Displaying publications 41 - 60 of 2084 in total

Abstract:
Sort:
  1. Oh AMF, Tan CH, Tan KY, Quraishi NH, Tan NH
    J Proteomics, 2019 02 20;193:243-254.
    PMID: 30385415 DOI: 10.1016/j.jprot.2018.10.016
    The proteome of the Pakistani B. sindanus venom was investigated with reverse-phase HPLC and nano-ESI-LCMS/MS analysis. At least 36 distinct proteins belonging to 8 toxin protein families were identified. Three-finger toxin (3FTx), phospholipase A2 (including β-bungarotoxin A-chains) and Kunitz-type serine protease inhibitor (KSPI) were the most abundant, constituting ~95% of total venom proteins. The other toxin proteins of low abundance are snake venom metalloproteinase (SVMP), L-amino acid oxidase (LAAO), acetylcholinesterase (AChE), vespryn and cysteine-rich secretory protein (CRiSP). The venom was highly lethal to mice with LD50 values of 0.04 μg/g (intravenous) and 0.15 μg/g (subcutaneous). The 3FTx proteins are diverse, comprising kappa-neurotoxins, neurotoxin-like protein, non-conventional toxins and muscarinic toxin-like proteins. Kappa-neurotoxins and β-bungarotoxins represent the major toxins that mediate neurotoxicity in B. sindanus envenoming. Alpha-bungarotoxin, commonly present in the Southeast Asian krait venoms, was undetected. The Indian VINS Polyvalent Antivenom (VPAV) was immunoreactive toward the venom, and it moderately cross-neutralized the venom lethality (potency = 0.25 mg/ml). VPAV was able to reverse the neurotoxicity and prevent death in experimentally envenomed mice, but the recovery time was long. The unique toxin composition of B. sindanus venom may be considered in the formulation of a more effective pan-regional, polyspecific antivenom. BIOLOGICAL SIGNIFICANCE: Bungarus sindanus, an endemic krait species distributed mainly in the Sindh Province of Pakistan is a cause of snake envenomation. Its specific antivenom is, however, lacking. The proteomic study of its venom revealed a substantial presence of κ-bungarotoxins and β-bungarotoxins. The toxin profile corroborates the potent neurotoxicity and lethality of the venom tested in vivo. The heterologous Indian VINS polyvalent antivenom (VPAV) cross-reacted with B. sindanus venom and cross-neutralized the venom neurotoxicity and lethality in mice, albeit the efficacy was moderate. The findings imply that B. sindanus and the phylogenetically related B. caeruleus of India share certain venom epitopes. Research should be advanced to improve the efficacy spectrum of a pan-regional polyspecific antivenom.
    Matched MeSH terms: Mice
  2. Cheong WH, Tan YC, Yap SJ, Ng KP
    Bioinformatics, 2015 Nov 15;31(22):3685-7.
    PMID: 26227146 DOI: 10.1093/bioinformatics/btv433
    : We present ClicO Free Service, an online web-service based on Circos, which provides a user-friendly, interactive web-based interface with configurable features to generate Circos circular plots.
    Matched MeSH terms: Mice
  3. Palihaderu PADS, Mendis BILM, Premarathne JMKJK, Dias WKRR, Yeap SK, Ho WY, et al.
    Front Endocrinol (Lausanne), 2022;13:1028846.
    PMID: 36479211 DOI: 10.3389/fendo.2022.1028846
    The paradoxical action of insulin on hepatic glucose metabolism and lipid metabolism in the insulin-resistant state has been of much research interest in recent years. Generally, insulin resistance would promote hepatic gluconeogenesis and demote hepatic de novo lipogenesis. The underlying major drivers of these mechanisms were insulin-dependent, via FOXO-1-mediated gluconeogenesis and SREBP1c-mediated lipogenesis. However, insulin-resistant mouse models have shown high glucose levels as well as excess lipid accumulation. As suggested, the inert insulin resistance causes the activation of the FOXO-1 pathway promoting gluconeogenesis. However, it does not affect the SREBP1c pathway; therefore, cells continue de novo lipogenesis. Many hypotheses were suggested for this paradoxical action occurring in insulin-resistant rodent models. A "downstream branch point" in the insulin-mediated pathway was suggested to act differentially on the FOXO-1 and SREBP1c pathways. MicroRNAs have been widely studied for their action of pathway mediation via suppressing the intermediate protein expressions. Many in vitro studies have postulated the roles of hepato-specific expressions of miRNAs on insulin cascade. Thus, miRNA would play a pivotal role in selective hepatic insulin resistance. As observed, there were confirmations and contradictions between the outcomes of gene knockout studies conducted on selective hepatic insulin resistance and hepato-specific miRNA expression studies. Furthermore, these studies had evaluated only the effect of miRNAs on glucose metabolism and few on hepatic de novo lipogenesis, limiting the ability to conclude their role in selective hepatic insulin resistance. Future studies conducted on the role of miRNAs on selective hepatic insulin resistance warrant the understanding of this paradoxical action of insulin.
    Matched MeSH terms: Mice
  4. Guo L, Liu X, Zhao C, Hu Z, Xu X, Cheng KK, et al.
    Anal Chem, 2022 Oct 25;94(42):14522-14529.
    PMID: 36223650 DOI: 10.1021/acs.analchem.2c01456
    Spatial segmentation is a critical procedure in mass spectrometry imaging (MSI)-based biochemical analysis. However, the commonly used unsupervised MSI segmentation methods may lead to inappropriate segmentation results as the MSI data is characterized by high dimensionality and low signal-to-noise ratio. This process can be improved by the incorporation of precise prior knowledge, which is hard to obtain in most cases. In this study, we show that the incorporation of partial or coarse prior knowledge from different sources such as reference images or biological knowledge may also help to improve MSI segmentation results. Here, we propose a novel interactive segmentation strategy for MSI data called iSegMSI, which incorporates prior information in the form of scribble-regularization of the unsupervised model to fine-tune the segmentation results. By using two typical MSI data sets (including a whole-body mouse fetus and human thyroid cancer), the present results demonstrate the effectiveness of the iSegMSI strategy in improving the MSI segmentations. Specifically, the method can be used to subdivide a region into several subregions specified by the user-defined scribbles or to merge several subregions into a single region. Additionally, these fine-tuned results are highly tolerant to the imprecision of the scribbles. Our results suggest that the proposed iSegMSI method may be an effective preprocessing strategy to facilitate the analysis of MSI data.
    Matched MeSH terms: Mice
  5. Cheong JK, Ooi EH, Chiew YS, Menichetti L, Armanetti P, Franchini MC, et al.
    Comput Methods Programs Biomed, 2023 Mar;230:107363.
    PMID: 36720181 DOI: 10.1016/j.cmpb.2023.107363
    BACKGROUND AND OBJECTIVES: Gold nanorod-assisted photothermal therapy (GNR-PTT) is a cancer treatment whereby GNRs incorporated into the tumour act as photo-absorbers to elevate the thermal destruction effect. In the case of bladder, there are few possible routes to target the tumour with GNRs, namely peri/intra-tumoural injection and intravesical instillation of GNRs. These two approaches lead to different GNR distribution inside the tumour and can affect the treatment outcome.

    METHODOLOGY: The present study investigates the effects of heterogeneous GNR distribution in a typical setup of GNR-PTT. Three cases were considered. Case 1 considered the GNRs at the tumour centre, while Case 2 represents a hypothetical scenario where GNRs are distributed at the tumour periphery; these two cases represent intratumoural accumulation with different degree of GNR spread inside the tumour. Case 3 is achieved when GNRs target the exposed tumoural surface that is invading the bladder wall, when they are delivered by intravesical instillation.

    RESULTS: Results indicate that for a laser power of 0.6 W and GNR volume fraction of 0.01%, Case 2 and 3 were successful in achieving complete tumour eradication after 330 and 470 s of laser irradiation, respectively. Case 1 failed to form complete tumour damage when the GNRs are concentrated at the tumour centre but managed to produce complete tumour damage if the spread of GNRs is wider. Results from Case 2 also demonstrated a different heating profile from Case 1, suggesting that thermal ablation during GNR-PTT is dependant on the GNRs distribution inside the tumour. Case 3 shows similar results to Case 2 whereby gradual but uniform heating is observed. Cases 2 and 3 show that uniformly heating the tumour can reduce damage to the surrounding tissues.

    CONCLUSIONS: Different GNR distribution associated with the different methods of introducing GNRs to the bladder during GNR-PTT affect the treatment outcome of bladder cancer in mice. Insufficient spreading during intratumoural injection of GNRs can render the treatment ineffective, while administered via intravesical instillation. GNR distribution achieved through intravesical instillation present some advantages over intratumoural injection and is worthy of further exploration.

    Matched MeSH terms: Mice
  6. Kumar R, Bauri S, Sahu S, Chauhan S, Dholpuria S, Ruokolainen J, et al.
    ACS Appl Bio Mater, 2023 Mar 20;6(3):1122-1132.
    PMID: 36757355 DOI: 10.1021/acsabm.2c00983
    Nanocomposites have significantly contributed to biomedical science due to less aggregation behavior and enhanced physicochemical properties. This study synthesized a MnFe2O4@poly(tBGE-alt-PA) nanocomposite for the first time and physicochemically characterized it. The obtained hybrid nanomaterial was tested in vivo for its toxicological properties before use in drug delivery, tissue engineering fields, and environmental applications. The composite was biocompatible with mouse fibroblast cells and hemocompatible with 2% RBC suspension. This nanocomposite was tested on Drosophila melanogaster due to its small size, well-sequenced genome, and low cost of testing. The larvae's crawling speed and direction were measured after feeding. No abnormal path and altered crawling pattern indicated the nonappearance of abnormal neurological disorder in the larva. The gut organ toxicity was further analyzed using DAPI and DCFH-DA dye to examine the structural anomalies. No apoptosis and necrosis were observed in the gut of the fruit fly. Next, adult flies were examined for phenotypic anomalies after their pupal phases emerged. No defects in the phenotypes, including the eye, wings, abdomen, and bristles, were found in our study. Based on these observations, the MnFe2O4@poly(tBGE-alt-PA) composite may be used for various biomedical and environmental applications.
    Matched MeSH terms: Mice
  7. Jumat MI, Sarmiento ME, Acosta A, Chin KL
    J Appl Microbiol, 2023 Jun 01;134(6).
    PMID: 37197901 DOI: 10.1093/jambio/lxad104
    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains the leading cause of mortality due to infectious diseases, only surpassed in 2020 by COVID-19. Despite the development in diagnostics, therapeutics, and evaluation of new vaccines for TB, this infectious disease remains uncontrollable due to the emergence of multidrug-resistant (MDR) and extremely drug-resistant (XDR) TB, among other factors. The development in transcriptomics (RNomics) has enabled the study of gene expression in TB. It is considered that non-coding RNAs (ncRNAs) from host [microRNAs (miRNAs)] and Mtb [small RNAs (sRNAs)] are important elements in TB pathogenesis, immune resistance, and susceptibility. Many studies have shown the importance of host miRNAs in regulating immune response against Mtb via in vitro and in vivo mice models. The bacterial sRNAs play a major role in survival, adaptation, and virulence. Here, we review the characterization and function of host and bacteria ncRNAs in TB and their potential use in clinical applications as diagnostic, prognostic, and therapeutic biomarkers.
    Matched MeSH terms: Mice
  8. Amin AR, Hairulhisyam NM, Aqilah RNF, Nur Fariha MM, Mallard BL, Shanahan F, et al.
    Int J Mol Sci, 2023 Jun 28;24(13).
    PMID: 37445951 DOI: 10.3390/ijms241310774
    The hepatic matrisome is involved in the remodeling phase of liver regeneration. As the gut microbiota has been implicated in liver regeneration, we investigated its role in liver regeneration focusing on gene expression of the hepatic matrisome after partial hepatectomy (PHx) in germ-free (GF) mice, and in GF mice reconstituted with normal gut microbiota (XGF). Liver mass restoration, hepatocyte proliferation, and immune response were assessed following 70% PHx. Hepatic matrisome and collagen gene expression were also analyzed. Reduced liver weight/body weight ratio, mitotic count, and hepatocyte proliferative index at 72 h post PHx in GF mice were preceded by reduced expression of cytokine receptor genes Tnfrsf1a and Il6ra, and Hgf gene at 3 h post PHx. In XGF mice, these indices were significantly higher than in GF mice, and similar to that of control mice, indicating normal liver regeneration. Differentially expressed genes (DEGs) of the matrisome were lower in GF compared to XGF mice at both 3 h and 72 h post PHx. GF mice also demonstrated lower collagen expression, with significantly lower expression of Col1a1, Col1a2, Col5a1, and Col6a2 compared to WT mice at 72 h post PHx. In conclusion, enhanced liver regeneration and matrisome expression in XGF mice suggests that interaction of the gut microbiota and matrisome may play a significant role in the regulation of hepatic remodeling during the regenerative process.
    Matched MeSH terms: Mice
  9. Taniguchi M, Iwahashi M, Oka Y, Tiong SYX, Sato M
    PLoS One, 2022;17(9):e0274170.
    PMID: 36067159 DOI: 10.1371/journal.pone.0274170
    The fork cell and von Economo neuron, which are found in the insular cortex and/or the anterior cingulate cortex, are defined by their unique morphologies. Their shapes are not pyramidal; the fork cell has two primary apical dendrites and the von Economo neurons are spindle-shaped (bipolar). Presence of such neurons are reported only in the higher animals, especially in human and great ape, indicating that they are specific for most evolved species. Although it is likely that these neurons are involved in higher brain function, lack of results with experimental animals makes further investigation difficult. We here ask whether equivalent neurons exist in the mouse insular cortex. In human, Fezf2 has been reported to be highly expressed in these morphologically distinctive neurons and thus, we examined the detailed morphology of Fezf2-positive neurons in the mouse brain. Although von Economo-like neurons were not identified, Fezf2-positive fork cell-like neurons with two characteristic apical dendrites, were discovered. Examination with electron microscope indicated that these neurons did not embrace capillaries, rather they held another cell. We here term such neurons as holding neurons. We further observed several molecules, including neuromedin B (NMB) and gastrin releasing peptide (GRP) that are known to be localized in the fork cells and/or von Economo cells in human, were localized in the mouse insular cortex. Based on these observations, it is likely that an equivalent of the fork cell is present in the mouse.
    Matched MeSH terms: Mice
  10. Davis OC, Dickie AC, Mustapa MB, Boyle KA, Browne TJ, Gradwell MA, et al.
    Sci Rep, 2023 Jul 18;13(1):11561.
    PMID: 37464016 DOI: 10.1038/s41598-023-38605-9
    Unmyelinated non-peptidergic nociceptors (NP afferents) arborise in lamina II of the spinal cord and receive GABAergic axoaxonic synapses, which mediate presynaptic inhibition. However, until now the source of this axoaxonic synaptic input was not known. Here we provide evidence that it originates from a population of inhibitory calretinin-expressing interneurons (iCRs), which correspond to lamina II islet cells. The NP afferents can be assigned to 3 functionally distinct classes (NP1-3). NP1 afferents have been implicated in pathological pain states, while NP2 and NP3 afferents also function as pruritoceptors. Our findings suggest that all 3 of these afferent types innervate iCRs and receive axoaxonic synapses from them, providing feedback inhibition of NP input. The iCRs also form axodendritic synapses, and their targets include cells that are themselves innervated by the NP afferents, thus allowing for feedforward inhibition. The iCRs are therefore ideally placed to control the input from non-peptidergic nociceptors and pruritoceptors to other dorsal horn neurons, and thus represent a potential therapeutic target for the treatment of chronic pain and itch.
    Matched MeSH terms: Mice
  11. Mohd-Qawiem F, Nawal-Amani AR, Faranieyza-Afiqah F, Yasmin AR, Arshad SS, Norfitriah MS, et al.
    Open Vet J, 2022;12(6):868-876.
    PMID: 36650879 DOI: 10.5455/OVJ.2022.v12.i6.14
    Paramyxoviruses have been shown to infect a wide range of hosts, including rodents, and humans. Several novel murine paramyxoviruses have been discovered in the last several decades. Although these viruses are unclassified, they are recognized as Beilong virus, Mojiang virus (MojV), and Tailam virus in rats, Jeilongvirus, Nariva, Paju Apodemus paramyxovirus-1 and -2 in mice, and Pentlands paramyxovirus-1, -2, and -3 in squirrels. These paramyxoviruses were reported mainly in China and a few other countries like Australia, the Republic of Korea, Trinidad, and France. In June 2012, it becomes a great concern in China whereby, three miners were reported dead potentially caused by a novel zoonotic MojV, a henipa-like virus isolated from tissue samples of rats from the same cave. Rats are considered to be natural hosts for the MojV from the literature research. The classified paramyxovirus, Sendai virus in rodents is also reviewed. Paramyxoviruses infection in rodents leads to respiratory distress such as necrotizing rhinitis, tracheitis, bronchiolitis, and interstitial pneumonia. Infections caused by paramyxoviruses often spread between species, manifesting disease in spillover hosts, including humans. This review focuses on the paramyxoviruses in rodents, including the epidemiological distributions, transmission and pathogenesis, clinical manifestations, diagnostic methods, and control and prevention of paramyxoviruses infection to provide a better understanding of these highly mutating viruses.
    Matched MeSH terms: Mice
  12. Zhou C, Yan L, Xu J, Hamezah HS, Wang T, Du F, et al.
    J Mol Model, 2024 Feb 13;30(3):68.
    PMID: 38347278 DOI: 10.1007/s00894-024-05875-7
    CONTEXT: Adipose triglyceride lipase (ATGL), a key enzyme responsible for lipolysis, catalyzes the first step of lipolysis and converts triglycerides to diacylglycerols and free fatty acids (FFA). Our previous work suggested that phillyrin treatment improves insulin resistance in HFD-fed mice, which was associated with ATGL inhibition. In this study, using docking simulation, we explored the binding pose of phillyrin and atglistatin (a mouse ATGL inhibitor) to ATGL in mouse. From the docking results, the interactions with Ser47 and Asp166 were speculated to have caused phillyrin to inhibit ATGL in mice. Further, molecular dynamics simulation of 100 ns and MM-GBSA were conducted for the protein-ligand complex, which indicated that the system was stable and that phillyrin displayed a better affinity to ATGL than did atglistatin throughout the simulation period. Moreover, the results of pharmacological validation were consistent with those of the in silico simulations. In summary, our study illustrates the potential of molecular docking to accurately predict the binding protein produced by AlphaFold and suggests that phillyrin is a potential small molecule that targets and inhibits ATGL enzymatic activity.

    METHODS: The ATGL-predicted protein structure, verified by PROCHECK, was determined using AlphaFold. Molecular docking, molecular dynamics simulation, and prime molecular mechanic-generalized born surface area were performed using LigPrep, Desmond, and prime MM-GBSA modules of Schrödinger software release 2021-2, respectively. For pharmacological validation, immunoblotting was performed to assess ATGL protein expression. The fluorescence intensity and glycerol concentration were quantified to evaluate the efficiency of phillyrin in inhibiting ATGL.

    Matched MeSH terms: Mice
  13. Wong RS
    J Biomed Biotechnol, 2011;2011:459510.
    PMID: 21822372 DOI: 10.1155/2011/459510
    Mesenchymal stem cells (MSCs) have been used in cell-based therapy in various disease conditions such as graft-versus-host and heart diseases, osteogenesis imperfecta, and spinal cord injuries, and the results have been encouraging. However, as MSC therapy gains popularity among practitioners and researchers, there have been reports on the adverse effects of MSCs especially in the context of tumour modulation and malignant transformation. These cells have been found to enhance tumour growth and metastasis in some studies and have been related to anticancer-drug resistance in other instances. In addition, various studies have also reported spontaneous malignant transformation of MSCs. The mechanism of the modulatory behaviour and the tumorigenic potential of MSCs, warrant urgent exploration, and the use of MSCs in patients with cancer awaits further evaluation. However, if MSCs truly play a role in tumour modulation, they can also be potential targets of cancer treatment.
    Matched MeSH terms: Mice
  14. Hussein HR, Chang CY, Zheng Y, Yang CY, Li LH, Lee YT, et al.
    Nanotechnology, 2024 Feb 09;35(17).
    PMID: 38262054 DOI: 10.1088/1361-6528/ad21a2
    Heparins are a family of sulfated linear negatively charged polysaccharides that have been widely used for their anticoagulant, antithrombotic, antitumor, anti-inflammatory, and antiviral properties. Additionally, it has been used for acute cerebral infarction relief as well as other pharmacological actions. However, heparin's self-aggregated macrocomplex may reduce blood circulation time and induce life-threatening thrombocytopenia (HIT) complicating the use of heparins. Nonetheless, the conjugation of heparin to immuno-stealth biomolecules may overcome these obstacles. An immunostealth recombinant viral capsid protein (VP28) was expressed and conjugated with heparin to form a novel nanoparticle (VP28-heparin). VP28-heparin was characterized and tested to determine its immunogenicity, anticoagulation properties, effects on total platelet count, and risk of inducing HIT in animal models. The synthesized VP28-heparin trimeric nanoparticle was non-immunogenic, possessed an average hydrodynamic size (8.81 ± 0.58 nm) optimal for the evasion renal filtration and reticuloendothelial system uptake (hence prolonging circulating half-life). Additionally, VP28-heparin did not induce mouse death or reduce blood platelet count when administered at a high dosein vivo(hence reducing HIT risks). The VP28-heparin nanoparticle also exhibited superior anticoagulation properties (2.2× higher prothrombin time) and comparable activated partial thromboplastin time, but longer anticoagulation period when compared to unfractionated heparin. The anticoagulative effects of the VP28-heparin can also be reversed using protamine sulfate. Thus, VP28-heparin may be an effective and safe heparin derivative for therapeutic use.
    Matched MeSH terms: Mice
  15. Suresh K, Mak JW, Yong HS
    PMID: 1818401
    Matched MeSH terms: Mice, Inbred BALB C/blood; Mice, Inbred BALB C/immunology*; Mice, Inbred CBA/blood; Mice, Inbred CBA/immunology*; Mice, Inbred ICR/blood; Mice, Inbred ICR/immunology*; Mice
  16. Sosroseno W, Herminajeng E, Bird P
    Biomed Pharmacother, 2015 Mar;70:294-8.
    PMID: 25776514 DOI: 10.1016/j.biopha.2014.12.039
    The aim of the present study was to determine the effect of immune status, age and genetic background on the induction of oral tolerance to Actinomyces viscosus. Suppression of delayed type hypersensitivity (DTH) response and antigen-specific serum antibody levels could be induced in DBA/2 mice intragastrically and systemically immunized with A. viscocus, suggesting the induction of oral tolerance. In contrast, this immune suppression could be abrogated if the animals had been systemically immunized prior to the induction of oral tolerance with the same bacterium. Long-term systemic immunization prior to intragastric immunization with A. viscocus suppressed DTH response only. Cell transfer of this group of animals also suppressed DTH response in the donors, indicating the action of suppressor cells for inhibition of DTH response. Furthermore, oral tolerance to A. viscocus failed to occur in mice aged at 3 days and 1, 2, 4, 6 and 36 weeks old. Mice bearing H-2(d) haplotype were the most susceptible to oral tolerization, followed by H-2(b) and H-2(k). Therefore, the results of the presence study suggest that the induction of oral tolerance to A. viscosus in mice may be dependence on the immune status and genetic background but not age.
    Matched MeSH terms: Mice, Inbred BALB C; Mice, Inbred C3H; Mice, Inbred C57BL; Mice, Inbred DBA; Mice
  17. Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Chong PP
    Int J Mol Sci, 2014;15(8):14848-67.
    PMID: 25153636 DOI: 10.3390/ijms150814848
    Different murine species differ in their susceptibility to systemic infection with Candida albicans, giving rise to varied host immune responses, and this is compounded by variations in virulence of the different yeast strains used. Hence, this study was aimed at elucidating the pathogenesis of a clinical C. albicans isolate (HVS6360) in a murine intravenous challenge model by examining the different parameters which included the counts of red blood cells and associated components as well as the organ-specific expression profiles of cytokines and chemokines. Kidneys and brains of infected mice have higher fungal recovery rates as compared to other organs and there were extensive yeast infiltration with moderate to severe inflammation seen in kidney and brain tissues. Red blood cells (RBCs) and haemoglobin (Hb) counts were reduced throughout the infection period. Pattern recognition receptors (PRRs), chemokines and cytokine transcription profiles were varied among the different organs (kidney, spleen and brain) over 72 h post infections. Transcription of most of the PRRs, cytokines and chemokines were suppressed at 72 h post infection in spleen while continuous expression of PRRs, cytokines and chemokines genes were seen in brain and kidney. Reduction in red blood cells and haemoglobin counts might be associated with the action of extracellular haemolysin enzyme and haeme oxygenase of C. albicans in conjunction with iron scavenging for the fungal growth. Renal cells responsible for erythropoietin production may be injured by the infection and hence the combined effect of haemolysis plus lack of erythropoietin-induced RBC replenishment leads to aggravated reduction in RBC numbers. The varied local host immune profiles among target organs during systemic C. albicans infection could be of importance for future work in designing targeted immunotherapy through immunomodulatory approaches.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  18. Perumal R, Tan I
    IUBMB Life, 2007 Jul;59(7):465-8.
    PMID: 17654123
    Matched MeSH terms: Mice, Inbred C57BL; Mice
  19. Aminuddin BS
    Med J Malaysia, 2004 May;59 Suppl B:3-4.
    PMID: 15468790
    Management of severe tracheal anomalies remains a clinical challenge. Tissue engineering offers new hope in trachea reconstruction surgery. However to date no optimal technique achieved in the formation of human or animal trachea. The main problem lies on the biomaterial used and the complex city of forming trachea in vivo. This study was aimed at creating tissue-engineered trachea cartilage from easily accessible human and animal nasal septum cartilage using internal scaffold and biodegradable human and animal fibrin.
    Matched MeSH terms: Mice, Nude; Mice
  20. Ilangkovan M, Jantan I, Mesaik MA, Bukhari SN
    Phytother Res, 2016 Aug;30(8):1330-8.
    PMID: 27137750 DOI: 10.1002/ptr.5633
    Phyllanthus amarus has been shown to have strong inhibitory effects on phagocytic activity of human neutrophils and on cellular immune responses in Wistar-Kyoto rats. In this study, we investigated the effects of daily treatment of standardized extract of P. amarus at 50, 100 and 200 mg/kg for 14 days in Balb/C mice by measuring the myeloperoxidase activity (MPO), nitric oxide (NO) release, macrophage phagocytosis, swelling of footpad in delayed type hypersensitivity (DTH), and serum immunoglobulins, ceruloplasmin and lysozyme levels. Qualitative and quantitative analyses of the extract using validated reversed-phase HPLC methods identified phyllanthin, hypophyllanthin, corilagin and geraniin as the biomarkers. Significant dose-dependent inhibitions of MPO activity and NO release were observed in treated mice. The extract also inhibited E. coli phagocytic capacity of peritoneal macrophages of treated mice and inhibited the sheep red blood cells (sRBC)-induced swelling rate of mice paw in the DTH. There was also a significant decrease in non-specific humoral immunity including ceruloplasmin and lysozyme levels in the extract-fed groups as well as the release of serum level immunoglobulins. The strong inhibitory effects of the extract on the cellular and humoral immune responses suggest the potential of the plant to be developed as an effective immunosuppressive agent. Copyright © 2016 John Wiley & Sons, Ltd.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links