Displaying publications 41 - 60 of 60 in total

Abstract:
Sort:
  1. Yusop Z, Tan LW, Ujang Z, Mohamed M, Nasir KA
    Water Sci Technol, 2005;52(9):125-32.
    PMID: 16445181
    Runoff quality draining from 17.14 km2 urban catchment in Johor Bahru, Malaysia, was analysed. The land-use consists of residential (30.3%), agricultural (27.3%), open space (27.9%), industrial (8.1%) and commercial (6.4%) areas. Three storm events were sampled in detail. These storms produced stormflow between 0.84 mm and 27.82 mm, and peakflow from 2.19 m3/s to 42.36 m3/s. Water quality showed marked variation during storms especially for TSS, BOD and COD with maximum concentrations of 778 mg/l, 135 mg/l and 358 mg/l, respectively. Concentrations of TOC, DOC, NH3-N, Fe and level of colour were also high. In general, the river quality is badly polluted and falls in Class V based on the Malaysian Interim National Water Quality Standards. Event Mean Concentrations (EMC) for various parameters varied considerably between storms. The largest storm produced higher EMC for TSS, NO3-N and SS whereas the smaller storms tend to register higher EMC for BOD, COD, NH3-N, TOC, Ca, K, Mg, Fe and Zn. Such variations could be explained in terms of pollutant availability and the effects of flushing and dilution. Based on a three-month average recurrence interval (ARI) of rainfall, the estimated event loadings (ton/ha) of TSS, BOD, COD, TOC, NH3-N and NO3-N were 0.055, 0.016, 0.012, 0.039, 0.010, 0.0007 and 0.0002, respectively. Heavy metals present in trace quantities. Storms with 3 months ARI could capture about 70% of the total annual loads of major pollutants.
    Matched MeSH terms: Water Movements
  2. Ismail R, Kassim MA, Inman M, Baharim NH, Azman S
    Water Sci Technol, 2002;46(9):179-83.
    PMID: 12448467
    Environmental monitoring was carried out at Upper Layang Reservoir situated in Masai, Johor, Malaysia. The study shows that thermal stratification and natural mixing of the water column do exist in the reservoir and the level of stratification varies at different times of the year. Artificial destratification via diffused air aeration techniques was employed at the reservoir for two months. The results show that thermal stratification was eliminated after a week of continuous aeration. The concentrations of iron and to a lesser extent manganese in the water column was also reduced during the aeration period.
    Matched MeSH terms: Water Movements
  3. Ismail BS, Ngan CK, Cheah UB, Abdullah WY
    Bull Environ Contam Toxicol, 2004 Apr;72(4):836-43.
    PMID: 15200001 DOI: 10.1007/s00128-004-0320-5
    Matched MeSH terms: Water Movements
  4. Marghany M
    J Environ Sci (China), 2004;16(1):44-8.
    PMID: 14971450
    RADARSAT data have a potential role for coastal pollution monitoring. This study presents a new approach to detect and forecast oil slick trajectory movements. The oil slick trajectory movements is based on the tidal current effects and Fay's algorithm for oil slick spreading mechanisms. The oil spill trajectory model contains the integration between Doppler frequency shift model and Lagrangian model. Doppler frequency shift model implemented to simulate tidal current pattern from RADARSAT data while the Lagrangian model used to predict oil spill spreading pattern. The classical Fay's algorithm was implemented with the two models to simulate the oil spill trajectory movements. The study shows that the slick lengths are effected by tidal current V component with maximum velocity of 1.4 m/s. This indicates that oil slick trajectory path is moved towards the north direction. The oil slick parcels are accumulated along the coastline after 48 h. The analysis indicated that tidal current V components were the dominant forcing for oil slick spreading.
    Matched MeSH terms: Water Movements
  5. Alam MZ, Fakhru'l-Razi A
    Water Res, 2003 Mar;37(5):1118-24.
    PMID: 12553987
    A study was conducted to evaluate the settleability and dewaterability of fungal treated and untreated sludge using liquid state bioconversion process. The fungal mixed culture of Aspergillus niger and Penicillium corylophilum was used for fungal pretreatment of wastewater sludge. The fungal strains immobilized/entrapped on sludge particles with the formation of pellets and enhanced the separation process. The results presented in this study showed that the sludge particles (pellets) size of 2-5mm of diameter were formed with the microbial treatment of sludge after 2 days of fermentation that contained maximum 33.7% of total particles with 3-3.5mm of diameter. The settling rate (measured as total suspended solids (TSS) concentration, 130 mg/l) was faster in treated sludge than untreated sludge (TSS concentration, 440 mg/l) after 1 min of settling time. In 1 min of settling operation, 86.45% of TSS was settled in treated sludge while 4.35% of TSS settled in raw sludge. Lower turbidity was observed in treated sludge as compared to untreated sludge. The results to specific resistance to filtration (SRF) revealed that the fungal inoculum had significant potentiality to reduce SRF by 99.8% and 98.7% for 1% w/w and 4% w/w of TSS sludge, respectively. The optimum fermentation period recorded was 3 days for 1% w/w sludge and 6 days for 4% w/w sludge, respectively, for dewaterability test.
    Matched MeSH terms: Water Movements
  6. Beck MW, Losada IJ, Menéndez P, Reguero BG, Díaz-Simal P, Fernández F
    Nat Commun, 2018 06 12;9(1):2186.
    PMID: 29895942 DOI: 10.1038/s41467-018-04568-z
    Coral reefs can provide significant coastal protection benefits to people and property. Here we show that the annual expected damages from flooding would double, and costs from frequent storms would triple without reefs. For 100-year storm events, flood damages would increase by 91% to $US 272 billion without reefs. The countries with the most to gain from reef management are Indonesia, Philippines, Malaysia, Mexico, and Cuba; annual expected flood savings exceed $400 M for each of these nations. Sea-level rise will increase flood risk, but substantial impacts could happen from reef loss alone without better near-term management. We provide a global, process-based valuation of an ecosystem service across an entire marine biome at (sub)national levels. These spatially explicit benefits inform critical risk and environmental management decisions, and the expected benefits can be directly considered by governments (e.g., national accounts, recovery plans) and businesses (e.g., insurance).
    Matched MeSH terms: Water Movements*
  7. Jensen JH, Saremi S, Jimenez C, Hadjioannou L
    Mar Pollut Bull, 2015 Dec 15;101(1):61-68.
    PMID: 26597564 DOI: 10.1016/j.marpolbul.2015.11.023
    The commonly adopted method of dumping dredge spoil at sea using split-hull barges leads to considerable sediment loss to the water column and a subsequent dispersion of fine material that can pose a risk to sensitive "downstream" habitats such as coral reefs. Containing sediment loads using stitched closed geotextile bags is practiced for minimizing loss of contaminated sediment, but is expensive in terms of operational efficiency. Following promising observations from initial laboratory trials, the plunging of partially shielded sediment loads, released on open sea, was studied. The partial shielding was achieved with rigid, open containers as well as flexible, open bags. The loss of sediment from these modes of shielding was measured, and it was observed that even limited and unstitched shielding can be effective in debilitating the entrainment of water into the descending load. In particular, long-sleeved flexible bags practically self-eliminated the exposure of the load and thus losses.
    Matched MeSH terms: Water Movements
  8. Chow MF, Yusop Z, Shirazi SM
    Environ Monit Assess, 2013 Oct;185(10):8321-31.
    PMID: 23591675 DOI: 10.1007/s10661-013-3175-6
    Information on the pollution level and the influence of hydrologic regime on the stormwater pollutant loading in tropical urban areas are still scarce. More local data are still required because rainfall and runoff generation processes in tropical environment are very different from the temperate regions. This study investigated the extent of urban runoff pollution in residential, commercial, and industrial catchments in the south of Peninsular Malaysia. Stormwater samples and flow rate data were collected from 51 storm events. Samples were analyzed for total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand, oil and grease (O&G), nitrate nitrogen (NO3-N), nitrite nitrogen, ammonia nitrogen, soluble reactive phosphorus, total phosphorus (TP), and zinc (Zn). It was found that the event mean concentrations (EMCs) of pollutants varied greatly between storm characteristics and land uses. The results revealed that site EMCs for residential catchment were lower than the published data but higher for the commercial and industrial catchments. All rainfall variables were negatively correlated with EMCs of most pollutants except for antecedent dry days (ADD). This study reinforced the earlier findings on the importance of ADD for causing greater EMC values with exceptions for O&G, NO3-N, TP, and Zn. In contrast, the pollutant loadings are influenced primarily by rainfall depth, mean intensity, and max 5-min intensity in all the three catchments. Overall, ADD is an important variable in multiple linear regression models for predicting the EMC values in the tropical urban catchments.
    Matched MeSH terms: Water Movements
  9. Ngu H, Wong KK, Law PL
    Water Environ Res, 2012 Apr;84(4):299-304.
    PMID: 22834217
    A circular gravity-phase separator using coalescing medium with cross flow was developed to remove oil and suspended solids from wastewaters. Coalescence medium in the form of inclined plates promotes rising of oil droplets through coalescence and settling of solid particles through coagulation. It exhibits 22.67% higher removal of total suspended solids (TSS) compared to separators without coalescing medium. Moreover, it removed more than 70% of oil compared to conventional American Petroleum Institute separators, which exhibit an average of 33% oil removal. The flowrate required to attain an effluent oil concentration of 10 mg/L (Q(o10)) at different influent oil concentrations (C(io)) can be represented by Q(o10) x 10(-5) = -0.0012C(io) + 0.352. The flowrate required to attain an effluent TSS concentration of 50 mg/L (Q(ss50)) at different influent TSS concentrations (C(iss)) can be represented by Q(ss50) x 10(-5) = 1.0 x 10(6) C(iss)(-2.9576). The smallest removable solid particle size was 4.87 microm.
    Matched MeSH terms: Water Movements
  10. Prasanna MV, Chidambaram S, Shahul Hameed A, Srinivasamoorthy K
    Environ Monit Assess, 2010 Sep;168(1-4):63-90.
    PMID: 19609693 DOI: 10.1007/s10661-009-1092-5
    Gadilam river basin has gained its importance due to the presence of Neyveli Lignite open cast mines and other industrial complexes. It is also due to extensive depressurization of Cuddalore aquifer, and bore wells for New Veeranam Scheme are constructed downstream of the basin. Geochemical indicators of groundwater were used to identify the chemical processes that control hydrogeochemistry. Chemical parameters of groundwater such as pH, electrical conductivity, total dissolved solids, sodium (Na(+)), potassium (K(+)), calcium (Ca(+)), magnesium (Mg(+)), bicarbonate (HCO(-)(3)), sulfate (SO(-)(4)), phosphate (PO(-)(4)), and silica (H(4)SiO(4)) were determined. Interpretation of hydrogeochemical data suggests that leaching of ions followed by weathering and anthropogenic impact controls the chemistry of the groundwater. Isotopic study reveals that recharge from meteoric source in sedimentary terrain and rock-water interaction with significant evaporation prevails in hard rock region.
    Matched MeSH terms: Water Movements
  11. Zainal Z, Lee CY, Hussein MZ, Kassim A, Yusof NA
    J Hazard Mater, 2005 Feb 14;118(1-3):197-203.
    PMID: 15721544
    Electrochemical-assisted photodegradation of methyl orange has been investigated using TiO2 thin films. The films were prepared by sol-gel dip-coating method. Several operational parameters to achieve optimum efficiency of this electrochemical-assisted photodegradation system have been tested. Photoelectrochemical degradation was studied using different light sources and light intensity. The light sources chosen ranged from ultraviolet to visible light. The effect of agitation of the solution at different speeds has also been studied. Slight improvement of photodegradation rate was observed by applying higher agitation speed. Investigation on the electrode after repeated usages show the electrode can be reused up to 20 times with percentage of deficiency less than 15%. The study on the effect of solution temperature indicated that the activation energy of the methyl orange degradation is 18.63 kJ mol(-1).
    Matched MeSH terms: Water Movements
  12. Saed K, Noor MJ, Abdullah AG, Salim MR, Nagaoka H, Aya H
    PMID: 15332674
    An evaluation of two commonly used coagulants, alum and ferric chloride was conducted to treat retention pond water using microfiltration. To determine the effectiveness of these coagulants in removing turbidity, color, and total suspended solids two different sets of the experiments were performed. Preliminary test was carried out to evaluate the optimum dosages of coagulants. Optimum turbidity removal was achieved with a 4 and 20 mg/L dosage for ferric chloride and alum, respectively. Generally, coupling microfiltration with coagulation using both alum and ferric chloride exhibited excellent effectiveness for turbidity, color, and total suspended solids removal. The efficiency for alum and ferric chloride for turbidity removal were 96 and 98%, respectively, which was greater than 89% removal using microfiltration alone. Furthermore, microfiltration only demonstrated 81 and 83% removal efficiency for color and total suspended solids removal, respectively. However, microfiltration-coagulation using alum and ferric chloride resulted about 83 and 93% color removal, and 92 and 94% total suspended solids removal, respectively.
    Matched MeSH terms: Water Movements
  13. Ujang Z, Wong CL, Manan ZA
    Water Sci Technol, 2002;46(11-12):77-84.
    PMID: 12523736
    Industrial wastewater minimization can be conducted using four main strategies: (i) reuse; (ii) regeneration-reuse; (iii) regeneration-recycling; and (iv) process changes. This study is concerned with (i) and (ii) to investigate the most suitable approach to wastewater minimization for an old textile industry plant. A systematic water networks design using water pinch analysis (WPA) was developed to minimize the water usage and wastewater generation for the textile plant. COD was chosen as the main parameter. An integrated design method has been applied, which brings the engineering insight using WPA that can determine the minimum flowrate of the water usage and then minimize the water consumption and wastewater generation as well. The overall result of this study shows that WPA has been effectively applied using both reuse and regeneration-reuse strategies for the old textile industry plant, and reduced the operating cost by 16% and 50% respectively.
    Matched MeSH terms: Water Movements
  14. Onyia CO, Uyu AM, Akunna JC, Norulaini NA, Omar AK
    Water Sci Technol, 2001;44(10):157-62.
    PMID: 11794647
    Malaysia is essentially an agricultural country and her major polluting effluents have been from agro-based industries of which palm oil and rubber industries together contribute about 80% of the industrial pollution. Palm oil sludge, commonly referred to, as palm oil mill effluent (POME) is brown slurry composed of 4-5% solids, mainly organic, 0.5-1% residual oil, and about 95% water. The effluent also contains high concentrations of organic nitrogen. The technique for the treatment of POME is basically biological, consisting of pond systems, where the organic nitrogen is converted to ammonia, which is subsequently transformed to nitrate, in a process called nitrification. A 15-month monitoring program of a pond system (combined anaerobic, facultative, and aerobic ponds in series) confirmed studies by other authors and POME operators that nitrification in a pond system demands relatively long hydraulic retention time (HRT), which is not easily achieved, due to high production capacity of most factories. Bioaugmentation of POME with mixed culture of nitrifiers (ammonia and nitrite oxidizers) has been identified as an effective tool not only for enhancing nitrification of POME but also for improving quality of POME as source of liquid nitrogen fertilizer for use in the agricultural sector, especially in oil palm plantations. Nitrate is readily absorbable by most plants, although some plants are able to absorb nitrogen in the form of ammoniun. In this study, up to 60% reduction in HRT (or up to 20% reduction in potential land requirement) was achieved when bioaugmentation of POME was carried out with the aim of achieving full nitrification.
    Matched MeSH terms: Water Movements
  15. Lim PE, Mak KY, Mohamed N, Noor AM
    Water Sci Technol, 2003;48(5):307-13.
    PMID: 14621178
    This study was conducted to: (1) evaluate the performance of constructed wetlands in removing Zn, Pb and Cd, respectively, and Zn, Pb, Cd and Cu in combination and (2) investigate the speciation patterns of the dissolved metals differentiated according to their detectability by anodic stripping voltammetry (ASV) and their lability towards Chelex resin along the treatment path of metal-containing wastewater in horizontal subsurface-flow constructed wetlands. Four laboratory scale wetland units planted with cattails (Typha latifolia) were operated outdoors for six months. Three of the units were, respectively, fed with primary-treated domestic wastewater spiked with Zn(II), Pb(II) and Cd(II) whilst the fourth was spiked with a combination of Zn(II), Pb(II), Cd(II) and Cu(II). The results demonstrate that a metal removal efficiency of over 99% was achievable for wetland units treating the metals singly or in combination provided the sorption capacity of the media was not exceeded. When treating the metals in combination, an antagonistic effect, more significantly for Pb and Cd, on the sorptive metal uptake by media was observed. Based on the metal speciation patterns, the wetland system seemed to be capable of maintaining the ASV-labile metal species at relatively low level (< 10%) before media exhaustion.
    Matched MeSH terms: Water Movements
  16. Polgar G, Zaccara S, Babbucci M, Fonzi F, Antognazza CM, Ishak N, et al.
    J Fish Biol, 2017 May;90(5):1926-1943.
    PMID: 28239874 DOI: 10.1111/jfb.13276
    A study was conducted on the habitat distribution of four sympatric species of Periophthalmus (the silver-lined mudskipper Periophthalmus argentilineatus, the slender mudskipper Periophthalmus gracilis, the kalolo mudskipper Periophthalmus kalolo and the Malacca mudskipper Periophthalmus malaccensis) from northern Sulawesi. Molecular phylogenetic reconstructions based on one mtDNA marker (16S) were used to validate the morphological taxa, identifying five molecular clades. Periophthalmus argentilineatus includes two molecular species, which are named Periophthalmus argentilineatus clades F and K. Multivariate direct gradient analysis show that these species form three distinct ecological guilds, with the two molecular species occurring in different guilds. Periophthalmus clade F is ecologically eurytypic; Periophthalmus clade K and P. kalolo are prevalent in ecosystems isolated by strong oceanic currents and at shorter distances from the sea; P. gracilis plus P. malaccensis are prevalent in ecosystems connected by shallow coastal waters, in vegetated habitats at larger distances from the sea. This indicates for the first time that mudskipper species exhibit a range of adaptations to semiterrestrialism not only within genera, but even within morphospecies, delineating a much more complex adaptive scenario than previously assumed.
    Matched MeSH terms: Water Movements
  17. Jani J, Lusk MG, Yang YY, Toor GS
    PLoS One, 2020;15(4):e0230908.
    PMID: 32236119 DOI: 10.1371/journal.pone.0230908
    Stormwater runoff is recognized as a cause of water quality degradation because it may carry nitrogen (N) and other pollutants to aquatic ecosystems. Stormwater ponds are a stormwater control measure often used to manage stormwater runoff by holding a permanent pool of water, which reduces the peak flow, magnitude of runoff volume, and concentrations of nutrients and pollutants. We instrumented the outlet of a stormwater pond in an urban residential neighbourhood in Florida, United States to (1) investigate the concentration and composition of N forms during the summer rainy season (May to September 2016), and (2) determine the bioavailability of organic N in the stormwater pond with a bioassay experiment. A total of 144 outflow water samples over 13 storm events were collected at the outlet of the stormwater pond that collects runoff from the residential catchment. Samples were analysed for various inorganic N [ammonium (NH4-N), nitrate (NO3-N)], and organic N forms [dissolved organic nitrogen (DON), and particulate organic nitrogen (PON)]. Flow-weighted mean concentration of total N (TN) in pond outflow for all collected storm events was 1.3±1.42 mg L-1, with DON as the dominant form (78%), followed by PON and NO3-N (each at 8%), and NH4-N (6%). In the bioassay experiment, organic N (DON+PON) was significantly decreased by 25-28% after 5 days of incubation, suggesting that a portion of the DON carried from the pond outflow to receiving water bodies may be bioavailable. These results suggest that efforts to mitigate stormwater N outflows from urban ponds should incorporate both inorganic and organic N in management plans.
    Matched MeSH terms: Water Movements
  18. Dalu T, Wasserman RJ, Magoro ML, Mwedzi T, Froneman PW, Weyl OLF
    Sci Total Environ, 2017 Dec 01;601-602:73-82.
    PMID: 28551541 DOI: 10.1016/j.scitotenv.2017.05.162
    This study explores diatom community dynamics in a highly modified semi-arid temperate region river system characterised by inconsistent river flow. Various water and sediment environmental variables were assessed using a multi-faceted analysis approach to determine the spatio-temporal drivers of benthic diatom communities in the river system. Overall, the diatom community was generally dominated by pollution tolerant species, reflecting the anthropogenic intensity and activities on the river system. Diatom community composition was found to be largely determined by water column chemistry variables particularly nutrient concentrations in comparison to sediment chemistry and physical variables. Strong seasonal diatom species composition was also observed and this was driven by strong seasonal variations in nutrient loads and metal concentrations, a result of the variable water flow across the two seasons. However, the greater temporal variation in communities was observed in the smaller systems with the mainstream river system being more homogenous over time. In addition, diatom community composition and environmental variables were found to be different and more pronounced between streams and mainstream sites, than between canals and streams. The study highlights the complex interaction between water column, sediment and physical variables in determining the diatom species composition in small river systems. It also highlights the importance of river flow inconsistency as an indirect variable that alters primary drivers such as nutrient concentrations in the water column and heavy metal levels in the sediment.
    Matched MeSH terms: Water Movements
  19. Shutes RB
    Environ Int, 2001 May;26(5-6):441-7.
    PMID: 11392764
    This paper illustrates the role of plants to assist the treatment of water pollution in man-made wetlands in tropical and temperate climates. It also considers the potential for environmental education of these wetland systems. The management and natural treatment of pollution is described in the Mai Po Marshes, Hong Kong and a wetland in London which is also an important site for birds. The design of the Putrajaya Lake and Wetland system in Malaysia is compared with a constructed wetland and lake for the treatment of urban surface runoff in a new residential development in the United Kingdom. The benefits of these natural systems are discussed in the context of the global trend for introducing sustainable methods of environmental management and low cost pollution treatment systems.
    Matched MeSH terms: Water Movements
  20. Ujang Z, Soedjono E, Salim MR, Shutes RB
    Water Sci Technol, 2005;52(12):243-50.
    PMID: 16477992
    Municipal leachate was treated in an experimental unit of constructed wetlands of subsurface flow type. The parameters studied were organics (BOD and COD), solids and heavy metals (Zn, Ni, Cu, Cr and Pb). Using two types of emergent plants of Scirpus globulosus and Eriocaulon sexangulare, more than 80% removal was achieved for all the parameters. E. sexangulare removed organics and heavy metals better than Scirpus globulosus. A higher concentration of heavy metals in the influent did not change the removal efficiency.
    Matched MeSH terms: Water Movements
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links