Displaying publications 41 - 60 of 326 in total

Abstract:
Sort:
  1. Hasanpourghadi M, Abdul Majid N, Rais Mustafa M
    PeerJ, 2018;6:e5577.
    PMID: 30245930 DOI: 10.7717/peerj.5577
    Combination Index (CI) analysis suggested that MBIC and doxorubicin synergistically inhibited up to 97% of cell proliferation in ER+/PR+MCF-7 and triple negative MDA-MB-231 breast cancer cell lines. Moreover, treatment of the breast cancer cells with the combined drugs resulted in lower IC50 values in contrast to the individual drug treatment. Small noncoding microRNAs (miRNA) may function as non-mutational gene regulators at post-transcriptional level of protein synthesis. In the present study, the effect of the combined treatment of MBIC and doxorubicin on the expression level of several miRNAs including miR-34a, miR-146a, miR-320a and miR-542 were evaluated in MCF-7 and MDA-MB-231 breast cancer cell lines. These miRNAs have the potential to alter the protein level of survivin, the anti-apoptotic protein and reduce the metastatic activity in human breast cancer cell lines by interfering with the nuclear accumulation of NF-κB. Our results demonstrated the several fold changes in expression of miRNAs, which is drug and cell line dependent. This finding demonstrated a functional synergistic network between miR-34a, miR-320a and miR-542 that are negatively involved in post-transcriptional regulation of survivin in MCF-7 cells. While in MDA-MB-231 cells, changes in expression level of miR-146a was correlated with inhibition of the nuclear translocation of NF-κB. The overall result suggested that alteration in protein level and location of survivin and NF-κB by miR-34a, miR-320a, miR-146a and miR-542, remarkably influenced the synergistic enhancement of combined MBIC and doxorubicin in treatment of aggressive and less aggressive human breast cancer cell lines.
    Matched MeSH terms: MCF-7 Cells
  2. Yeong KY, Khaw KY, Takahashi Y, Itoh Y, Murugaiyah V, Suzuki T
    Bioorg Chem, 2020 01;94:103403.
    PMID: 31711765 DOI: 10.1016/j.bioorg.2019.103403
    Studies have suggested that sirtuin inhibition may have beneficial effects on several age-related diseases such as neurodegenerative disorders and cancer. Garcinia mangostana is a well-known tropical plant found mostly in South East Asia with several positive health effects. Some of its phytochemicals such as α-mangostin was found to be able to modulate sirtuin activity in mice and was implicated with inflammation, diabetes and obesity. However, comprehensive studies on sirtuin activity by the prenylated xanthones extracted from Garcinia mangostana have yet to be reported. The present study led to the discovery and identification of γ-mangostin as a potent and selective SIRT2 inhibitor. It was demonstrated that γ-mangostin was able to increase the α-tubulin acetylation in MDA-MD-231 and MCF-7 breast cancer cells. It was also found to possess potent antiproliferative activity against both cell lines. In addition, it was able to induce neurite outgrowth in the N2a cells.
    Matched MeSH terms: MCF-7 Cells
  3. Mohammed HA, Sulaiman GM, Anwar SS, Tawfeeq AT, Khan RA, Mohammed SAA, et al.
    Nanomedicine (Lond), 2021 09;16(22):1937-1961.
    PMID: 34431317 DOI: 10.2217/nnm-2021-0070
    Aims: To evaluate the anti breast-cancer activity, biocompatibility and toxicity of poly(d,l)-lactic-co-glycolic acid (PLGA)-encapsulated quercetin nanoparticles (Q-PLGA-NPs). Materials & methods: Quercetin was nano-encapsulated by an emulsion-diffusion process, and the nanoparticles were fully characterized through Fourier transform infrared spectroscopy, x-ray diffractions, FESEM and zeta-sizer analysis. Activity against CAL51 and MCF7 cell lines were assessed by DNA fragmentation assays, fluorescence microscopy, and acridine-orange, and propidium-iodide double-stainings. Biocompatibility towards red blood cells and toxicity towards mice were also explored. Results: The Q-PLGA-NPs exhibited apoptotic activity against the cell lines. The murine in vivo studies showed no significant alterations in the liver and kidney's functional biomarkers, and no apparent abnormalities, or tissue damages were observed in the histological images of the liver, spleen, lungs, heart and kidneys. Conclusion: The study established the preliminary in vitro efficacy and in vivo safety of Q-PLGA-NPs as a potential anti-breast cancer formulation.
    Matched MeSH terms: MCF-7 Cells
  4. Min J, Son T, Hong JS, Cheah PS, Wegemann A, Murlidharan K, et al.
    Adv Biosyst, 2020 12;4(12):e2000003.
    PMID: 32815321 DOI: 10.1002/adbi.202000003
    Extracellular vesicles (EVs)-nanoscale phospholipid vesicles secreted by cells-present new opportunities for molecular diagnosis from non-invasive liquid biopsies. Single EV protein analysis can be extremely valuable in studying EVs as circulating cancer biomarkers, but it is technically challenging due to weak detection signals associated with limited amounts of epitopes and small surface areas for antibody labeling. Here, a new, simple method that enables multiplexed analyses of EV markers with improved sensitivities is reported. Specifically, plasmon-enhanced fluorescence detection is implemented that amplifies fluorescence signals using surface plasmon resonances excited by periodic gold nanohole structures. It is shown that fluorescence signals in multiple channels are amplified by one order of magnitude, and both transmembrane and intravesicular markers can be detected at the single EV level. This approach can offer additional insight into understanding subtypes, heterogeneity, and production dynamics of EVs during disease development and progression.
    Matched MeSH terms: MCF-7 Cells
  5. Mphahlele MJ, Paumo HK, Choong YS
    Pharmaceuticals (Basel), 2017 Nov 20;10(4).
    PMID: 29156606 DOI: 10.3390/ph10040087
    Series of the 2-unsubstituted and 2-(4-chlorophenyl)-substituted 4-anilino-6-bromoquinazolines and their 6-(4-fluorophenyl)-substituted derivatives were evaluated for in vitro cytotoxicity against MCF-7 and HeLa cells. The 2-unsubstituted 4-anilino-6-bromoquinazolines lacked activity, whereas most of their 2-(4-chlorophenyl) substituted derivatives were found to exhibit significant cytotoxicity and selectivity against HeLa cells. Replacement of bromine with 4-fluorophenyl group for the 2-unsubstituted 4-anilinoquinazolines resulted in superior activity against HeLa cells compared to Gefitinib. The presence of a 4-fluorophenyl group in the 2-(4-chlorophenyl) substituted derivatives led to increased cytotoxicity against HeLa cells, except for the 3-chloroanilino derivative. The most active compounds, namely, 3g, 3l, and 4l, were found to exhibit a moderate to significant inhibitory effect against epidermal growth factor receptor tyrosine kinase (EGFR-TK). The EGFR molecular docking model suggested that these compounds are nicely bound to the region of EGFR.
    Matched MeSH terms: MCF-7 Cells
  6. Ghasemzadeh A, Ashkani S, Baghdadi A, Pazoki A, Jaafar HZ, Rahmat A
    Molecules, 2016 Sep 09;21(9).
    PMID: 27618000 DOI: 10.3390/molecules21091203
    Sweet basil (Ocimum basilicum Linnaeus) is aromatic herb that has been utilized in traditional medicine. To improve the phytochemical constituents and pharmaceutical quality of sweet basil leaves, ultraviolet (UV)-B irradiation at different intensities (2.30, 3.60, and 4.80 W/m²) and durations (4, 6, 8, and 10-h) was applied at the post-harvest stage. Total flavonoid content (TFC) and total phenolic content (TPC) were measured using spectrophotometric method, and individual flavonoids and phenolic acids were identified using ultra-high performance liquid chromatography. As a key enzyme for the metabolism of flavonoids, chalcone synthase (CHS) activity, was measured using a CHS assay. Antioxidant activity and antiproliferative activity of extracts against a breast cancer cell line (MCF-7) were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, respectively. UV-B irradiation at an intensity of 3.60 W/m² increased TFC approximately 0.85-fold and also increased quercetin (0.41-fold), catechin (0.85-fold), kaempferol (0.65-fold) rutin (0.68-fold) and luteolin (1.00-fold) content. The highest TPC and individual phenolic acid (gallic acid, cinnamic acid and ferulic acid) was observed in the 3.60 W/m² of UV-B treatment. Cinnamic acid and luteolin were not detected in the control plants, production being induced by UV-B irradiation. Production of these secondary metabolites was also significantly influenced by the duration of UV-B irradiation. Irradiation for 8-h led to higher TFC, TPC and individual flavonoids and phenolic acids than for the other durations (4, 8, and 10-h) except for cinnamic acid, which was detected at higher concentration when irradiated for 6-h. Irradiation for 10-h significantly decreased the secondary metabolite production in sweet basil leaves. CHS activity was induced by UV-B irradiation and highest activity was observed at 3.60 W/m² of UV-B irradiation. UV-B treated leaves presented the highest DPPH activity and antiproliferative activity with a half-maximal inhibitory concentration (IC50) value of 56.0 and 40.8 µg/mL, respectively, over that of the control plants (78.0 and 58.2 µg/mL, respectively). These observations suggest that post-harvest irradiation with UV-B can be considered a promising technique to improve the healthy-nutritional and pharmaceutical properties of sweet basil leaves.
    Matched MeSH terms: MCF-7 Cells
  7. Rosman R, Saifullah B, Maniam S, Dorniani D, Hussein MZ, Fakurazi S
    Nanomaterials (Basel), 2018 Feb 02;8(2).
    PMID: 29393902 DOI: 10.3390/nano8020083
    Lung cancer, breast cancer and colorectal cancer are the most prevalent fatal types of cancers globally. Gallic acid (3,4,5-trihydroxybenzoic acid) is a bioactive compound found in plants and foods, such as white tea, witch hazel and it has been reported to possess anticancer, antioxidant and anti-inflammatory properties. In this study we have redesigned our previously reported anticancer nanocomposite formulation with improved drug loading based on iron oxide magnetite nanoparticles coated with polyethylene glycol and loaded with anticancer drug gallic acid (Fe₃O₄-PEG-GA). The in vitro release profile and percentage drug loading were found to be better than our previously reported formulation. The anticancer activity of pure gallic acid (GA), empty carrier (Fe₃O₄-PEG) nanocarrier and of anticancer nanocomposite (Fe₃O₄-PEG-GA) were screened against human lung cancer cells (A549), human breast cancer cells (MCF-7), human colon cancer cells (HT-29) and normal fibroblast cells (3T3) after incubation of 24, 48 and 72 h using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay. The designed formulation (Fe₃O₄-PEG-GA) showed better anticancer activity than free gallic acid (GA). The results of the in vitro studies are highly encouraging to conduct the in vivo studies.
    Matched MeSH terms: MCF-7 Cells
  8. Qatrun Nada D, Masniza ML, Abdullah N, Marlini M, Elias MH, Pathmanathan SG, et al.
    Malays J Pathol, 2022 Dec;44(3):367-385.
    PMID: 36591707
    Breast cancer remains a significant cause of mortality in females worldwide, despite advances in technology and treatment. MicroRNA expression in breast cancer is studied both as potential biomarkers and for therapeutic purposes. Accumulated evidence revealed microRNA profile of various types of cancer cells following antineoplastic treatment. The progression of research in this area provides better understanding on the anti-cancer mechanism of various natural compounds and drugs specifically on the microRNA regulation. Hence, we aim to systematically review differentially expressed microRNA in MCF-7, a commonly studied breast cancer cell line, after treatment with anti-neoplastic agents. Relevant keywords were used to screen for research articles that reported on the differentially expressed microRNAs in experimental models of MCF-7 before and after anti-neoplastic treatment. Target genes of microRNAs were identified from MiRTarbase and further in silico functional analysis of the target genes were performed using DAVID bioinformatic resources. Two upregulated microRNAs (mir-200c and let-7d) and 3 downregulated microRNAs (mir-27a, mir-27b and mir-203) were identified by highest number of studies. Three microRNAs (let-7a, mir-23a and mir-7) showed inconsistent direction of expression. Genes functional analysis revealed the regulatory effect of microRNA on genes related to angiogenesis, hypoxia, P53, FoxO and PI3K-AKT signalling. Clusters of genes associated to the pathway of angiogenesis, cancers, cell proliferation and apoptosis were noted through protein-protein interaction analysis. MicroRNAs, especially the mir-200c, let-7d, mir-27a, mir-27b and mir-203 from this review could be further validated experimentally to serve as molecular target or biomarkers for anti-neoplastic therapy.
    Matched MeSH terms: MCF-7 Cells
  9. Tan AS, Singh J, Rezali NS, Muhamad M, Nik Mohamed Kamal NNS, Six Y, et al.
    Molecules, 2022 Aug 23;27(17).
    PMID: 36080141 DOI: 10.3390/molecules27175373
    The Heck cross-coupling reaction is a well-established chemical tool for the synthesis of unsaturated compounds by formation of a new C-C bond. In this study, 1,3-diarylpropene derivatives, designed as structural analogues of stilbenoids and dihydrostilbenoids, were synthesised by the palladium-catalysed reactions of 2-amidoiodobenzene derivatives with either estragole or eugenol. The products were obtained with high (E) stereoselectivity but as two regioisomers. The ratios of isomers were found to be dependent on the nature of the allylbenzene partner and were rationalised by electronic effects exercising a determining influence in the β-hydride elimination step. In addition, the cytotoxic effects of all the Heck reaction products were evaluated against MCF-7 and MDA-MB-231 human breast cancer cells, with unpromising results. Among all, compound 7d exhibited weak cytotoxic activity towards MCF-7 cell lines with IC50 values of 47.92 µM in comparison with tamoxifen and was considered to have general toxicity (SI value < 2).
    Matched MeSH terms: MCF-7 Cells
  10. Lee SH, Jaganath IB, Atiya N, Manikam R, Sekaran SD
    J Food Drug Anal, 2016 10;24(4):855-865.
    PMID: 28911625 DOI: 10.1016/j.jfda.2016.03.010
    Chemotherapies remain far from ideal due to drug resistance; therefore, novel chemotherapeutic agents with higher effectiveness are crucial. The extracts of four Phyllanthus species, namely Phyllanthus niruri, Phyllanthus urinaria, Phyllanthus watsonii, and Phyllanthus amarus, were shown to induce apoptosis and inhibit metastasis of breast carcinoma cells (MCF-7). The main objective of this study was to determine the pathways utilized by these four Phyllanthus species to exert anti-metastatic activities. A cancer 10-pathway reporter was used to investigate the pathways affected by the four Phyllanthus species. Results indicated that these Phyllanthus species suppressed breast carcinoma metastasis and proliferation by suppressing matrix metalloprotein 2 and 9 expression via inhibition of the extracellular signal-related kinase (ERK) pathway. Additionally, inhibition of hypoxia-inducible factor 1-α in the hypoxia pathway caused reduced vascular endothelial growth factor and inducible nitric oxide synthase expression, resulting in anti-angiogenic effects and eventually anti-metastasis. Two-dimensional gel electrophoresis identified numerous proteins suppressed by these Phyllanthus species, including invasion proteins, anti-apoptotic protein, protein-synthesis proteins, angiogenic and mobility proteins, and various glycolytic enzymes. Our results indicated that ERK and hypoxia pathways are the most likely targets of the four Phyllanthus species for the inhibition of MCF-7 metastasis.
    Matched MeSH terms: MCF-7 Cells
  11. Tan EW, Simon SE, Numan A, Khalid M, Tan KO
    Colloids Surf B Biointerfaces, 2024 Mar;235:113793.
    PMID: 38364521 DOI: 10.1016/j.colsurfb.2024.113793
    Breast cancer is a global health concern that requires personalized therapies to prevent relapses, as conventional treatments may develop resistance over time. Photothermal therapy using spectral radiation or intense light emission is a broad-spectrum treatment that induces hyperthermia-mediated cancer cell death. MXene, a two-dimensional material, has been reported to have potential biological applications in photothermal therapy for cancer treatment. In this study, we investigated the apoptotic activity of MXene and UV-irradiated MXene in MCF-7 breast cancer cells by treating them with varying concentrations of MXene. The cytotoxicity of MXene and UV was evaluated by analyzing cellular morphology, nuclei condensation, caspase activation, and apoptotic cell death. We also assessed the effect of the combined treatment on the expression and cellular distribution of Tubulin, a key component of microtubules required for cell division. At low concentrations of MXene (up to 100 µg/ml), the level of cytotoxicity in MCF-7 cells was low. However, the combined treatment of MXene and UV resulted in a synergistic increase in cytotoxicity, causing rounded cellular morphology, condensed nuclei, caspase activation, and apoptotic cell death. Furthermore, the treatment reduced Tubulin protein expression and cellular distribution, indicating a potent inducer of cell death with potential application for cancer treatment. The study demonstrates that the combined treatment of MXene and UVB irradiation is a promising strategy for inducing apoptotic cell death in breast cancer cells, suggesting its potential as a therapeutic intervention for breast cancer.
    Matched MeSH terms: MCF-7 Cells
  12. Abu Bakar MF, Abdul Karim F, Suleiman M, Isha A, Rahmat A
    PMID: 26640502 DOI: 10.1155/2015/936215
    The study aimed to investigate the phytochemical contents, antioxidant and antiproliferative activity of 80% methanol extract of Lepidozia borneensis. The total phenolic and total flavonoid contents were analysed using Folin-Ciocalteu and aluminium chloride colorimetric methods. Antioxidant properties were evaluated by using FRAP, ABTS, and DPPH assays while the effects of L. borneensis on the proliferation of MCF-7 cell line were evaluated by using MTT assay. The results showed that the total phenolic and flavonoid contents were 12.42 ± 0.47 mg GAE/g and 9.36 ± 1.29 mg CE/g, respectively. The GC-MS analysis revealed the presence of at least 35 compounds. The extract was found to induce cytotoxicity against MCF-7 cell line with IC50 value of 47.33 ± 7.37 µg/mL. Cell cycle analysis showed that the extract induced significant arrest at G0/G1 at 24 hours of treatment. After 72 hours of treatment, the proportion of cells in G0/G1 and G2-M phases had decreased significantly as compared to their control. Apoptosis occurred during the first 24 hours and significantly increased to 30.8% after 72 hours of treatment. No activation of caspase 3 was observed. These findings suggest that L. borneensis extract has the potential as natural antioxidant and anticancer agents.
    Matched MeSH terms: MCF-7 Cells
  13. Lee ML, Tan NH, Fung SY, Tan CS, Ng ST
    PMID: 22454675 DOI: 10.1155/2012/697603
    Lignosus rhinocerus, the tiger milk mushroom, is one of the most important medicinal mushrooms used by the indigenous people of Southeast Asia and China. It has been used to treat breast cancer. A cold water extract (LR-CW) prepared from the sclerotia of L. rhinocerus cultivar was found to exhibit antiproliferative activity against human breast carcinoma (MCF-7) and human lung carcinoma (A549), with IC(50) of 96.7 μg/mL and 466.7 μg/mL, respectively. In comparison, LR-CW did not show significant cytotoxicity against the two corresponding human normal cells, 184B5 (human breast cell) and NL 20 (human lung cell). DNA fragmentation studies suggested that the cytotoxic action of LR-CW against cancer cells is mediated by apoptosis. Sephadex G-50 gel filtration fractionation of LR-CW yielded a high-molecular-weight and a low-molecular-weight fraction. The high-molecular-weight fraction contains mainly carbohydrate (68.7%) and small amount of protein (3.6%), whereas the low-molecular-weight fraction contains 31% carbohydrate and was devoid of protein. Only the high-molecular-weight fraction exhibited antiproliferative activity against cancer cells, with IC(50) of 70.0 μg/mL and 76.7 μg/mL, respectively. Thus, the cytotoxic action of the LR-CW is due to the high-molecular-weight fraction, either the proteins or protein-carbohydrate complex.
    Matched MeSH terms: MCF-7 Cells
  14. Ayob Z, Mohd Bohari SP, Abd Samad A, Jamil S
    PMID: 25574182 DOI: 10.1155/2014/732980
    Justicia gendarussa methanolic leaf extracts from five different locations in the Southern region of Peninsular Malaysia and two flavonoids, kaempferol and naringenin, were tested for cytotoxic activity. Kaempferol and naringenin were two flavonoids detected in leaf extracts using gas chromatography-flame ionization detection (GC-FID). The results indicated that highest concentrations of kaempferol and naringenin were detected in leaves extracted from Mersing with 1591.80 mg/kg and 444.35 mg/kg, respectively. Positive correlations were observed between kaempferol and naringenin concentrations in all leaf extracts analysed with the Pearson method. The effects of kaempferol and naringenin from leaf extracts were examined on breast cancer cell lines (MDA-MB-231 and MDA-MB-468) using MTT assay. Leaf extract from Mersing showed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 40 μg/mL, respectively, compared to other leaf extracts. Kaempferol possessed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 34 μg/mL, respectively. These findings suggest that the presence of kaempferol in Mersing leaf extract contributed to high cytotoxicity of both MDA-MB-231 and MDA-MB-468 cancer cell lines.
    Matched MeSH terms: MCF-7 Cells
  15. Ghasemzadeh A, Jaafar HZ, Rahmat A, Devarajan T
    PMID: 24693327 DOI: 10.1155/2014/873803
    In this study, we investigated some bioactive compounds and pharmaceutical qualities of curry leaf (Murraya koenigii L.) extracts from three different locations in Malaysia. The highest TF and total phenolic (TP) contents were observed in the extracts from Kelantan (3.771 and 14.371 mg/g DW), followed by Selangor (3.146 and 12.272 mg/g DW) and Johor (2.801 and 12.02 mg/g DW), respectively. High quercetin (0.350 mg/g DW), catechin (0.325 mg/g DW), epicatechin (0.678 mg/g DW), naringin (0.203 mg/g DW), and myricetin (0.703 mg/g DW) levels were observed in the extracts from Kelantan, while the highest rutin content (0.082 mg/g DW) was detected in the leaves from Selangor. The curry leaf extract from Kelantan exhibited higher concentration of gallic acid (0.933 mg/g DW) than that from Selangor (0.904 mg/g DW) and Johor (0.813 mg/g DW). Among the studied samples, the ones from Kelantan exhibited the highest radical scavenging activity (DPPH, 66.41%) and ferric reduction activity potential (FRAP, 644.25  μ m of Fe(II)/g) followed by those from Selangor (60.237% and 598.37  μ m of Fe(II)/g) and Johor (50.76% and 563.42  μ m of Fe(II)/g), respectively. A preliminary screening showed that the curry leaf extracts from all the locations exhibited significant anticarcinogenic effects inhibiting the growth of breast cancer cell line (MDA-MB-231) and maximum inhibition of MDA-MB-231 cell was observed with the curry leaf extract from Kelantan. Based on these results, it is concluded that Malaysian curry leaf collected from the North (Kelantan) might be potential source of potent natural antioxidant and beneficial chemopreventive agents.
    Matched MeSH terms: MCF-7 Cells
  16. Ho YF, Karsani SA, Yong WK, Abd Malek SN
    PMID: 23533528 DOI: 10.1155/2013/857257
    Researchers are looking into the potential development of natural compounds for anticancer therapy. Previous studies have postulated the cytotoxic effect of helichrysetin towards different cancer cell lines. In this study, we investigated the cytotoxic effect of helichrysetin, a naturally occurring chalcone on four selected cancer cell lines, A549, MCF-7, Ca Ski, and HT-29, and further elucidated its biochemical and molecular mechanisms in human lung adenocarcinoma, A549. Helichrysetin showed the highest cytotoxic activity against Ca Ski followed by A549. Changes in the nuclear morphology of A549 cells such as chromatin condensation and nuclear fragmentation were observed in cells treated with helichrysetin. Further evidence of apoptosis includes the externalization of phosphatidylserine and the collapse of mitochondrial membrane potential which are both early signs of apoptosis. These signs of apoptosis are related to cell cycle blockade at the S checkpoint which suggests that the alteration of the cell cycle contributes to the induction of apoptosis in A549. These results suggest that helichrysetin has great potentials for development as an anticancer agent.
    Matched MeSH terms: MCF-7 Cells
  17. Yaacob NS, Nengsih A, Norazmi MN
    PMID: 23476711 DOI: 10.1155/2013/989841
    Tualang honey (TH) is rich in flavonoids and phenolic acids and has significant anticancer activity against breast cancer cells comparable to the effect of tamoxifen (TAM), in vitro. The current study evaluated the effects of TH when used in combination with TAM on MCF-7 and MDA-MB-231 cells. We observed that TH promoted the anticancer activity of TAM in both the estrogen receptor-(ER-)responsive and ER-nonresponsive human breast cancer cell lines. Flow cytometric analyses indicated accelerated apoptosis especially in MDA-MB-231 cells and with the involvement of caspase-3/7, -8 and -9 activation as shown by fluorescence microscopy. Depolarization of the mitochondrial membrane was also increased in both cell lines when TH was used in combination with TAM compared to TAM treatment alone. TH may therefore be a potential adjuvant to be used with TAM for reducing the dose of TAM, hence, reducing TAM-induced adverse effects.
    Matched MeSH terms: MCF-7 Cells
  18. Nesaretnam K, Meganathan P, Veerasenan SD, Selvaduray KR
    Genes Nutr, 2012 Jan;7(1):3-9.
    PMID: 21516480 DOI: 10.1007/s12263-011-0224-z
    Breast cancer is the second most frequent cancer affecting women worldwide after lung cancer. The toxicity factor associated with synthetic drugs has turned the attention toward natural compounds as the primary focus of interest as anticancer agents. Vitamin E derivatives consisting of the well-established tocopherols and their analogs namely tocotrienols have been extensively studied due to their remarkable biological properties. While tocopherols have failed to offer protection, tocotrienols, in particular, α-, δ-, and γ-tocotrienols alone and in combination have demonstrated anticancer properties. The discovery of the antiangiogenic, antiproliferative, and apoptotic effects of tocotrienols, as well as their role as an inducer of immunological functions, not only reveals a new horizon as a potent antitumor agent but also reinforces the notion that tocotrienols are indeed more than antioxidants. On the basis of a transcriptomic platform, we have recently demonstrated a novel mechanism for tocotrienol activity that involves estrogen receptor (ER) signaling. In silico simulations and in vitro binding analyses indicate a high affinity of specific forms of tocotrienols for ERβ, but not for ERα. Moreover, we have demonstrated that specific tocotrienols increase ERβ translocation into the nucleus which, in turn, activates the expression of estrogen-responsive genes (MIC-1, EGR-1 and Cathepsin D) in breast cancer cells only expressing ERβ cells (MDA-MB-231) and in cells expressing both ER isoforms (MCF-7). The binding of specific tocotrienol forms to ERβ is associated with the alteration of cell morphology, caspase-3 activation, DNA fragmentation, and apoptosis. Furthermore, a recently concluded clinical trial seems to suggest that tocotrienols in combination with tamoxifen may have the potential to extend breast cancer-specific survival.
    Matched MeSH terms: MCF-7 Cells
  19. Wan Mohd Zain WN, Rahmat A, Othman F, Yap TY
    Malays J Med Sci, 2009 Jul;16(3):29-34.
    PMID: 22589662 MyJurnal
    CLAUSINE B, A CARBAZOLE ALKALOID ISOLATED FROM THE STEM BARK OF CLAUSENA EXCAVATA, WAS INVESTIGATED FOR ITS ANTIPROLIFERATIVE ACTIVITIES AGAINST FIVE HUMAN CANCER CELL LINES: HepG2 (hepatic cancer), MCF-7 (hormone-dependent breast cancer), MDA-MB-231 (non-hormone-dependent breast cancer), HeLa (cervical cancer), and CAOV3 (ovarian cancer).
    Matched MeSH terms: MCF-7 Cells
  20. Subramani T, Yeap SK, Ho WY, Ho CL, Osman CP, Ismail NH, et al.
    Oncol Lett, 2015 Jan;9(1):335-340.
    PMID: 25435988
    Tamoxifen (TAM) is the mainline drug treatment for breast cancer, despite its side effects and the development of resistance. As an alternative approach, in the present study a novel combination therapy was established through combining TAM with nordamnacanthal (NDAM) in order to investigate the additive effect of these drugs in MCF-7 human breast cancer cells. A significant dose-dependent reduction in cell viability and an increase in apoptosis were observed in the MCF-7 cells cotreated with TAM and NDAM compared with the untreated control cells or the cells treated with TAM and NDAM alone (P<0.05). The cytotoxic influence of the combination of TAM and NDAM was found to be two-fold that of the individual agents. Annexin V/propidium iodide double-staining revealed the typical nuclear features of apoptosis. Furthermore, an increase in the proportion of apoptotic, Annexin V-positive cells was observed with the combination therapy. Moreover, this apoptotic induction was associated with a collapse of the mitochondrial membrane potential and the generation of reactive oxygen species. To the best of our knowledge, the findings of the present study are the first to suggest that combining TAM with NDAM may be a potential combination therapy for the treatment of breast cancer and may have the potential to minimize or eliminate the side effects associated with high doses of TAM.
    Matched MeSH terms: MCF-7 Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links