after treatment with TAM. Vitamin C dose-dependently protected cancer cells against lipid peroxidation caused by TAM treatment. By real-time PCR analysis, an impressive increase in FasL and tumour necrosis factor-α (TNF-α) mRNA was detected after TAM treatment. In addition, a decrease in mitochondrial transmembrane potential was observed. These results support the hypothesis that vitamin C supplementation during cancer treatment may detrimentally affect therapeutic response.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  16. Veeraveedu PT, Sanada S, Okuda K, Fu HY, Matsuzaki T, Araki R, et al.
    Biochem Pharmacol, 2017 Aug 15;138:73-80.
    PMID: 28450225 DOI: 10.1016/j.bcp.2017.04.022
    BACKGROUND AND PURPOSE: ST2 is one of the interleukin (IL)-1 receptor family members comprising of membrane-bound (ST2L) and soluble (sST2) isoforms. Clinical trials have revealed that serum sST2 levels predict outcome in patient with myocardial infarction or chronic heart failure (HF). Meanwhile, we and others have reported that ablation of ST2 caused exaggerated cardiac remodeling in both ischemic and non-ischemic HF. Here, we tested whether IL-33, the ligand for ST2, protects myocardium against HF induced by mechanical overload using ligand specific knockout (IL-33(-/-)) mice.

    METHODS AND RESULTS: Transverse aortic constriction (TAC)/sham surgery were carried out in both IL-33 and WT-littermates. Echocardiographic measurements were performed at frequent interval during the study period. Heart was harvested for RNA and histological measurements. Following mechanical overload by TAC, myocardial mRNA expressions of Th1 cytokines, such as TNF-α were enhanced in IL-33(-/-) mice than in WT mice. After 8-weeks, IL-33(-/-) mice exhibited exacerbated left ventricular hypertrophy, increased chamber dilation, reduced fractional shortening, aggravated fibrosis, inflammation, and impaired survival compared with WT littermates. Accordingly, myocardial mRNA expressions of hypertrophic (c-Myc/BNP) molecular markers were also significantly enhanced in IL-33(-/-) mice than those in WT mice.

    CONCLUSIONS: We report for the first time that ablation of IL-33 directly and significantly leads to exacerbate cardiac remodeling with impaired cardiac function and survival upon mechanical stress. These data highlight the cardioprotective role of IL-33/ST2 system in the stressed myocardium and reveal a potential therapeutic role for IL-33 in non-ischemic HF.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  17. Mariod AA, Salama SM
    ScientificWorldJournal, 2020;2020:6326452.
    PMID: 32549800 DOI: 10.1155/2020/6326452
    The current study has been conducted to evaluate the effect of different processing techniques on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity and the gastroprotective potential of Chenopodium quinoa red seeds in acute gastric injury induced by absolute ethanol in rats. Seven groups of female Sprague Dawley rats were assigned to normal and absolute ethanol (absolute EtOH) groups, given distilled water, reference control omeprazole (OMP, 20 mg/kg), pressure-cooked quinoa seeds (QP, 200 mg/kg), first stage-germinated quinoa seeds (QG, 200 mg/kg), Lactobacillus plantarum bacteria-fermented quinoa seeds (QB, 200 mg/kg), and Rhizopus oligosporus fungus-fermented quinoa seeds (QF, 200 mg/kg). One hour after treatment, all groups were given absolute ethanol, except for the normal control rats. All animals were sacrificed after an additional hour, and the stomach tissues were examined for histopathology of hematoxylin and eosin staining, immunohistochemistry of cyclooxygenase 2 (COX-2), and nitric oxide synthase (iNOS). Stomach homogenates were evaluated for oxidative stress parameters and prostaglandin E2 (PGE2). Gene expression was performed for gastric tumor necrosis factor alpha (TNF-α) and nuclear factor kappa of B cells (NF-kB). QB and QG recorded the highest DPPH scavengers compared to QF and QP. The gastroprotective potential of QB was comparable to that of OMP, followed by QF, then QG, and QP as confirmed by the histopathology, immunohistochemistry, and gene expression assessments. In conclusion, differently processed red quinoa seeds revealed variable antioxidant capacity and gastroprotective potential, while the bacterial fermented seeds (QB) showed the highest potential compared to the other processing techniques. These results might offer promising new therapy in the treatment of acute gastric injury.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  18. Hor YY, Ooi CH, Lew LC, Jaafar MH, Lau AS, Lee BK, et al.
    J Appl Microbiol, 2021 Apr;130(4):1307-1322.
    PMID: 32638482 DOI: 10.1111/jam.14776
    AIM: The aim of this study was to evaluate the molecular mechanisms of Lactobacillus strains in improving ageing of the musculoskeletal system.

    METHODS AND RESULTS: The anti-ageing mechanism of three probiotics strains Lactobacillus fermentum DR9, Lactobacillus paracasei OFS 0291 and L. helveticus OFS 1515 were evaluated on gastrocnemius muscle and tibia of d-galactose-induced ageing rats. Upon senescence induction, aged rats demonstrated reduced antioxidative genes CAT and SOD expression in both bone and muscle compared to the young rats (P 

    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  19. Khan HU, Aamir K, Jusuf PR, Sethi G, Sisinthy SP, Ghildyal R, et al.
    Life Sci, 2021 Jan 15;265:118750.
    PMID: 33188836 DOI: 10.1016/j.lfs.2020.118750
    BACKGROUND: Lipopolysaccharide (LPS) is an endotoxin that leads to inflammation in many organs, including liver. It binds to pattern recognition receptors, that generally recognise pathogen expressed molecules to transduce signals that result in a multifaceted network of intracellular responses ending up in inflammation. Aim In this study, we used lauric acid (LA), a constituent abundantly found in coconut oil to determine its anti-inflammatory role in LPS-induced liver inflammation in Sprague Dawley (SD) rats.

    METHOD: Male SD rats were divided into five groups (n = 8), injected with LPS and thereafter treated with LA (50 and 100 mg/kg) or vehicle orally for 14 days. After fourteen days of LA treatment, all the groups were humanely killed to investigate biochemical parameters followed by pro-inflammatory cytokine markers; tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β. Moreover, liver tissues were harvested for histopathological studies and evaluation of targeted protein expression with western blot and localisation through immunohistochemistry (IHC).

    RESULTS: The study results showed that treatment of LA 50 and 100 mg/kg for 14 days were able to reduce the elevated level of pro-inflammatory cytokines, liver inflammation, and downregulated the expression of TLR4/NF-κB mediating proteins in liver tissues.

    CONCLUSION: These findings suggest that treatment of LA has a protective role against LPS-induced liver inflammation in rats, thus, warrants further in-depth investigation through mechanistic approaches in different study models.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  20. Salga MS, Ali HM, Abdulla MA, Abdelwahab SI
    Chem Biol Interact, 2012 Jan 25;195(2):144-53.
    PMID: 22178775 DOI: 10.1016/j.cbi.2011.11.008
    Zinc complexes were reported to have anti-ulcer activity and used as drug for the treatment of gastrointestinal disorders. A novel compound dichlorido-zinc(II)-4-(2-(5-methoxybenzylidene amino)ethyl)piperazin-1-iumphenolate (ZnHMS) was synthesized, characterized and evaluated for its gastroprotective activity against ethanol-induced ulcer in rats. Gross and microscopic lesions, histochemical staining of glycogen storage, biochemical and immunological parameters were taken into consideration. Oral administration of ZnHMS (30 and 60 mg/kg; 14 days) dose-dependently inhibited gastric lesions. It significantly increased the mucus content and total acidity compared to the control group (P<0.01). Serum levels of aspartate (AST), alanine (ALT) transaminases, pro-inflammatory interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and anti-inflammatory interleukin-10 (IL-10) in the rats exposed to ethanol induced ulceration have been altered. ZnHMS considerably enhances (P<0.05) the protection of gastric epithelia by modulating the acute alterations of AST, ALT, IL-6, IL-10, TNF-α and stomach glycogen. Interestingly, ZnHMS did interfere with the natural release of nitric oxide. In addition, acute toxicity study revealed no abnormal sign to the rats treated with ZnHMS (2000 mg/kg). These findings suggest that the gastroprotective activity of ZnHMS might contribute in adjusting the inflammatory cytokine-mediated oxidative damage to the gastric mucosa.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links