Displaying publications 41 - 60 of 1460 in total

Abstract:
Sort:
  1. Yong SJ
    ACS Chem Neurosci, 2021 Feb 17;12(4):573-580.
    PMID: 33538586 DOI: 10.1021/acschemneuro.0c00793
    Long-COVID is a postviral illness that can affect survivors of COVID-19, regardless of initial disease severity or age. Symptoms of long-COVID include fatigue, dyspnea, gastrointestinal and cardiac problems, cognitive impairments, myalgia, and others. While the possible causes of long-COVID include long-term tissue damage, viral persistence, and chronic inflammation, the review proposes, perhaps for the first time, that persistent brainstem dysfunction may also be involved. This hypothesis can be split into two parts. The first is the brainstem tropism and damage in COVID-19. As the brainstem has a relatively high expression of ACE2 receptor compared with other brain regions, SARS-CoV-2 may exhibit tropism therein. Evidence also exists that neuropilin-1, a co-receptor of SARS-CoV-2, may be expressed in the brainstem. Indeed, autopsy studies have found SARS-CoV-2 RNA and proteins in the brainstem. The brainstem is also highly prone to damage from pathological immune or vascular activation, which has also been observed in autopsy of COVID-19 cases. The second part concerns functions of the brainstem that overlap with symptoms of long-COVID. The brainstem contains numerous distinct nuclei and subparts that regulate the respiratory, cardiovascular, gastrointestinal, and neurological processes, which can be linked to long-COVID. As neurons do not readily regenerate, brainstem dysfunction may be long-lasting and, thus, is long-COVID. Indeed, brainstem dysfunction has been implicated in other similar disorders, such as chronic pain and migraine and myalgic encephalomyelitis or chronic fatigue syndrome.
    Matched MeSH terms: Brain Diseases/metabolism; Brain Diseases/physiopathology*; Brain Diseases/virology; Brain Stem/blood supply; Brain Stem/metabolism; Brain Stem/physiopathology*; Brain Stem/virology
  2. Nisar H, Malik AS, Ullah R, Shim SO, Bawakid A, Khan MB, et al.
    Adv Exp Med Biol, 2015;823:159-74.
    PMID: 25381107 DOI: 10.1007/978-3-319-10984-8_9
    The fundamental step in brain research deals with recording electroencephalogram (EEG) signals and then investigating the recorded signals quantitatively. Topographic EEG (visual spatial representation of EEG signal) is commonly referred to as brain topomaps or brain EEG maps. In this chapter, full search full search block motion estimation algorithm has been employed to track the brain activity in brain topomaps to understand the mechanism of brain wiring. The behavior of EEG topomaps is examined throughout a particular brain activation with respect to time. Motion vectors are used to track the brain activation over the scalp during the activation period. Using motion estimation it is possible to track the path from the starting point of activation to the final point of activation. Thus it is possible to track the path of a signal across various lobes.
    Matched MeSH terms: Brain/physiology*; Brain Mapping
  3. Badrisyah I, Saiful R, Rahmat H, Naik VR, Tan YC
    Med J Malaysia, 2012 Dec;67(6):613-5.
    PMID: 23770956 MyJurnal
    Metastasis of an atrial myxoma to the brain is extremely rare. Thus far there are only 17 cases reported, including our present case. Most of the brain metastases manifest only in 3 to 6 decades, after an average time frame of one to two years after surgical removal of parental tumour. We present a case of brain metastases of atrial myxoma in a teenager of the youngest age among all reported cases, unusually as early as 15 years old. The progress of the metastatic process had been insidious for three years after heart surgery, The imaging demonstrated a rather sizeable tumour by the time when the patient is symptomatic. The location of the metastatic tumour is anyhow superficial to the cortical surface, enabling complete surgical excision of the tumour easily achievable with favourable outcome.
    Matched MeSH terms: Brain; Brain Neoplasms/surgery
  4. Law ZK, Appleton JP, Bath PM, Sprigg N
    Clin Med (Lond), 2017 Apr;17(2):166-172.
    PMID: 28365631 DOI: 10.7861/clinmedicine.17-2-166
    Managing acute intracerebral haemorrhage is a challenging task for physicians. Evidence shows that outcome can be improved with admission to an acute stroke unit and active care, including urgent reversal of anticoagulant effects and, potentially, intensive blood pressure reduction. Nevertheless, many management issues remain controversial, including the use of haemostatic therapy, selection of patients for neurosurgery and neurocritical care, the extent of investigations for underlying causes and the benefit versus risk of restarting antithrombotic therapy after an episode of intracerebral haemorrhage.
    Matched MeSH terms: Brain/pathology; Brain/physiopathology
  5. Sodhi RK, Singh R, Bansal Y, Bishnoi M, Parhar I, Kuhad A, et al.
    PMID: 34912298 DOI: 10.3389/fendo.2021.771575
    Neuropsychiatric disorders (NPDs) are a huge burden to the patient, their family, and society. NPDs have been greatly associated with cardio-metabolic comorbidities such as obesity, type-2 diabetes mellitus, dysglycaemia, insulin resistance, dyslipidemia, atherosclerosis, and other cardiovascular disorders. Antipsychotics, which are frontline drugs in the treatment of schizophrenia and off-label use in other NPDs, also add to this burden by causing severe metabolic perturbations. Despite decades of research, the mechanism deciphering the link between neuropsychiatric and metabolic disorders is still unclear. In recent years, transient receptor potential Ankyrin 1 (TRPA1) channel has emerged as a potential therapeutic target for modulators. TRPA1 agonists/antagonists have shown efficacy in both neuropsychiatric disorders and appetite regulation and thus provide a crucial link between both. TRPA1 channels are activated by compounds such as cinnamaldehyde, allyl isothiocyanate, allicin and methyl syringate, which are present naturally in food items such as cinnamon, wasabi, mustard, garlic, etc. As these are present in many daily food items, it could also improve patient compliance and reduce the patients' monetary burden. In this review, we have tried to present evidence of the possible involvement of TRPA1 channels in neuropsychiatric and metabolic disorders and a possible hint towards using TRPA1 modulators to target appetite, lipid metabolism, glucose and insulin homeostasis and inflammation associated with NPDs.
    Matched MeSH terms: Brain Diseases, Metabolic/complications; Brain Diseases, Metabolic/metabolism*
  6. Ong L, Selladurai BM, Dhillon MK, Atan M, Lye MS
    Pediatr Neurosurg, 1996 Jun;24(6):285-91.
    PMID: 8988493
    The outcome of 151 children less than 15 years of age and admitted within 24 h of head injury was studied in relation to clinical and computed tomography (CT) scan features. Thirty one (20.5%) had a poor outcome (24 died, 6 were severely disabled at 6 months after injury and 1 was in a persistent vegetative state) while 120 (79.5%) had a good outcome (89 recovered well and 31 were moderately disabled). Factors associated with a poor outcome were Glasgow Coma Scale (GCS) score 24 h following injury, presence of hypoxia on admission and CT scan features of subarachnoid haemorrhage, diffuse axonal injury and brain swelling. GCS scores alone, in the absence of other factors, had limited predictive value. The prognostic value of GCS scores < 8 was enhanced two-to fourfold by the presence of hypoxia. The additional presence of the CT scan features mentioned above markedly increased the probability of a poor outcome to > 0.8, modified only by the presence of GCS scores > 12. Correct predictions were made in 90.1% of patients, indicating that it is possible to estimate the severity of a patient's injury based on a small subset of clinical and radiological criteria that are readily available.
    Matched MeSH terms: Brain Damage, Chronic/diagnosis*; Brain Damage, Chronic/mortality; Brain Edema/diagnosis; Brain Edema/mortality; Brain Injuries/diagnosis*; Brain Injuries/mortality; Hypoxia, Brain/diagnosis*; Hypoxia, Brain/mortality
  7. Jamil Al-Obaidi MM, Desa MNM
    J Neurosci Res, 2024 Jan;102(1).
    PMID: 38284852 DOI: 10.1002/jnr.25288
    Parasites have a significant impact on the neurological, cognitive, and mental well-being of humans, with a global population of over 1 billion individuals affected. The pathogenesis of central nervous system (CNS) injury in parasitic diseases remains limited, and prevention and control of parasitic CNS infections remain significant areas of research. Parasites, encompassing both unicellular and multicellular organisms, have intricate life cycles and possess the ability to infect a diverse range of hosts, including the human population. Parasitic illnesses that impact the central and peripheral nervous systems are a significant contributor to morbidity and mortality in low- to middle-income nations. The precise pathways through which neurotropic parasites infiltrate the CNS by crossing the blood-brain barrier (BBB) and cause neurological harm remain incompletely understood. Investigating brain infections caused by parasites is closely linked to studying neuroinflammation and cerebral impairment. The exact molecular and cellular mechanisms involved in this process remain incomplete, but understanding the exact mechanisms could provide insight into their pathogenesis and potentially reveal novel therapeutic targets. This review paper explores the underlying mechanisms involved in the development of neurological disorders caused by parasites, including parasite-derived elements, host immune responses, and modifications in tight junctions (TJs) proteins.
    Matched MeSH terms: Blood-Brain Barrier*; Brain
  8. Idris Z, Zenian MS, Muzaimi M, Hamid WZ
    Asian J Neurosurg, 2014 Jul-Sep;9(3):115-23.
    PMID: 25685201 DOI: 10.4103/1793-5482.142690
    Induced hypothermia for treatment of traumatic brain injury is controversial. Since many pathways involved in the pathophysiology of secondary brain injury are temperature dependent, regional brain hypothermia is thought capable to mitigate those processes. The objectives of this study are to assess the therapeutic effects and complications of regional brain cooling in severe head injury with Glasgow coma scale (GCS) 6-7.
    Matched MeSH terms: Brain; Brain Injuries; Brain Injuries, Traumatic
  9. Idris Z, Kandasamy R, Neoh YY, Abdullah JM, Wan Hassan WMN, Mat Hassan ME
    Malays J Med Sci, 2018 Feb;25(1):1-4.
    PMID: 29599629 DOI: 10.21315/mjms2018.25.1.1
    World-renowned neurosurgeon, Professor Saleem Abdulrauf, has been featured in several medical journals for his successful "Awake Brain Aneurysm Surgery". Regarded as a "world first", this surgery, involves clipping un-ruptured brain aneurysms while patients are awake. Only one or two neurosurgery centres worldwide are capable of this. Performing the surgery while the patient is awake lowers risks of brain ischemia with neurological deficits and ventilator associated morbidities. The technique has been viewed as the start of a new era in brain surgery. Physicians from the Universiti Sains Malaysia (USM) School of Medical Sciences, at the Health Campus in Kelantan, headed by Professor Dr Zamzuri Idris (neurosurgeon) and Dr Wan Mohd Nazaruddin Wan Hassan (neuroanaesthetist), recently performed a similar procedure, the first such surgery in Malaysia and Southeast Asia. The USM team can therefore be considered to be among the first few to have done this brain surgery and achieved successful patient outcomes.
    Matched MeSH terms: Brain; Brain Ischemia; Split-Brain Procedure
  10. Balafar MA, Ramli AR, Mashohor S
    Neurosciences (Riyadh), 2011 Jul;16(3):242-7.
    PMID: 21677615
    To improve the quality of expectation maximizing (EM) for brain image segmentation, and to evaluate the accuracy of segmentation results.
    Matched MeSH terms: Brain/anatomy & histology*; Brain Mapping*
  11. Poznanski RR
    J Integr Neurosci, 2009 Sep;8(3):345-69.
    PMID: 19938210
    The continuity of the mind is suggested to mean the continuous spatiotemporal dynamics arising from the electrochemical signature of the neocortex: (i) globally through volume transmission in the gray matter as fields of neural activity, and (ii) locally through extrasynaptic signaling between fine distal dendrites of cortical neurons. If the continuity of dynamical systems across spatiotemporal scales defines a stream of consciousness then intentional metarepresentations as templates of dynamic continuity allow qualia to be semantically mapped during neuroimaging of specific cognitive tasks. When interfaced with a computer, such model-based neuroimaging requiring new mathematics of the brain will begin to decipher higher cognitive operations not possible with existing brain-machine interfaces.
    Matched MeSH terms: Brain/physiology*; Brain Mapping/methods*
  12. Prakash A, Dhaliwal GK, Kumar P, Majeed AB
    Int J Neurosci, 2017 Feb;127(2):99-108.
    PMID: 27044501
    Alzheimer's disease (AD) is the most common form of dementia. Several hypotheses have been put forward to explain the basis of disease onset and progression. A complicated array of molecular events has been implicated in the pathogenesis of AD. It is attributed to a variety of pathological conditions that share similar critical processes, such as oxidative stress, proteinaceous aggregations, mitochondrial dysfunctions and energy failure. There is increasing evidence suggesting that metal homeostasis is dysregulated in the pathology of AD. Biometals play an important role in the normal body functioning but AD may be mediated or triggered by disproportion of metal ions leading to changes in critical biological systems and initiating a cascade of events finally leading to neurodegeneration and cell death. The link is multifactorial, and although the source of the shift in oxidative homeostasis is still unclear, current evidence points to changes in the balance of redox transition metals, especially iron, copper (Cu) and other trace metals. Their levels in the brain are found to be elevated in AD. In other neurodegenerative disorders, Cu, zinc, aluminum and manganese are involved. This paper is a review of recent advances of the role of metals in the pathogenesis and pathophysiology of AD and related neurodegenerative diseases.
    Matched MeSH terms: Brain/metabolism*; Brain/pathology; Brain/physiopathology
  13. Abdullah J, Isa MN
    Stereotact Funct Neurosurg, 1999;73(1-4):19-22.
    PMID: 10853092
    Two hundred primary brain tumours in both adults and children from the year 1990 to 1998 presenting for treatment to the Neurosurgical Division of the Hospital of the University of Sciences Malaysia were studied retrospectively. Volumes of tumours were taken from CT scans with contrast using two formulas and divided into 4 groups: (1) less than 20 cm(3), (2) 20-50 cm(3), (3) 50-100 cm(3) (4) larger than 100 cm(3). The majority of the brain tumours were in the volume range of 50-100 cm(3), and are thus potentially curable with retroviral gene therapy.
    Matched MeSH terms: Brain Neoplasms/pathology; Brain Neoplasms/surgery; Brain Neoplasms/therapy*
  14. Iqbal Jamaludin, Mohd Zulfaezal Che Azemin, Abdul Halim Sapuan, Radhiana Hassan
    MyJurnal
    The brain is the most complex organ in the human body. Robust and vigorous daily activities may cause changes to the brain structure. Huffaz, individuals who memorise the Quran undergo intensive memorization training which may lead to structural changes in specific regions of the brain.
    Matched MeSH terms: Brain
  15. Fong CY, Hlaing CS, Tay CG, Ong LC
    Pediatr Infect Dis J, 2014 Oct;33(10):1092-4.
    PMID: 24776518 DOI: 10.1097/INF.0000000000000382
    Parkinsonism as a neurologic manifestation of dengue infection is rare with only 1 reported case in an adult patient. We report a case of a 6-year-old child with self-limiting post-dengue encephalopathy and Parkinsonism. This is the first reported pediatric case of post-dengue Parkinsonism and expands the neurologic manifestations associated with dengue infection in children. Clinicians should consider the possibility of post-dengue Parkinsonism in children with a history of pyrexia from endemic areas of dengue.
    Matched MeSH terms: Brain Diseases/complications; Brain Diseases/diagnosis*; Brain Diseases/pathology*
  16. Arumugasamy N
    Med J Malaya, 1968 Dec;23(2):110-4.
    PMID: 4240820
    Matched MeSH terms: Brain Diseases/diagnosis*; Brain Neoplasms/diagnosis
  17. Ahmad RF, Malik AS, Kamel N, Reza F, Amin HU, Hussain M
    Technol Health Care, 2017;25(3):471-485.
    PMID: 27935575 DOI: 10.3233/THC-161286
    BACKGROUND: Classification of the visual information from the brain activity data is a challenging task. Many studies reported in the literature are based on the brain activity patterns using either fMRI or EEG/MEG only. EEG and fMRI considered as two complementary neuroimaging modalities in terms of their temporal and spatial resolution to map the brain activity. For getting a high spatial and temporal resolution of the brain at the same time, simultaneous EEG-fMRI seems to be fruitful.

    METHODS: In this article, we propose a new method based on simultaneous EEG-fMRI data and machine learning approach to classify the visual brain activity patterns. We acquired EEG-fMRI data simultaneously on the ten healthy human participants by showing them visual stimuli. Data fusion approach is used to merge EEG and fMRI data. Machine learning classifier is used for the classification purposes.

    RESULTS: Results showed that superior classification performance has been achieved with simultaneous EEG-fMRI data as compared to the EEG and fMRI data standalone. This shows that multimodal approach improved the classification accuracy results as compared with other approaches reported in the literature.

    CONCLUSIONS: The proposed simultaneous EEG-fMRI approach for classifying the brain activity patterns can be helpful to predict or fully decode the brain activity patterns.

    Matched MeSH terms: Brain/physiology; Brain Waves/physiology
  18. Manan HA, Franz EA, Yahya N
    Neuroradiology, 2020 Mar;62(3):353-367.
    PMID: 31802156 DOI: 10.1007/s00234-019-02322-w
    PURPOSE: Functional MRI (fMRI) can be employed to non-invasively localize brain regions involved in functional areas of language in patients with brain tumour, for applications including pre-operative mapping. The present systematic review was conducted to explore prevalence of different language paradigms utilised in conjunction with fMRI approaches for pre-operative mapping, with the aim of assessing their effectiveness and suitability.

    METHODS: A systematic literature search of brain tumours in the context of fMRI methods applied to pre-operative mapping for language functional areas was conducted using PubMed/MEDLINE and Scopus electronic database following PRISMA guidelines. The article search was conducted between the earliest record and March 1, 2019. References and citations were checked in Google Scholar database.

    RESULTS: Twenty-nine independent studies were identified, comprising 1031 adult participants with 976 patients characterised with different types and sizes of brain tumours, and the remaining 55 being healthy controls. These studies evaluated functional language areas in patients with brain tumours prior to surgical interventions using language-based fMRI. Results demonstrated that 86% of the studies used a Word Generation Task (WGT) to evoke functional language areas during pre-operative mapping. Fifty-seven percent of the studies that used language-based paradigms in conjunction with fMRI as a pre-operative mapping tool were in agreement with intra-operative results of language localization.

    CONCLUSIONS: WGT was most commonly utilised and is proposed as a suitable and useful technique for a language-based paradigm fMRI for pre-operative mapping. However, based on available evidence, WGT alone is not sufficient. We propose a combination and convergence paradigms for a more sensitive and specific map of language function for pre-operative mapping. A standard guideline for clinical applications should be established.

    Matched MeSH terms: Brain Mapping/methods*; Brain Neoplasms/physiopathology*
  19. Khan DM, Kamel N, Muzaimi M, Hill T
    Brain Connect, 2021 02;11(1):12-29.
    PMID: 32842756 DOI: 10.1089/brain.2019.0721
    Introduction: With the recent technical advances in brain imaging modalities such as magnetic resonance imaging, positron emission tomography, and functional magnetic resonance imaging (fMRI), researchers' interests have inclined over the years to study brain functions through the analysis of the variations in the statistical dependence among various brain regions. Through its wide use in studying brain connectivity, the low temporal resolution of the fMRI represented by the limited number of samples per second, in addition to its dependence on brain slow hemodynamic changes, makes it of limited capability in studying the fast underlying neural processes during information exchange between brain regions. Materials and Methods: In this article, the high temporal resolution of the electroencephalography (EEG) is utilized to estimate the effective connectivity within the default mode network (DMN). The EEG data are collected from 20 subjects with alcoholism and 25 healthy subjects (controls), and used to obtain the effective connectivity diagram of the DMN using the Partial Directed Coherence algorithm. Results: The resulting effective connectivity diagram within the DMN shows the unidirectional causal effect of each region on the other. The variations in the causal effects within the DMN between controls and alcoholics show clear correlation with the symptoms that are usually associated with alcoholism, such as cognitive and memory impairments, executive control, and attention deficiency. The correlation between the exchanged causal effects within the DMN and symptoms related to alcoholism is discussed and properly analyzed. Conclusion: The establishment of the causal differences between control and alcoholic subjects within the DMN regions provides valuable insight into the mechanism by which alcohol modulates our cognitive and executive functions and creates better possibility for effective treatment of alcohol use disorder.
    Matched MeSH terms: Brain Mapping
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links