Displaying publications 41 - 48 of 48 in total

Abstract:
Sort:
  1. Hafiza A, Noor HH, Noor FA, Azlin I, Ainoon O
    Malays J Pathol, 2010 Dec;32(2):137-41.
    PMID: 21329186 MyJurnal
    Sickle cell disease (SCD) is an inherited red cell disorder, characterized by the tendency of haemoglobin S or sickle haemoglobin to polymerize and assume a characteristic sickle shape. Molecular analysis has been the mainstay of detection method when confirmation is required. Previously a polymerase chain reaction (PCR)-based restriction enzyme analysis was used for this purpose. A simple bidirectional allele-specific amplification, recently described by Waterfall in 2001 was used to detect the GAG --> GTG mutation on codon 6 of the beta globin gene. Two sets of primers for the mutant and the wild type alleles were used in a single PCR reaction to amplify the regions of interest. The resultant PCR products will produce two fragments at 517 and 267 base pair (bp) respectively. This report highlights the investigations for SCD in the family of a 16-year old girl with recurrent painful crisis affecting the lower limbs whereby the family members are asymptomatic for the disease. Her haemoglobin electrophoresis at an alkaline pH showed dense bands at the HbS and HbF regions, while her father and two sisters had bands at HbS, HbF and HbA. The PCR analysis showed that she was homozygous for the mutation by the presence of only one band at 267 bp fragment, while the father and her sisters were heterozygotes, with the presence of two bands at 267 as well as 517 bp fragments. DNA sequencing of the sample confirmed the mutation. In conclusion, this case report highlighted the simple and cheap yet practical method for molecular confirmation of the presence of HbS gene in subjects with homozygous or heterozygous state of the condition.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  2. Al-Marzooq F, Mohd Yusof MY, Tay ST
    Biomed Res Int, 2014;2014:601630.
    PMID: 24860827 DOI: 10.1155/2014/601630
    Ninety-three Malaysian extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolates were investigated for ciprofloxacin resistance. Two mismatch amplification mutation (MAMA) assays were developed and used to facilitate rapid detection of gyrA and parC mutations. The isolates were also screened for plasmid-mediated quinolone resistance (PMQR) genes including aac(6')-Ib-cr, qepA, and qnr. Ciprofloxacin resistance (MICs 4- ≥ 32  μ g/mL) was noted in 34 (37%) isolates, of which 33 isolates had multiple mutations either in gyrA alone (n = 1) or in both gyrA and parC regions (n = 32). aac(6')-Ib-cr was the most common PMQR gene detected in this study (n = 61), followed by qnrB and qnrS (n = 55 and 1, resp.). Low-level ciprofloxacin resistance (MICs 1-2  μ g/mL) was noted in 40 (43%) isolates carrying qnrB accompanied by either aac(6')-Ib-cr (n = 34) or a single gyrA 83 mutation (n = 6). Ciprofloxacin resistance was significantly associated with the presence of multiple mutations in gyrA and parC regions. While the isolates harbouring gyrA and/or parC alteration were distributed into 11 PFGE clusters, no specific clusters were associated with isolates carrying PMQR genes. The high prevalence of ciprofloxacin resistance amongst the Malaysian ESBL-producing K. pneumoniae isolates suggests the need for more effective infection control measures to limit the spread of these resistant organisms in the hospital.
    Matched MeSH terms: Nucleic Acid Amplification Techniques/methods
  3. Chang YM, Swaran Y, Phoon YK, Sothirasan K, Sim HT, Lim KB, et al.
    Forensic Sci Int Genet, 2009 Jun;3(3):e77-80.
    PMID: 19414156 DOI: 10.1016/j.fsigen.2008.07.007
    17 Y-STRs (DYS456, DYS389I, DYS390, DYS389II, DYS458, DYS19, DYS385a/b, DYS393, DYS391, DYS439, DYS635 or Y-GATA C4, DYS392, Y-GATA H4, DYS437, DYS438 and DYS448) have been analyzed in 320 male individuals from Sarawak, an eastern state of Malaysia on the Borneo island using the AmpFlSTR Y-filer (Applied Biosystems, Foster City, CA). These individuals were from three indigenous ethnic groups in Sarawak comprising of 103 Ibans, 113 Bidayuhs and 104 Melanaus. The observed 17-loci haplotypes and the individual allele frequencies for each locus were estimated, whilst the locus diversity, haplotype diversity and discrimination capacity were calculated in the three groups. Analysis of molecular variance (AMOVA) indicated that 87.6% of the haplotypic variation was found within population and 12.4% between populations (fixation index F(ST)=0.124, p=0.000). This study has revealed that the indigenous populations in Sarawak are distinctly different to each other, and to the three major ethnic groups in Malaysia (Malays, Chinese and Indians), with the Melanaus having a strikingly high degree of shared haplotypes within. There are rare unusual variants and microvariants that were not present in Malaysian Malay, Chinese or Indian groups. In addition, occurrences of DYS385 duplications which were only noticeably present in Chinese group previously was also observed in the Iban group whilst null alleles were detected at several Y-loci (namely DYS19, DYS392, DYS389II and DYS448) in the Iban and Melanau groups.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  4. Wee YC, Tan KL, Tan PC, Yap SF, Tan JAMA
    Med. J. Malaysia, 2005 Oct;60(4):447-53.
    PMID: 16570706
    Haemoglobin Bart's hydrops foetalis syndrome (--SEA/--SEA) is not compatible with life and contributes to a majority of the hydropic foetuses in the Malaysian Chinese alpha-thalassaemia carriers who possess the 2-alpha-gene deletion in cis (--SEA/alphaalpha). A duplex-PCR which simultaneously amplifies a normal 136 bp sequence between the psialpha-alpha2-globin genes and a 730 bp Southeast Asian deletion-specific sequence (--SEA) between the psialpha2-theta1-globin genes was established. The duplex-PCR which detects the --SEA deletion in both chromosomes serves as a rapid and cost-effective confirmatory test in the antenatal diagnosis of Haemoglobin Bart's hydrops foetalis syndrome in Malaysia. In addition, the duplex-PCR is simple to perform as both the normal and deletion-specific alpha-globin gene sequences are amplified in the same PCR reaction.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  5. Tay BY, Ahmad N, Hashim R, Mohamed Zahidi J, Thong KL, Koh XP, et al.
    BMC Infect. Dis., 2015;15:220.
    PMID: 26033227 DOI: 10.1186/s12879-015-0958-0
    Brucellosis is one of the most common zoonotic diseases worldwide. It can cause acute febrile illness in human and is a major health problem. Studies in human brucellosis in Malaysia is limited and so far no genotyping studies has been done on Brucella isolates. The aim of the study was to determine the genetic diversity among Brucella species isolated from human brucellosis, obtained over a 6-year period (2009-2014).
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  6. Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, et al.
    Anal. Chem., 2016 06 21;88(12):6254-64.
    PMID: 27012657 DOI: 10.1021/acs.analchem.6b00195
    In nucleic acid testing (NAT), gold nanoparticle (AuNP)-based lateral flow assays (LFAs) have received significant attention due to their cost-effectiveness, rapidity, and the ability to produce a simple colorimetric readout. However, the poor sensitivity of AuNP-based LFAs limits its widespread applications. Even though various efforts have been made to improve the assay sensitivity, most methods are inappropriate for integration into LFA for sample-to-answer NAT at the point-of-care (POC), usually due to the complicated fabrication processes or incompatible chemicals used. To address this, we propose a novel strategy of integrating a simple fluidic control strategy into LFA. The strategy involves incorporating a piece of paper-based shunt and a polydimethylsiloxane (PDMS) barrier to the strip to achieve optimum fluidic delays for LFA signal enhancement, resulting in 10-fold signal enhancement over unmodified LFA. The phenomena of fluidic delay were also evaluated by mathematical simulation, through which we found the movement of fluid throughout the shunt and the tortuosity effects in the presence of PDMS barrier, which significantly affect the detection sensitivity. To demonstrate the potential of integrating this strategy into a LFA with sample-in-answer-out capability, we further applied this strategy into our prototype sample-to-answer LFA to sensitively detect the Hepatitis B virus (HBV) in clinical blood samples. The proposed strategy offers great potential for highly sensitive detection of various targets for wide application in the near future.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  7. Abd Rahim MR, Kho SL, Kuppusamy UR, Tan JA
    Clin. Lab., 2015;61(9):1325-30.
    PMID: 26554253
    Beta-thalassemia is the most common genetic disorder in Malaysia. Confirmation of the β-globin gene mutations involved in thalassemia is usually carried out by molecular analysis of DNA extracted from leukocytes in whole blood. Molecular analysis is generally carried out when affected children are around 1 - 2 years as clinical symptoms are expressed during this period. Blood taking at this age can be distressing for the child. High yield and pure DNA extracted from non-invasive sampling methods can serve as alternative samples in molecular studies for genetic diseases especially in pediatric cases.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  8. Wang LY, Wang YS, Cheng H, Zhang JP, Yeok FS
    Ecotoxicology, 2015 Oct;24(7-8):1705-13.
    PMID: 26044931 DOI: 10.1007/s10646-015-1502-0
    Chitinases in terrestrial plants have been reported these are involved in heavy metal tolerance/detoxification. This is the first attempt to reveal chitinase gene (AcCHI I) and its function on metal detoxification in mangroves Aegiceras corniculatum. RT-PCR and RACE techniques were used to clone AcCHI I, while real-time quantitative PCR was employed to assess AcCHI I mRNA expressions in response to Cadmium (Cd). The deduced AcCHI I protein consists of 316 amino acids, including a signal peptide region, a chitin-binding domain (CBD) and a catalytic domain. Protein homology modeling was performed to identify potential features in AcCHI I. The CBD structure of AcCHI I might be critical for metal tolerance/homeostasis of the plant. Clear tissue-specific differences in AcCHI I expression were detected, with higher transcript levels detected in leaves. Results demonstrated that a short duration of Cd exposure (e.g., 3 days) promoted AcCHI I expression in roots. Upregulated expression was also detected in leaves under 10 mg/kg Cd concentration stress. The present study demonstrates that AcCHI I may play an important role in Cd tolerance/homeostasis in the plant. Further studies of the AcCHI I protein, gene overexpression, the promoter and upstream regulation will be necessary for clarifying the functions of AcCHI I.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links