Displaying publications 41 - 60 of 233 in total

Abstract:
Sort:
  1. Njoku VO, Islam MA, Asif M, Hameed BH
    J Environ Manage, 2015 May 1;154:138-44.
    PMID: 25721981 DOI: 10.1016/j.jenvman.2015.02.002
    The removal of toxic herbicide from wastewater is challenging due to the availability of suitable adsorbents. The Langsat empty fruit bunch is an agricultural waste and was used in this study as a cheap precursor to produce activated carbon for the adsorption of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) at different initial concentrations ranging from 50 to 400 mg/L. The produced Langsat empty fruit bunch activated carbon (LEFBAC) was mesoporous and had high surface area of 1065.65 m(2)/g with different active functional groups. The effect of shaking time, temperature and pH on 2,4-D removal were investigated using the batch technique. The adsorption capacity of 2,4-D by LEFBAC was decreased with increase in pH of solution whereas adsorption capacity increased with temperature. The adsorption data was well described by Langmuir isotherm followed by removal capacity of 261.2 mg/g at 30 °C. The results from this work showed that LEFBAC can be used as outstanding material for anionic herbicide uptake from wastewater.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  2. Tisa F, Raman AA, Daud WM
    ScientificWorldJournal, 2014;2014:348974.
    PMID: 25309949 DOI: 10.1155/2014/348974
    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe(3+) and Fe(2+) mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40-90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  3. Hassan S, Duclaux L, Lévêque JM, Reinert L, Farooq A, Yasin T
    J Environ Manage, 2014 Nov 1;144:108-17.
    PMID: 24929502 DOI: 10.1016/j.jenvman.2014.05.005
    The adsorption from aqueous solution of imidazolium, pyrrolidinium and pyridinium based bromide ionic liquids (ILs) having different alkyl chain lengths was investigated on two types of microporous activated carbons: a fabric and a granulated one, well characterized in terms of surface chemistry by "Boehm" titrations and pH of point of zero charge measurements and of porosity by N2 adsorption at 77 K and CO2 adsorption at 273 K. The influence of cation type, alkyl chain length and adsorbate size on the adsorption properties was analyzed by studying kinetics and isotherms of eight different ILs using conductivity measurements. Equilibrium studies were carried out at different temperatures in the range [25-55 °C]. The incorporation of ILs on the AC porosity was studied by N2 adsorption-desorption measurements at 77 K. The experimental adsorption isotherms data showed a good correlation with the Langmuir model. Thermodynamic studies indicated that the adsorption of ILs onto activated carbons was an exothermic process, and that the removal efficiency increased with increase in alkyl chain length, due to the increase in hydrophobicity of long chain ILs cations determined with the evolution of the calculated octanol-water constant (Kow). The negative values of free energies indicated that adsorption of ILs with long chain lengths having hydrophobic cations was more spontaneous at the investigated temperatures.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  4. Mohd Amin MF, Heijman SG, Lopes SI, Rietveld LC
    ScientificWorldJournal, 2014;2014:162157.
    PMID: 25197693 DOI: 10.1155/2014/162157
    This paper reports on the direct ability of two positively charged organic polyelectrolytes (natural-based and synthetic) to reduce the atrazine concentration in water. The adsorption study was set up using multiple glass vessels with different polymer dosing levels followed by ultrafiltration with a 1 kDa membrane. The addition of polymers exhibited a capability in reducing the atrazine concentration up to a maximum of 60% in surface-to-volume ratio experiments. In the beginning, the theoretical L-type of the isotherm of Giles' classification was expected with an increase in the dosage of the polymer. However, in this study, the conventional type of isotherm was not observed. It was found that the adsorption of the cationic polymer on the negatively charged glass surface was necessary and influential for the removal of atrazine. Surface-to-volume ratio adsorption experiments were performed to elucidate the mechanisms and the polymer configuration. The glass surface area was determined to be a limiting parameter in the adsorption mechanism.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  5. Tavakoly Sany SB, Hashim R, Rezayi M, Salleh A, Rahman MA, Safari O, et al.
    Mar Pollut Bull, 2014 Jul 15;84(1-2):268-79.
    PMID: 24855978 DOI: 10.1016/j.marpolbul.2014.05.004
    The concentration of carcinogenic poly aromatic hydrocarbons (c-PAHs) present in water and sediment of Klang Strait as well as in the edible tissue of blood cockle (Anadara granosa) was investigated. The human health risk of c-PAHs was assessed in accordance with the standards of the United States Environmental Protection Agency (US EPA). The cancer risks of c-PAHs to human are expected to occur through the consumption of blood cockles or via gastrointestinal exposure to polluted sediments and water in Kalng Strait. The non-carcinogenic risks that are associated with multiple pathways based on ingestion rate and contact rates with water were higher than the US EPA safe level at almost all stations, but the non-carcinogenic risks for eating blood cockle was below the level of US EPA concern. A high correlation between concentrations of c-PAHs in different matrices showed that the bioaccumulation of c-PAHs by blood cockles could be regarded as a potential health hazard for the consumers.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  6. Surikumaran H, Mohamad S, Sarih NM
    Int J Mol Sci, 2014;15(4):6111-36.
    PMID: 24727378 DOI: 10.3390/ijms15046111
    This work describes methacrylic acid functionalized β-cyclodextrin (MAA-βCD) as a novel functional monomer in the preparation of molecular imprinted polymer (MIP MAA-βCD) for the selective removal of 2,4-dichlorophenol (2,4-DCP). The polymer was characterized using Fourier Transform Infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) and Field Emission Scanning Electron Microscopy (FESEM) techniques. The influence of parameters such as solution pH, contact time, temperature and initial concentrations towards removal of 2,4-DCP using MIP MAA-βCD have been evaluated. The imprinted material shows fast kinetics and the optimum pH for removal of 2,4-DCP is pH 7. Compared with the corresponding non-imprinted polymer (NIP MAA-βCD), the MIP MAA-βCD exhibited higher adsorption capacity and outstanding selectivity towards 2,4-DCP. Freundlich isotherm best fitted the adsorption equilibrium data of MIP MAA-βCD and the kinetics followed a pseudo-second-order model. The calculated thermodynamic parameters showed that adsorption of 2,4-DCP was spontaneous and exothermic under the examined conditions.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  7. Lim SL, Wu TY, Clarke C
    J Agric Food Chem, 2014 Jan 22;62(3):691-8.
    PMID: 24372356 DOI: 10.1021/jf404265f
    In this laboratory-scale study, earthworms were introduced as biodegraders of palm oil mill effluent (POME), which is a wastewater produced from the wet process of palm oil milling. POME was absorbed into amendments (soil or rice straw) in different ratios as feedstocks for the earthworm, Eudrilus eugeniae. The presence of earthworms led to significant increases in pH, electrical conductivity, and nutrient content but decreases in the C/N ratio (0.687-75.8%), soluble chemical oxygen demand (19.7-87.9%), and volatile solids (0.687-52.7%). However, earthworm growth was reduced in all treatments by the end of the treatment process. Rice straw was a better amendment/absorbent relative to soil, with a higher nutrient content and greater reduction in soluble chemical oxygen demand with a lower C/N ratio in the vermicompost. Among all treatments investigated, the treatment with 1 part rice straw and 3 parts POME (w/v) (RS1:3) produced the best quality vermicompost with high nutritional status.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  8. Mohd Bahari Z, Ali Hamood Altowayti W, Ibrahim Z, Jaafar J, Shahir S
    Appl Biochem Biotechnol, 2013 Dec;171(8):2247-61.
    PMID: 24037600 DOI: 10.1007/s12010-013-0490-x
    The ability of non-living biomass of an arsenic-hypertolerant Bacillus cereus strain SZ2 isolated from a gold mining environment to adsorb As (III) from aqueous solution in batch experiments was investigated as a function of contact time, initial As (III) concentration, pH, temperature and biomass dosage. Langmuir model fitted the equilibrium data better in comparison to Freundlich isotherm. The maximum biosorption capacity of the sorbent, as obtained from the Langmuir isotherm, was 153.41 mg/g. The sorption kinetic of As (III) biosorption followed well the pseudo-second-order rate equation. The Fourier transform infrared spectroscopy analysis indicated the involvement of hydroxyl, amide and amine groups in As (III) biosorption process. Field emission scanning electron microscopy-energy dispersive X-ray analysis of the non-living B. cereus SZ2 biomass demonstrated distinct cell morphological changes with significant amounts of As adsorbed onto the cells compared to non-treated cells. Desorption of 94 % As (III) was achieved at acidic pH 1 showing the capability of non-living biomass B. cereus SZ2 as potential biosorbent in removal of As (III) from arsenic-contaminated mining effluent.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  9. Veerasingam SA, Ali Mohd M
    J Water Health, 2013 Jun;11(2):311-23.
    PMID: 23708578 DOI: 10.2166/wh.2013.151
    The presence of endocrine disruptors in source water is of great concern because of their suspected adverse effects on humans, even when present at very low levels. As the main source of potable water supply, rivers in Malaysia are highly susceptible to contamination by various endocrine disruptors originating from anthropogenic activities. In this study, the contamination levels of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) and its metabolites and di-(2-ethylhexyl) phthalate (DEHP) in rivers of Selangor were examined using gas chromatography-mass spectrometry. Samples were collected from sites representing source water for 18 drinking water treatment plants in Selangor between July 2008 and July 2009. DDT and its metabolites were detected in only 14% of the 192 samples analysed at levels ranging from 0.6 to 14.6 ng/L. Meanwhile DEHP was detected in 96.8% of the samples at levels ranging from below quantitation level (18 ng/L) to 970 ng/L. The detected levels of DDTs and DEHP were lower than the WHO and Malaysian Guidelines for Drinking Water Quality. Data obtained from this study should also serve as a reference point for future surveillance on these endocrine disruptors.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  10. Abu Amr SS, Aziz HA, Adlan MN
    Waste Manag, 2013 Jun;33(6):1434-41.
    PMID: 23498721 DOI: 10.1016/j.wasman.2013.01.039
    The objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate in an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities (<0.0001): COD, color, NH3-N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 210 min, 30 g/m(3) ozone, 1g/1g COD0/S2O8(2-) ratio, and pH 10. The experimental results were corresponded well with predicted models (COD, color, and NH3-N removal rates of 72%, 96%, and 76%, respectively, and 0.60 (kg O3/kg COD OC). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as ozone only and persulfate S2O8(2-) only, to evaluate its effectiveness. The combined method (i.e., O3/S2O8(2-)) achieved higher removal efficiencies for COD, color, and NH3-N compared with other studied applications. Furthermore, the new method is more efficient than ozone/Fenton in advanced oxidation process in the treatment of the same studied leachate.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  11. Pang YL, Abdullah AZ
    J Hazard Mater, 2012 Oct 15;235-236:326-35.
    PMID: 22939090 DOI: 10.1016/j.jhazmat.2012.08.008
    Fe-doped titanium dioxide (TiO(2)) nanotubes were prepared using sol-gel followed by hydrothermal methods and characterized using various methods. The sonocatalytic activity was evaluated based on oxidation of Rhodamine B under ultrasonic irradiation. Iron ions (Fe(3+)) might incorporate into the lattice and intercalated in the interlayer spaces of TiO(2) nanotubes. The catalysts showed narrower band gap energies, higher specific surface areas, more active surface oxygen vacancies and significantly improved sonocatalytic activity. The optimum Fe doping at Fe:Ti=0.005 showed the highest sonocatalytic activity and exceeded that of un-doped TiO(2) nanotubes by a factor of 2.3 times. It was believed that Fe(3+) doping induced the formation of new states close to the valence band and conduction bands and accelerated the separation of charge carriers. Leached Fe(3+) could catalyze Fenton-like reaction and led to an increase in the hydroxyl radical (OH) generation. Fe-doped TiO(2) nanotubes could retain high degradation efficiency even after being reused for 4 cycles with minimal loss of Fe from the surface of the catalyst.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  12. Abdollahi Y, Abdullah AH, Zainal Z, Yusof NA
    Int J Mol Sci, 2012;13(1):302-15.
    PMID: 22312253 DOI: 10.3390/ijms13010302
    Photocatalytic degradation of p-cresol was carried out using ZnO under UV irradiation. The amount of photocatalyst, concentration of p-cresol and pH were studied as variables. The residual concentration and mineralization of p-cresol was monitored using a UV-visible spectrophotometer and total organic carbon (TOC) analyzer, respectively. The intermediates were detected by ultra high pressure liquid chromatography (UPLC). The highest photodegradation of p-cresol was observed at 2.5 g/L of ZnO and 100 ppm of p-cresol. P-cresol photocatalytic degradation was favorable in the pH range of 6-9. The detected intermediates were 4-hydroxy-benzaldehyde and 4-methyl-1,2-benzodiol. TOC studies show that 93% of total organic carbon was removed from solution during irradiation time. Reusability shows no significant reduction in photocatalytic performance in photodegrading p-cresol.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  13. Abu Amr SS, Aziz HA
    Waste Manag, 2012 Sep;32(9):1693-8.
    PMID: 22633680 DOI: 10.1016/j.wasman.2012.04.009
    Ozonation, combined with the Fenton process (O(3)/H(2)O(2)/Fe(2+)), was used to treat matured landfill leachate. The effectiveness of the Fenton molar ratio, Fenton concentration, pH variance, and reaction time were evaluated under optimum operational conditions. The optimum removal values of chemical oxygen demand (COD), color, and NH(3)-N were found to be 65%, 98%, and 12%, respectively, for 90 min of ozonation using a Fenton molar ratio of 1 at a Fenton concentration of 0.05 mol L(-1) (1700 mg/L) H(2)O(2) and 0.05 mol L(-1) (2800 mg/L) Fe(2+) at pH 7. The maximum removal of NH(3)-N was 19% at 150 min. The ozone consumption for COD removal was 0.63 kg O(3)/kg COD. To evaluate the effectiveness, the results obtained in the treatment of stabilized leachate were compared with those obtained from other treatment processes, such as ozone alone, Fenton reaction alone, as well as combined Fenton and ozone. The combined method (i.e., O(3)/H(2)O(2)/Fe(2+)) achieved higher removal efficiencies for COD, color, and NH(3)-N compared with other studied applications.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  14. Abdollahi Y, Abdullah AH, Gaya UI, Zainal Z, Yusof NA
    Environ Technol, 2012 Jun;33(10-12):1183-9.
    PMID: 22856288
    The effective removal of o-cresol is currently both an environmental and economic challenge. ZnO is not only an efficient photocatalyst but is also cost effective, as its photoabsorption can extend from the ultraviolet (UV) to the visible range thereby allowing the use of inexpensive visible light sources, such as sunlight. The principal objective of the present work is to investigate the visible light-driven removal of o-cresol from aqueous solution in the presence of 1.0 wt% Mn-doped ZnO. To measure the efficiency ofphotodegradation, the variables studied included the amount ofphotocatalyst, concentration of o-cresol, pH and irradiation time. The concentration ofo-cresol and residual organic carbon was monitored using a UV-visible spectrophotometer, ultra high-pressure liquid chromatography and a total organic carbon analyser. The optimum conditions under which the photodegradation of o-cresol was most favourable corresponded to 1.5 g/l ZnO, 35 ppm o-cresol and pH 9. The ZnO-1 wt% Mn photoprocess has demonstrated reusability for more than three times, which warrants its scale-up from laboratory- to in industrial-scale application.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  15. Alwash AH, Abdullah AZ, Ismail N
    J Hazard Mater, 2012 Sep 30;233-234:184-93.
    PMID: 22831996 DOI: 10.1016/j.jhazmat.2012.07.021
    A new heterogeneous catalyst for sonocatalytic degradation of amaranth dye in water was synthesized by introducing titania into the pores of zeolite (NaY) through ion exchange method while Fe (III) was immobilized on the encapsulated titanium via impregnation method. XRD results could not detect any peaks for titanium oxide or Fe(2)O(3) due to its low loading. The UV-vis analysis proved a blue shift toward shorter wavelength after the loading of Ti into NaY while a red shift was detected after the loading of Fe into the encapsulated titanium. Different reaction variables such as TiO(2) content, amount of Fe, pH values, amount of hydrogen peroxide, catalyst loading and the initial dye concentration were studied to estimate their effect on the decolorization efficiency of amaranth. The maximum decolorization efficiency achieved was 97.5% at a solution pH of 2.5, catalyst dosage of 2 g/L, 20 mmol/100 mL of H(2)O(2) and initial dye concentration of 10 mg/L. The new heterogeneous catalyst Fe/Ti-NaY was a promising catalyst for this reaction and showed minimum Fe leaching at the end of the reaction.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  16. Mohamad Ali AS, Abdul Razak N, Ab Rahman I
    ScientificWorldJournal, 2012;2012:351967.
    PMID: 22629138 DOI: 10.1100/2012/351967
    Sorbent materials based on a hydrazone Schiff base compound, C(14)H(11)BrN(4)O(4), were prepared either by immobilizing the ligand into sol-gel (SG1) or bonding to silica (SG2). The sorbent materials were characterized by FT-IR, EDX, SEM, TEM, and TGA. The sorption characteristics of a matrix of eight transition metal ions (Ag(+), Cu(2+), Co(2+), Ni(2+), Fe(3+), Pb(2+), Zn(2+), and Mn(2+)) using batch method were studied. Several key parameters that affected the extraction efficiency such as pH, contact time, metal ions concentration, and gel size (for SGl) were investigated and optimized. Under the optimized conditions, the physically immobilized hydrazone sorbent (SG1) exhibits highest selectivity towards Ag(+) ions, while the chemically bonded hydrazone sorbent (SG2) exhibits high extraction for all metal ions tested. However, for practical applications such as the removal and preconcentration of Ag(+), the physically immobilized sorbent (SG1) is preferred.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  17. Mohajeri S, Aziz HA, Zahed MA, Mohajeri L, Bashir MJ, Aziz SQ, et al.
    Water Sci Technol, 2011;64(8):1652-60.
    PMID: 22335108
    Landfill leachate is one of the most recalcitrant wastes for biotreatment and can be considered a potential source of contamination to surface and groundwater ecosystems. In the present study, Fenton oxidation was employed for degradation of stabilized landfill leachate. Response surface methodology was applied to analyze, model and optimize the process parameters, i.e. pH and reaction time as well as the initial concentrations of hydrogen peroxide and ferrous ion. Analysis of variance showed that good coefficients of determination were obtained (R2 > 0.99), thus ensuring satisfactory agreement of the second-order regression model with the experimental data. The results indicated that, pH and its quadratic effects were the main factors influencing Fenton oxidation. Furthermore, antagonistic effects between pH and other variables were observed. The optimum H2O2 concentration, Fe(II) concentration, pH and reaction time were 0.033 mol/L, 0.011 mol/L, 3 and 145 min, respectively, with 58.3% COD, 79.0% color and 82.1% iron removals.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  18. Aziz SQ, Aziz HA, Yusoff MS, Mohajeri S
    Environ Monit Assess, 2012 Oct;184(10):6147-58.
    PMID: 22068314 DOI: 10.1007/s10661-011-2409-8
    In this research, two types of sequencing batch reactors (SBRs) with 8 h of cycle times, namely non-powdered activated carbon (NPAC-SBR) and powdered activated carbon (PAC-SBR), were used for the treatment of raw leachates at Kulim and Pulau Burung landfill sites. To test the performance of SBRs, phenols, total iron, zinc, ammonia, nitrite, nitrate, color, suspended solids, chemical oxygen demand, biochemical oxygen demand, and total dissolved salts removal efficiencies and sludge volume index (SVI) were studied at both sites. The rates of phenols removal, for instance in NPAC-SBRs and PAC-SBRs at Kulim, were 25% and 55%, respectively, whereas those at Pulau Buring were 94.81% and 97.75%, respectively. PAC as adsorbent in PAC-SBRs enhanced the removal efficiencies of the aforementioned pollutants from leachates at both sites. In addition, PAC as adsorbent decreased the SVI values at Kulim (59.7 mL/g) and Pulau Burung (91.4 mL/g) leachates and improved the nitrification and denitrification processes.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  19. Haron MJ, Tiansin M, Ibrahim NA, Kassim A, Wan Yunus WM, Talebi SM
    Water Sci Technol, 2011;63(8):1788-93.
    PMID: 21866782
    This paper describes the sorption of Pb(ll) from aqueous solution. Oil palm empty fruit bunch (OPEFB) fiber was first grafted with poly(methylacrylate) and then treated with hydroxylammonium chloride in alkaline medium to produce hydroxamic acid (PHA) grafted OPEFB. Sorption of Pb(ll) by PHA-OPEFB was maximum at pH 5. The sorption followed the Langmuir model with maximum capacityof 125.0 mg g-1 at 25 degrees C. The sorption process was exothermic, as shown by the negative value of enthalpy change, Delta H0. The free energy change (DeltaG0) for the sorption was negative, showing that the sorption process was spontaneous. A kinetic study showed that the Pb(ll) sorption followed a second order kinetic model.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  20. Amin NA, Akhtar J, Rai HK
    Water Sci Technol, 2011;63(8):1651-6.
    PMID: 21866764
    The performances of HZSM-5 and transition metal-loaded HZSM-5 (Mn, Cu, Fe, Ti) catalysts during catalytic ozonation of phenol have been investigated. It was observed the performance order for removal of phenol and COD was Mn/HZSM-5 > Fe/HZSM-5 > Cu/HZSM-5 > Ti/HZSM-5 > HZSM-5. The presence of metals on HZSM-5 enhanced the phenol removal capability of HZSM-5. Mn loading on HZSM-5 was optimized due to its high phenol removal capability amongst metal-loaded HZSM-5 catalysts. Experimental results suggested that low amount of Mn loading on HZSM-5 was sufficient for HZSM-5 to act as catalyst and adsorbent. A maximum of 95.8 wt% phenols and 70.2 wt% COD were removed over 2 wt% Mn/HZSM-5 in 120 min. It was supposed that transition metals mainly acted as ozone decomposers due to their multiple oxidation states that enhanced the ozonation of phenol.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links