Displaying publications 41 - 60 of 204 in total

Abstract:
Sort:
  1. Mohammadpour R, Shaharuddin S, Chang CK, Zakaria NA, Ab Ghani A
    Water Sci Technol, 2014 10 18;70(7):1161-7.
    PMID: 25325539 DOI: 10.2166/wst.2014.343
    Free-surface constructed wetlands are known as a low-energy green technique to highly decrease a wide range of pollutants in wastewater and stormwater before discharge into natural water. In this study, two spatial analyses, principal factor analysis and hierarchical cluster analysis (HACA), were employed to interpret the effect of wetland on the water quality variables (WQVs) and to classify the wetland into groups with similar characteristics. Eleven WQVs were collected at the 17 sampling stations twice a month for 13 months. All sampling stations were classified by HACA into three clusters, with high, moderate, and low pollution areas. To improve the water quality, the performance of Cluster-III (micropool) is more significant than Cluster-I and Cluster-II. Implications of this study include potential savings of time and cost for long-term data monitoring purposes in the free-constructed wetland.
    Matched MeSH terms: Water Quality
  2. Jami MS, Rosli NS, Amosa MK
    Water Environ Res, 2016 Jun;88(6):566-76.
    PMID: 26556067 DOI: 10.2175/106143015X14362865227157
    Availability of quality-certified water is pertinent to the production of food and pharmaceutical products. Adverse effects of manganese content of water on the corrosion of vessels and reactors necessitate that process water is scrutinized for allowable concentration levels before being applied in the production processes. In this research, optimization of the adsorption process conditions germane to the removal of manganese from biotreated palm oil mill effluent (BPOME) using zeolite 3A subsequent to a comparative adsorption with clinoptilolite was studied. A face-centered central composite design (FCCCD) of the response surface methodology (RSM) was adopted for the study. Analysis of variance (ANOVA) for response surface quadratic model revealed that the model was significant with dosage and agitation speed connoting the main significant process factors for the optimization. R(2) of 0.9478 yielded by the model was in agreement with predicted R(2). Langmuir and pseudo-second-order suggest the adsorption mechanism involved monolayer adsorption and cation exchanging.
    Matched MeSH terms: Water Quality
  3. Fikriah Faudzi, Mohd Fuad Miskon, Kamaruzzaman Yunus, Mokhlesur Rahman
    Sains Malaysiana, 2017;46:393-399.
    It is important to monitor the concentration of toxic metals in the Sungai Kuantan as it serves many communities in terms of domestic, fisheries and agriculture purpose. In order to determine the distributions of dissolved and particulate As and Hg in Sungai Kuantan and evaluate its changes temporally and spatially, water samples were collected from the surface and bottom layers in a grid of 9 stations from estuary towards the upstream of Sungai Kuantan from May 2012 till October 2012. The dissolved metals were pre-concentrated using Chelex-100 while particulate metals were digested using Teflon bomb and subsequently were analyzed using ICP-MS. Dissolved As ranging from 4.650 to 36.894 µg L-1 while dissolved Hg ranging from BDL to 0.011 µg L-1. Particulate As and Hg varied from 0.650 to 86.087 mg L-1 and BDL to 5.873 mg L-1, respectively. Higher concentration of the dissolved elements were found mainly in October 2012 and particulate elements concentration mostly higher in May 2012. The source of the studied metals in the river may be the run-off from the effluent discharges and other natural sources. The toxic elements studied in Sungai Kuantan waters were still below the Interim Marine Water Quality Standard (INWQS) permissible limits.
    Matched MeSH terms: Water Quality
  4. Md. Sadek Uddin Chowdhury, Faridah Othman, Wan Zurina Wan Jaafar, Nuzaima Che Mood, Md. Ibrahim Adham
    Sains Malaysiana, 2018;47:457-469.
    Sungai Selangor is very important from the viewpoint of water supply and multipurpose water use in Malaysia. The
    water quality of this river is degrading due to point and non-point sources of pollution. This study, focus on the water
    quality assessment and simulation the effect of the pollution sources from urbanization to the Sungai Selangor basin.
    Water quality Index (WQI) is used to define the status of river water quality and the QUAL2K was used as a simulation
    model. Water quality parameters DO, BOD and NH3
    -N have been chosen for modeling. In addition, five different model
    scenarios were simulated to observe the impacts of pollution sources on the Sungai Selangor water quality. WQI results
    showed that most of the stations in this river basin recorded water inferior to Class III. The water quality model presented
    different scenarios for changes of Sungai Selangor water quality. Simulation results for different scenarios showed
    that reduced levels of BOD and NH3
    -N at 51.10% and 66.18%, respectively, can be obtained if Scenario-5 is employed.
    The river water quality issue in the Rawang sub- basin within the study area is considered crucial to create significant
    improvement within the sub basin and in the downstream area of Sungai Selangor basin.
    Matched MeSH terms: Water Quality
  5. Zainol Z, Akhir MF, Zainol Z
    Mar Pollut Bull, 2021 Mar;164:112011.
    PMID: 33485016 DOI: 10.1016/j.marpolbul.2021.112011
    Setiu Wetland is rapidly developing into an aquaculture and agriculture hub, causing concern about its water quality condition. To address this issue, it is imperative to acquire knowledge of the spatial and temporal distributions of pollutants. Consequently, this study applied combinations of hydrodynamic and particle tracking models to identify the transport behaviour of pollutants and calculate the residence time in Setiu Lagoon. The particle tracking results indicated that the residence time in Setiu Lagoon was highly influenced by the release location, where particles released closer to the river mouth exhibited shorter residence times than those released further upstream. Despite this fact, the pulse of river discharges successfully reduced the residence time in the order of two to twelve times shorter. Under different tidal phases, the residence time during the neap tide was longer regardless of heavy rainfalls, implying the domination of tidal flow in the water renewal within the lagoon.
    Matched MeSH terms: Water Quality
  6. Harun HH, Kasim MRM, Nurhidayu S, Ash'aari ZH, Kusin FM, Karim MKA
    PMID: 33923119 DOI: 10.3390/ijerph18094562
    The aim of this study was to propose a groundwater quality index (GWQI) that presents water quality data as a single number and represents the water quality level. The development of the GWQI in agricultural areas is vital as the groundwater considered as an alternative water source for domestic purposes. The insufficiency of the groundwater quality standard in Malaysia revealed the importance of the GWQI development in determining the quality of groundwater. Groundwater samples were collected from thirteen groundwater wells in the Northern Kuala Langat and the Southern Kuala Langat regions from February 2018 to January 2019. Thirty-four parameters that embodied physicochemical characteristics, aggregate indicator, major ions, and trace elements were considered in the development of the GWQI. Multivariate analysis has been used to finalize the important parameters by using principal component analysis (PCA). Notably, seven parameters-electrical conductivity, chemical oxygen demand (COD), magnesium, calcium, potassium, sodium, and chloride were chosen to evaluate the quality of groundwater. The GWQI was then verified by comparing the groundwater quality in Kota Bharu, Kelantan. A sensitivity analysis was performed on this index to verify its reliability. The sensitivity GWQI has been analyzed and showed high sensitivity to any changes of the pollutant parameters. The development of GWQI should be beneficial to the public, practitioners, and industries. From another angle, this index can help to detect any form of pollution which ultimately could be minimized by controlling the sources of pollutants.
    Matched MeSH terms: Water Quality
  7. Chu KB, Abdulah A, Abdullah SZ, Bakar RA
    Trop Life Sci Res, 2013 Dec;24(2):77-84.
    PMID: 24575250 MyJurnal
    The mass mortality of cobia (Rachycentron canadum) within 2-3 days was reported by 3 private farms in Bukit Tambun, Pulau Pinang, in February and March 2007. Only cobia with body weights of 3-4 kg were affected. Most diseased cobia swam on the surface and displayed flashing behaviour. All samples were positive for viral nervous necrosis (VNN) with low to medium levels of infection. Infestations by leeches (Zeylanicobdella arugamensis), body monogeneans (Benedenia sp.) and copepods (Caligus sp.) were also found, but no pathogenic bacteria were isolated. All water quality parameters monitored were within optimal ranges for culturing cobia. The main causes of high mortality in cobia remain unclear during the study. However, we believe that the mass mortality of cobia could be probably due to VNN infection and that the rate of mortality will increase further when cobia are subjected to aquaculture-related stresses (e.g., limited space). Traditional cages with a size of 2 (length) × 2 (width) × 1 m (depth) should only be used for rearing cobia below 1 kg in weight given the species' natural behaviours. In addition, cobia fingerlings should be screened for VNN prior to stocking them in cages.
    Matched MeSH terms: Water Quality
  8. Shah AS, Hashim ZH, Sah SA
    Trop Life Sci Res, 2009 Dec;20(2):59-70.
    PMID: 24575179 MyJurnal
    A total of 37 fish species from 14 families were observed during surveys conducted from January to March 2005 at 8 selected streams near the Gunung Jerai Forest Reserve. The list includes two species (Rasbora trilineata and Systomus partipentazona) that were visually identified at the lower part of the Sungai Teroi stream. Single specimens of Leiocassis micropogon, Clarias macrocephalus and Hampala macrolepidota were also obtained at certain sampling stations. Devario regina and Systomus binotatus were the most abundant species at all sampling stations. However, the list is still incomplete as the study was carried out over a short time period and there are large areas that have not yet been surveyed. The presence of exotic species (Carassius auratus) at Sungai Badak indicates anthropogenic influences. Therefore, a long-term monitoring program for Gunung Jerai Forest Reserve streams should be planned and carried out to assess the impacts of future development on fish biodiversity and water quality.
    Matched MeSH terms: Water Quality
  9. Wahi Abdul Rashid, Vun, Leong Wan, Mohd Harun Abdullah
    Trop Life Sci Res, 2009;20(1):-.
    MyJurnal
    Heavy metal accumulation and depuration may alter the effectiveness of Meretrix meretrix as a biomonitoring organism for water quality assessment. Therefore, this study was conducted to evaluate the effects of heavy metal accumulation and depuration on M. meretrix, by immersing it in Copper (Cu), Zinc (Zn), and Lead (Pb)
    solutions under laboratory conditions. The results showed that M. meretrix is able to accumulate Cu, Zn, and Pb at the rate of 0.99, 21.80, and 0.57 μg/g per day, respectively, and depurates at the rate of 0.42, 23.55, and 1.01 μg/g per day, respectively. These results indicate that M. meretrix could be effectively used as a biomonitoring organism for Cu because the accumulation rate is significantly (p ≤ 0.05) higher than the depuration rate. However, this was not the case for Zn because the accumulation rate was almost similar to the depuration rate, while for Pb, accumulation or depuration did not occur in M. meretrix.
    Matched MeSH terms: Water Quality
  10. Ab Hamid S, Md Rawi CS
    Trop Life Sci Res, 2017 Jul;28(2):143-162.
    PMID: 28890767 MyJurnal DOI: 10.21315/tlsr2017.28.2.11
    The Ephemeroptera, Plecoptera and Trichoptera (EPT) community structure and the specific sensitivity of certain EPT genera were found to be influenced by water parameters in the rivers of Gunung Jerai Forest Reserve (GJFR) in the north of peninsular Malaysia. The scores of EPT taxa richness of >10 in all rivers indicated all rivers' habitats were non-impacted, having good water quality coinciding with Class I and Class II of Malaysian water quality index (WQI) classification of potable water. The abundance of EPT was very high in Teroi River (9,661 individuals) but diversity was lower (22 genera) than Tupah River which was highly diverse (28 genera) but lower in abundance (4,263 individuals). The lowest abundance and moderate diversity was recorded from Batu Hampar River (25 genera). Baetis spp. and Thalerosphyrus spp., Neoperla spp. and Cheumatopsyche spp. were the most common genera found. Classification for all rivers using EPT taxa Richness Index and WQI gave different category of water quality, respectively. The WQI classified Tupah and Batu Hampar rivers into Class II and Teroi River (Class I) was two classes above the classification of the EPT taxa Richness Index.
    Matched MeSH terms: Water Quality
  11. Jumaat AH, Hamid SA
    Trop Life Sci Res, 2021 Mar;32(1):91-105.
    PMID: 33936553 DOI: 10.21315/tlsr2021.32.1.6
    Abundance and distribution of aquatic insects respecting to several water chemical parameters from six rivers were studied in order to determine the performance of biological index in monitoring the water quality. A total of 960 individuals of aquatic insects from nine orders were recorded using kick and drag sampling techniques. Lubok Semilang had the greatest number of aquatic insects with 250 individuals, followed by Telaga Tujuh (181 individuals) and Sungai Durian Perangin (171 individuals). EPT (Ephemeroptera, Plecoptera and Trichoptera) order were the most dominant order recorded in all six rivers. Lata Kekabu had more diverse and richer aquatic insect assemblages based on ecological indices compared to the other five rivers. In order to evaluate the water quality of recreational rivers in Malaysia, Family Biotic Index (FBI), Malaysian Family Biotic Index (MFBI) and Biological Monitoring Working Party (BMWP) were used and compared with Water Quality Index (WQI) to determine the water quality at the study areas. Results demonstrated that the biotic indices were more sensitive towards changes in water parameters than the WQI. Among all the biological indices, MFBI was the most suitable index to be adopted in Malaysian river water assessment as it is more reliable in assessing the status of water quality.
    Matched MeSH terms: Water Quality
  12. Abdullah NA, Asri LN, Husin SM, Shukor AM, Darbis NDA, Ismail K, et al.
    Environ Monit Assess, 2021 Sep 07;193(10):634.
    PMID: 34491451 DOI: 10.1007/s10661-021-09426-y
    We studied the water quality of the riparian firefly sanctuary of Sungai Rembau, or Rembau River, in Negeri Sembilan, Malaysia, from January 2018 to November 2018 to determine the possible influence of the physico-chemical characteristics of the water on the firefly populations living within the sanctuary. We set up a total of five water quality sampling stations and 10 firefly sampling stations along the river. Dissolved oxygen (DO), temperature, pH and electrical conductivity (EC) were measured in situ, while chemical oxygen demand (COD), total suspended solids (TSS), biochemical oxygen demand (BOD) and ammonia-nitrogen (NH3-N) were analysed in the laboratory. Firefly samples were collected using a sweep net at both day and night for 1 min. Sungai Rembau was categorized as Class II on the Malaysian water quality index (WQI), which indicates slight pollution. Except for EC and DO, the water quality parameter values were not significantly different (p > 0.05) between the sampling stations. A total of 529 firefly individuals consisting of Pteroptyx tener (n = 525, 99.24%), P. malaccae (n = 3, 0.57%) and P. asymmetria (n = 1, 0.19%) were collected. There was significant correlation between firefly abundance and BOD (r =  - 0.198, p 
    Matched MeSH terms: Water Quality
  13. Yuhani Jamian, Zainap Lamat, Nurazura Rali
    MyJurnal
    Sungai Sarawak is the most important river in Sarawak. This study was aimed at assessing water quality in the selected stations from Satok bridge to the downstream, Muara Tebas, located along Sungai Sarawak. Water quality trend analysis was conducted to determine the correlation between the water quality parameters. Trend analysis was carried out using Mann-Kendall Test because data collected was non-parametric. Next, Spearman rank was used in order to determine the correlation between parameters. The results obtained and the observation made in this study reveals that the trend exists only for Chemical Oxygen Value (COD). But there are trends for Biochemical Oxygen Demand, (BOD), Dissolved Oxygen (DO), Total Suspended Solid (TSS), Ammoniacal Nitrogen (NH4N) and Turbidity to decrease or increase with no trends between 2007 and 2011. The correlation between parameters is not very strong because there are many determinants of water quality parameters. The result from this study would provide useful information for water quality management in order to maintain and improve the water quality of Sungai Sarawak.
    Matched MeSH terms: Water Quality
  14. Norshidah Baharuddin, Nor'ashikin Saim, Sharifuddin M. Zain, Hafizan Juahir, Rozita Osman, Aziah Aziz
    Sains Malaysiana, 2014;43:1355-1362.
    Water pollution has become a growing threat to human society and natural ecosystem in recent decades, increasing the need to better understand the variabilities of pollutants within aquatic systems. This study presents the application of two chemometric techniques, namely, cluster analysis (CA) and principal component analysis (PCA). This is to classify and identify the water quality variables into groups of similarities or dissimilarities and to determine their significance. Six stations along Kinta River, Perak, were monitored for 30 physical and chemical parameters during the period of 1997-2006. Using CA, the 30 physical and chemical parameters were classified into 4 clusters; PCA was applied to the datasets and resulted in 10 varifactors with a total variance of 78.06%. The varifactors obtained indicated the significance of each of the variables to the pollution of Kinta River.
    Matched MeSH terms: Water Quality
  15. Ling Ty, Lee Nyanti, Theresa Muan, Jongkar Grinang, Siong-fong Sim, Aazani Mujahid
    Sains Malaysiana, 2016;45:157-166.
    Determining the water quality of Bakun Reservoir 13 months after it operates at full supply level is crucial for better understanding of changes in the physicochemical parameters, which may enable the prediction of its effects on the survival of aquatic life in the reservoir. This study determined 13 physicochemical parameters at six stations within the reservoir at fixed depths. The results showed that the minimum 5 mg/L of dissolved oxygen (DO) required for sensitive aquatic organisms was recorded at 6 m depth. However, DO was not detectable at depths exceeding 7 m. The water was acidic at depths of more than 10 m. Turbidity and total suspended solids increased corresponding with depth. Inorganic nitrogen were predominantly in the form of ammonia-nitrogen, creating an unhealthy environment for aquatic life. Concentration of Chl-a was significantly higher at the subsurface water than 30 m depth in four out of six stations. The present study shows changes in water quality as compared to the pre-impounded period and 15 months after the filling phase, in particular, stratification of dissolved oxygen, thermocline conditions and alkalinity. The changes varied according to the distance from the dam and may have been influenced by existing land developments within the area such as the construction of the Murum Hydroelectric Dam, oil palm plantations and timber concessionares. Though the water quality might have deteriorated, further study is needed to determine if this condition will prolong.
    Matched MeSH terms: Water Quality
  16. Nuzaima Che Mood, Faridah Othman, Noor Farahain Muhammad Amin, Md. Ibrahim Adham
    Sains Malaysiana, 2017;46:1221-1229.
    Surface water quality monitoring is an important tool for enhancing the water body management system. This study focuses on the water quality of a lake based on rehabilitation work completed in 2014. This lake suffers from eutrophication and water quality degradation due to the increase in pollution rates and water source scarcity. Nine points were selected to represent the water quality status for the study area. Two river tributaries that pass through the University Malaya (UM) campus have been considered due of its potential as a water source for the lake. Field and laboratory analysis were conducted to understand the transport of water quality parameters. The data variations were analyzed using a multivariate statistical method to determine the significant differences between the lake and river. Based on the Malaysian Water Quality Index (WQI) and cluster analysis, the results indicated that the lake and river have different physico-chemical characteristics and the lake water has a better quality than the river. Comparison of the concentration for BOD, TSS, PO43- and NO3- between year 2009 and current study proved that the water quality has improved by 99.8% proving that the lake remediation is effective.
    Matched MeSH terms: Water Quality
  17. Izyan Munirah M. Zaideen, Suhaimi Suratman, Norhayati Mohd Tahir
    Sains Malaysiana, 2017;46:1513-1520.
    This study investigates the spatial variation of water quality parameters in Sungai Setiu Basin at ten different locations from March 2010 to February 2011. The water quality was assessed using the Water Quality Index by Malaysian Department of Environment (DOE-WQI) and classified according to the Malaysia Interim National Water Quality Standard (INWQS). Six water quality parameters embedded in the DOE-WQI were dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), pH, ammoniacal nitrogen (AN) and total suspended solid (TSS). In addition, this study also examined the changes in water quality over the past 10 years by comparing the present water quality to the previous works. The overall mean WQI value obtained was 84.0 which indicate that the Sungai Setiu basin is in clean condition and all measured water quality parameters gave value within the permissible limits of the INWQS classification except for pH which fall in Class III. It can be concluded that water quality in Sungai Setiu does not varies greatly over a decade. Hence continuous monitoring is needed to improve the water quality and minimize water pollution.
    Matched MeSH terms: Water Quality
  18. S C, M V P, S V, M N, K P, Panda B, et al.
    Environ Res, 2022 03;204(Pt A):111729.
    PMID: 34478727 DOI: 10.1016/j.envres.2021.111729
    This study was focused on identifying the region suitable for agriculture-based, using new irrigation groundwater quality plot and its spatio-temporal variation with fuzzy logic technique in a geographic information system (GIS) platform. Six hundred and eighty groundwater samples were collected during pre, southwest, northeast, and post monsoon periods. A new ternary plot was also attempted to determine the irrigation suitability of water by considering four essential parameters such as sodium adsorption ratio (SAR), permeability index (PI), Sodium percentage (Na %), and electrical conductivity (EC). The derived ternary plot was the most beneficial over other available plots, as it incorporated four parameters, and it differs from the US Salinity Laboratory (USSL) plot, such that the groundwater with higher EC could also be used for irrigation purposes, depending on the Na%. The ternary plot revealed that the groundwater predominantly manifested good to moderate category during post, northeast, and southwest monsoons. The assessment with the amount of fertilizer used during the study period showed that the NPK fertilizers were effectively used for irrigation during monsoon periods. Spatial maps on EC, Kelly's ratio, Mg hazard, Na%, PI, potential salinity (PS), SAR, residual sodium carbonate (RSC), and soluble sodium percentage (SSP) were prepared for each season using fuzzy membership values, integrated for each season. A final suitability map derived by an overlay of all the seasonal outputs has identified that the groundwater in the western and the eastern part of the study area are suitable for agriculture. The study recommends cultivation of groundwater-dependent short-term crops, along the western and northern regions of the study area during the pre-monsoon season.
    Matched MeSH terms: Water Quality
  19. Li X, Zhang F, Shi J, Chan NW, Cai Y, Cheng C, et al.
    Environ Sci Pollut Res Int, 2024 Feb;31(6):9333-9346.
    PMID: 38191729 DOI: 10.1007/s11356-023-31702-2
    As an inland dryland lake basin, the rivers and lakes within the Lake Bosten basin provide scarce but valuable water resources for a fragile environment and play a vital role in the development and sustainability of the local societies. Based on the Google Earth Engine (GEE) platform, combined with the geographic information system (GIS) and remote sensing (RS) technology, we used the index WI2019 to extract and analyze the water body area changes of the Bosten Lake basin from 2000 to 2021 when the threshold value is -0.25 and the slope mask is 8°. The driving factors of water body area changes were also analyzed using the partial least squares-structural equation model (PLS-SEM). The result shows that in the last 20 years, the area of water bodies in the Bosten Lake basin generally fluctuated during the dry, wet, and permanent seasons, with a decreasing trend from 2000 to 2015 and an increasing trend between 2015 and 2019 followed by a steadily decreasing trend afterward. The main driver of the change in wet season water bodies in the Bosten Lake basin is the climatic factors, with anthropogenic factors having a greater influence on the water body area of dry season and permanent season than that of wet season. Our study achieved an accurate and convenient extraction of water body area and drivers, providing up-to-date information to fully understand the spatial and temporal variation of surface water body area and its drivers in the basin, which can be used to effectively manage water resources.
    Matched MeSH terms: Water Quality
  20. Praveena SM, Aris AZ, Hashim Z, Hashim JH
    J Expo Sci Environ Epidemiol, 2024 Jan;34(1):161-174.
    PMID: 37563210 DOI: 10.1038/s41370-023-00585-3
    BACKGROUND: Like other countries, surface water degradation in Malaysia is linked with common global issues. Although different aspects of drinking water suitability have been examined, the overall understanding of drinking water quality in Malaysia is poor.

    OBJECTIVE: Hence, the present review aims to provide an understanding of drinking water (tap water, groundwater, gravity feed system) quality and its potential implications on policy, human health, and drinking water management law and identification of potential direction of future drinking water research and management needs in Malaysia.

    METHODS: This study utilized a scoping review method. PRISMA Extension for Scoping Reviews was used for search strategy. Relevant studies were screened using the selected keywords and databases.

    RESULTS: A total of 26 drinking water quality studies involving tap water, groundwater, and gravity feed systems have been selected for review. These studies found that the majority of Malaysian Drinking Water and WHO Drinking Water standards have been met. High levels of Cu, Cd, Fe and Pb were attributable to galvanized plumbing and pipe material corrosion. Variation of fluoride in tap water depends on dosage planning and operational processes of the public water supply. Pollutants (nitrate and ammonia) in groundwater and gravity feed system water have been linked to agricultural practices in rural areas. Microbiological quality in tap water is associated with growing biofilms inside the pipelines while in groundwater is caused by shallow surface events. However, only eight studies have reported about the human risks of chemical pollutants in tap water.

    IMPACT STATEMENT: The review discusses the state of drinking water quality in Malaysia and its impact on public health. It suggests that policymakers can use this information to improve the quality of drinking water and enforce restrictions, while also raising public awareness about the importance of safe drinking water. The study can guide future research and initiatives in Malaysia, ultimately contributing to efforts to ensure access to clean and dependable drinking water.

    Matched MeSH terms: Water Quality
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links