Displaying publications 41 - 60 of 190 in total

Abstract:
Sort:
  1. Morton JF
    Basic Life Sci., 1992;59:739-65.
    PMID: 1417698
    Tannins are increasingly recognized as dietary carcinogens and as antinutrients interfering with the system's full use of protein. Nevertheless, certain tannin-rich beverages, masticatories, and folk remedies, long utilized in African, Asiatic, Pacific, and Latin American countries, are now appearing in North American sundry shops and grocery stores. These include guarana (Paullinia cupana HBK.) from Brazil, kola nut (Cola nitida Schott & Endl. and C. acuminata Schott & Endl.) from West Africa, and betel nut (Areca catechu L.) from Malaya. The betel nut, or arecanut, has long been associated with oral and esophageal cancer because of its tannin content and the tannin contributed by the highly astringent cutch from Acacia catechu L. and Uncaria gambir Roxb. and the aromatic, astringent 'pan' (leaves of Piper betel L.) chewed with it. In addition to the constant recreational/social ingestion of these plant materials, they are much consumed as aphrodisiacs and medications. Guarana and kola nut enjoy great popularity in their native lands because they are also rich in caffeine, which serves as a stimulant. Research and popular education on the deleterious effects of excessive tannin intake could do much to reduce the heavy burden of early mortality and health care, especially in developing countries.
    Matched MeSH terms: Plants, Medicinal/chemistry
  2. Kam TS, Choo YM
    J Nat Prod, 2004 Apr;67(4):547-52.
    PMID: 15104482
    Ten new indole alkaloids, alstomaline (1), 10,11-dimethoxynareline (2), alstohentine (3), alstomicine (4), 16-hydroxyalstonisine (5), 16-hydroxyalstonal (6), 16-hydroxy-N(4)-demethylalstophyllal oxindole (7), alstophyllal (8), 6-oxoalstophylline (9), and 6-oxoalstophyllal (10), in addition to 21 other known ones, were obtained from the leaf extract of the Malayan Alstonia macrophylla. The structures were determined using NMR and MS analysis.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  3. Ali N, Hashim NH, Saad B, Safan K, Nakajima M, Yoshizawa T
    Food Chem Toxicol, 2005 Dec;43(12):1763-72.
    PMID: 16019122
    Traditional herbal medicines, popularly known as 'jamu' and 'makjun' in Malaysia and Indonesia, are consumed regularly to promote health. In consideration of their frequent and prolonged consumption, the natural occurrence of aflatoxins (AF) in these products was determined using immunoaffinity column clean-up and high-performance liquid chromatography with pre-column derivatization. The evaluated method, which entails dilution of sample extracts with Tween 20-phosphate buffered saline (1:9, v/v) and a chromatographic system using isocratic mobile phase composed of water-methanol-acetonitrile (70:20:10, v/v/v), was effective in separating AFB1, AFG1 and AFG2 from interference at their retention times. Results were confirmed using post-column derivatization with photochemical reactor. For 23 commercial samples analyzed, mean levels (incidence) of AFB(1), AFB(2) and AFG1 in positive samples were 0.26 (70%), 0.07 (61%) and 0.10 (30%) microg/kg, respectively; one sample was positive for AFG2 at a level of 0.03 (4%) microg/kg. In contrast to the high levels of AF in crude herbal drugs and medicinal plants reported previously by other researchers, the low contamination levels reported in this study may be attributed to the higher selectivity to AF of the method applied. Based on the AFB1 levels and the daily consumption of positive samples, a mean probable daily intake of 0.022 ng/kg body weight was calculated.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  4. Ling SK, Komorita A, Tanaka T, Fujioka T, Mihashi K, Kouno I
    Chem Pharm Bull (Tokyo), 2002 Aug;50(8):1035-40.
    PMID: 12192133
    A further investigation of the leaves and stems of Saprosma scortechinii afforded 13 compounds, of which 10 are new compounds. These were elucidated as the bis-iridoid glucosides, saprosmosides G (1) and H (2), the iridoid glucoside, 6-O-epi-acetylscandoside (3), and the anthraquinones, 1-methoxy-3-hydroxy-2-carbomethoxy-9,10-anthraquinone (4), 1-methoxy-3-hydroxy-2-carbomethoxy-9,10-anthraquinone 3-O-beta-primeveroside (5), 1,3-dihydroxy-2-carbomethoxy-9,10-anthraquinone 3-O-beta-primeveroside (6), 1,3,6-trihydroxy-2-methoxymethyl-9,10-anthraquinone (7), 1-methoxy-3,6-dihydroxy-2-hydroxymethyl-9,10-anthraquinone (8), 1,3,6-trihydroxy-2-hydroxymethyl-9,10-anthraquinone 3-O-beta-primeveroside (9), and 3,6-dihydroxy-2-hydroxymethyl-9,10-anthraquinone (10). Structure assignments for all compounds were established by means of mass and NMR spectroscopies, chemical methods, and comparison with published data. The new anthraquinones were derivatives of munjistin and lucidin.
    Matched MeSH terms: Plants, Medicinal/chemistry
  5. Shakri NM, Salleh WMNHW, Khamis S, Mohamad Ali NA
    Z Naturforsch C J Biosci, 2020 Nov 26;75(11-12):485-488.
    PMID: 32966236 DOI: 10.1515/znc-2020-0090
    This study was aimed to investigate the chemical compositions of the essential oils from Goniothalamus macrophyllus and Goniothalamus malayanus growing in Malaysia. The essential oils were obtained by hydrodistillation and fully characterized by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Analyses of the essential oils from G. macrophyllus and G. malayanus resulted in 93.6 and 95.4% of the total oils, respectively. The major components of G. macrophyllus oil were germacrene D (25.1%), bicyclogermacrene (11.6%), α-copaene (6.9%) and δ-cadinene (6.4%), whereas in G. malayanus oil bicyclogermacrene (43.9%), germacrene D (21.1%) and β-elemene (8.4%) were the most abundant components.
    Matched MeSH terms: Plants, Medicinal/chemistry
  6. Maher T, Ahmad Raus R, Daddiouaissa D, Ahmad F, Adzhar NS, Latif ES, et al.
    Molecules, 2021 May 07;26(9).
    PMID: 34066963 DOI: 10.3390/molecules26092741
    Leukemia is a leukocyte cancer that is characterized by anarchic growth of immature immune cells in the bone marrow, blood and spleen. There are many forms of leukemia, and the best course of therapy and the chance of a patient's survival depend on the type of leukemic disease. Different forms of drugs have been used to treat leukemia. Due to the adverse effects associated with such therapies and drug resistance, the search for safer and more effective drugs remains one of the most challenging areas of research. Thus, new therapeutic approaches are important to improving outcomes. Almost half of the drugs utilized nowadays in treating cancer are from natural products and their derivatives. Medicinal plants have proven to be an effective natural source of anti-leukemic drugs. The cytotoxicity and the mechanisms underlying the toxicity of these plants to leukemic cells and their isolated compounds were investigated. Effort has been made throughout this comprehensive review to highlight the recent developments and milestones achieved in leukemia therapies using plant-derived compounds and the crude extracts from various medicinal plants. Furthermore, the mechanisms of action of these plants are discussed.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  7. Mohd-Fuat AR, Kofi EA, Allan GG
    Trop Biomed, 2007 Dec;24(2):49-59.
    PMID: 18209708 MyJurnal
    Three popular medicinal plants regarded as improving human sexual function in some parts of Southeast Asia were analysed for their mutagenic properties using modified Ames test (fluctuation test). Extract of one of the plants, Tacca integrifolia Ker-Gawl., was found to be mutagenic using Salmonella typhimurium strains TA98 and TA100. Extract of T. integrifolia, Eurycoma longifolia Jack and Helmintostachys zeylanica (L.) Hook were cytotoxic to human cell lines, Hep2 and HFL1, with IC50 ranging from 11 mug/ml to 55 mug/ml. Extract of E. longifolia was the most cytotoxic with IC50 of 11 mug/ml and 13 mug/ml on Hep2 and HFL1 cell lines respectively. Combined extract of T. integrifolia and H. zeylanica was more cytotoxic than single extract on both Hep2 and HFL1 cell lines while combined extract of E. longifolia and H. zeylanica was more cytotoxic than single extract on Hep2 cell lines. Under the conditions of this study it can be concluded that T. integrifolia is mutagenic and the combined extracts of the medicinal plants was highly cytotoxic.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  8. Noor Rain A, Khozirah S, Mohd Ridzuan MA, Ong BK, Rohaya C, Rosilawati M, et al.
    Trop Biomed, 2007 Jun;24(1):29-35.
    PMID: 17568375 MyJurnal
    Seven Malaysian medicinal plants were screened for their antiplasmodial activities in vitro. These plants were selected based on their traditional claims for treatment or to relieve fever. The plant extracts were obtained from Forest Research Institute Malaysia (FRIM). The antiplasmodial activities were carried out using the pLDH assay to Plasmodium falciparum D10 strain (sensitive strain) while the cytotoxic activities were carried out towards Madin- Darby bovine kidney (MDBK) cells using MTT assay. The concentration of extracts used for both screening assays were from the highest concentration 64 microg/ml, two fold dilution to the lowest concentration 0.03 microg/ml. Goniothalamus macrophyllus (stem extract) showed more than 60% growth inhibition while Goniothalamus scortechinii root and stem extract showed a 90% and more than 80% growth inhibition at the last concentration tested, 0.03 microg/ml. The G. scortechini (leaves extract) showed an IC50 (50% growth inhibition) at 8.53 microg/ml, Ardisia crispa (leaves extract) demonstrated an IC50 at 5.90 +/- 0.14 microg/ml while Croton argyratus (leaves extract) showed a percentage inhibition of more than 60% at the tested concentration. Blumea balsamifera root and stem showed an IC50 at 26.25 +/- 2.47 microg/ml and 7.75 +/- 0.35 microg/ ml respectively. Agathis borneensis (leaves extract) demonstrated a 50% growth inhibition at 11.00 +/- 1.41 microg/ml. The study gives preliminary scientific evidence of these plant extracts in line with their traditional claims.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  9. Baraya YS, Wong KK, Yaacob NS
    Anticancer Agents Med Chem, 2017;17(6):770-783.
    PMID: 27539316 DOI: 10.2174/1871520616666160817111242
    Breast cancer has continued to cause high cancer death rates among women worldwide. The use of plants' natural products in breast cancer treatment has received more attention in recent years due to their potentially wider safety margin and the potential to complement conventional chemotherapeutic drugs. Plantbased products have demonstrated anticancer potential through different biological pathways including modulation of the immune system. Immunomodulatory properties of medicinal plants have been shown to mitigate breast cancer cell growth. Different immune cell types participate in this process especially cytotoxic T cells and natural killer cells, and cytokines including chemokines and tumor necrosis factor-α. Medicinal plants such as Glycyrrhiza glabra, Uncaria tomentosa, Camellia sinensis, Panax ginseng, Prunus armenaica (apricot), Allium sativum, Arctium lappa and Curcuma longa were reported to hold strong potential in breast cancer treatment in various parts of the world. Interestingly, research findings have shown that these plants possess bioactive immunomodulators as their main constituents producing the anticancer effects. These immunomodulatory compounds include ajoene, arctigenin, β-carotene, curcumin, epigallocatechin-3-gallate, ginsan, glabridin and quinic acid. In this review, we discussed the ability of these eight immunomodulators in regulating the immune system potentially applicable in breast cancer treatment via anti-inflammatory (curcumin, arctigenin, glabridin and ajoene) and lymphocytes activation (β-carotene, epigallocatechin-3-gallate, quinic acid and ginsan) properties, as well as future research direction in their use for breast cancer treatment.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  10. Lim WJ, Yap AT, Mangudi M, Hu CY, Yeo CY, Eyo ZW, et al.
    Drug Test Anal, 2017 Mar;9(3):491-499.
    PMID: 27367276 DOI: 10.1002/dta.2034
    Matched MeSH terms: Plants, Medicinal/chemistry
  11. Wong FC, Chai TT, Xiao J
    Crit Rev Food Sci Nutr, 2019;59(6):947-952.
    PMID: 29787299 DOI: 10.1080/10408398.2018.1479681
    In our diets, many of the consumed foods are subjected to various forms of heating and thermal processing. Besides enhancing the taste, texture, and aroma of the foods, heating helps to sterilize and facilitate food storage. On the other hand, heating and thermal processing are frequently reported during the preparation of various traditional herbal medicines. In this review, we intend to highlight works by various research groups which reported on changes in phytochemicals and bioactivities, following thermal processing of selected plant-derived foods and herbal medicines. Relevant cases from plant-derived foods (garlic, coffee, cocoa, barley) and traditional herbal medicines (Panax ginseng, Polygonum multiforum, Aconitum carmichaelii Debeaux, Angelica sinensis Radix) will be presented in this review. Additionally, related works using pure phytochemical compounds will also be highlighted. In some of these cases, the amazing formation of new compounds were being reported. Maillard reaction could be concluded as the predominant pathway leading to the formation of new conjugates, along with other possibilities being suggested (degradation, transglycosylation, deglycosylation and dehydration). With collective efforts from all researchers, it is hoped that more details will be revealed and lead to the possible discovery of new, heat-mediated phytochemical conjugates.
    Matched MeSH terms: Plants, Medicinal/chemistry
  12. Hussain Z, Thu HE, Shuid AN, Kesharwani P, Khan S, Hussain F
    Biomed Pharmacother, 2017 Sep;93:596-608.
    PMID: 28686974 DOI: 10.1016/j.biopha.2017.06.087
    For many decades, natural herbal medicines, polyherbal formulations and/or decoctions of plant-derived materials have widely been accepted as alternative complementary therapies for the treatment, cure or prevention of a wide range of acute and chronic skin diseases including chronic herpes, prurigo, acute and chronic wounds, psoriasis and atopic dermatitis (AD). This review was aimed to summarize and critically discuss about the therapeutic viability and clinical applicability of natural herbal medicines for the treatment of AD in human. The critical analysis of the literature revealed that oral (in the form of capsules, syrup or granules) and/or topical application (alone or in conjunction with wet-wrap dressing and/or acupuncture) of natural herbal medicines exhibit remarkable potential for the treatment of mild-to-severe AD in adults, children, infants and in the pregnant women. In this review, the clinical efficacy of various herbal formulations such as Chinese herbal therapies, Korean medicines, Iranian medicines, honey, natural herbal oils (coconut oil, olive oil and mineral oil), beeswax, dodder seeds and whey for the treatment of AD has been discussed. The clinical anti-AD efficacy of these complementary therapies has been observed in terms of down-regulation in Scoring Atopic Dermatitis (SCORAD) index, erythematic intensity, Children's Dermatology Life Quality Index (CDLQI), Dermatology Life Quality Index (DLQI), pruritus and itching frequency, transepidermal water loss (TEWL) and expression of AD-mediated chemokines. Conclusively, we recognized that natural herbal medicines demonstrate remarkable clinical efficacy when used alone or in conjunction with other complementary therapies for the treatment of AD in patients of all ages as well as pregnant women.
    Matched MeSH terms: Plants, Medicinal/chemistry
  13. Chan YS, Khoo KS, Sit NWW
    Int Microbiol, 2016 Sep;19(3):175-182.
    PMID: 28494087 DOI: 10.2436/20.1501.01.275
    Chikungunya virus is a reemerging arbovirus transmitted mainly by Aedes mosquitoes. As there are no specific treatments available, Chikungunya virus infection is a significant public health problem. This study investigated 120 extracts from selected medicinal plants for anti-Chikungunya virus activity. The plant materials were subjected to sequential solvent extraction to obtain six different extracts for each plant. The cytotoxicity and antiviral activity of each extract were examined using African monkey kidney epithelial (Vero) cells. The ethanol, methanol and chloroform extracts of Tradescantia spathacea (Commelinaceae) leaves showed the strongest cytopathic effect inhibition on Vero cells, resulting in cell viabilities of 92.6% ± 1.0% (512 μg/ml), 91.5% ± 1.7% (512 μg/ml) and 88.8% ± 2.4% (80 μg/ml) respectively. However, quantitative RT-PCR analysis revealed that the chloroform extract of Rhapis excelsa (Arecaceae) leaves resulted in the highest percentage of reduction of viral load (98.1%), followed by the ethyl acetate extract of Vernonia amygdalina (Compositae) leaves (95.5%). The corresponding 50% effective concentrations (EC50) and selectivity indices for these two extracts were 29.9 ± 0.9 and 32.4 ± 1.3 μg/ml, and 5.4 and 5.1 respectively. Rhapis excelsa and Vernonia amygdalina could be sources of anti-Chikungunya virus agents. [Int Microbiol 19(3):175-182 (2016)].
    Matched MeSH terms: Plants, Medicinal/chemistry*
  14. Sit NW, Chan YS, Lai SC, Lim LN, Looi GT, Tay PL, et al.
    J Mycol Med, 2018 Sep;28(3):561-567.
    PMID: 30060991 DOI: 10.1016/j.mycmed.2018.07.001
    OBJECTIVES: This study was conducted to evaluate the antidermatophytic activity of 48 extracts obtained from medicinal plants (Cibotium barometz, Melastoma malabathricum, Meuhlenbeckia platyclada, Rhapis excelsa, Syzygium myrtifolium, Vernonia amygdalina) and marine algae (Caulerpa sertularioides, Kappaphycus alvarezii) against Trichophyton rubrum and Trichophyton interdigitale (ATCC reference strains), and the cytotoxicity using African monkey kidney epithelial (Vero) cells. Active plant extracts were screened for the presence of phytochemicals and tested against clinical isolates of Trichophyton tonsurans.

    METHODS: Six different extracts (hexane, chloroform, ethyl acetate, ethanol, methanol and water) were obtained from each plant or algae sample using sequential solvent extraction. The antidermatophytic activity for the extracts was assessed using a colourimetric broth microdilution method. The viability of Vero cells was measured by Neutral Red uptake assay.

    RESULTS: All the extracts (except the water extracts of V. amygdalina, C. sertularioides and K. alvarezii) showed antidermatophytic activity against Trichophyton spp. The minimum fungicidal concentration (MFC) ranges for the plant extracts against T. rubrum and T. interdigitale are 0.0025-2.50 and 0.005-2.50mg/mL, respectively. The algae extracts exhibited lower potency against both species, showing MFC ranges of 0.08-2.50 and 0.31-2.50mg/mL, respectively. The ethanol and methanol extracts from the leaves of R. excelsa, and the methanol and water extracts from the leaves of S. myrtifolium were highly active (MFC<0.1mg/mL) and with high selectivity indices (SI>2.8) against reference strains of T. rubrum and T. interdigitale, and most of the clinical isolates of T. tonsurans. Phytochemical analysis indicates the presence of alkaloids, anthraquinones, flavonoids, saponins, tannins, phenolics and triterpenoids in the extracts.

    CONCLUSIONS: The medicinal plant extracts exhibited stronger antidermatophytic activity compared to the algae extracts. The leaves of R. excelsa and S. myrtifolium are potential sources of new antidermatophytic agents against Trichophyton spp.

    Matched MeSH terms: Plants, Medicinal/chemistry*
  15. Tan JBL, Kwan YM
    Food Chem, 2020 Jul 01;317:126411.
    PMID: 32087517 DOI: 10.1016/j.foodchem.2020.126411
    Widely used throughout the world as traditional medicine for treating a variety of diseases ranging from cancer to microbial infections, members of the Tradescantia genus show promise as sources of desirable bioactive compounds. The bioactivity of several noteworthy species has been well-documented in scientific literature, but with nearly seventy-five species, there remains much to explore in this genus. This review aims to discuss all the bioactivity-related studies of Tradescantia plants and the compounds discovered, including their anticancer, antimicrobial, antioxidant, and antidiabetic activities. Gaps in knowledge will also be identified for future research opportunities.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  16. Mahleyuddin NN, Moshawih S, Ming LC, Zulkifly HH, Kifli N, Loy MJ, et al.
    Molecules, 2021 Dec 30;27(1).
    PMID: 35011441 DOI: 10.3390/molecules27010209
    Coriandrum sativum (C. sativum), belonging to the Apiaceae (Umbelliferae) family, is widely recognized for its uses in culinary and traditional medicine. C. sativum contains various phytochemicals such as polyphenols, vitamins, and many phytosterols, which account for its properties including anticancer, anti-inflammatory, antidiabetic, and analgesic effects. The cardiovascular benefits of C. sativum have not been summarized before, hence this review aims to further evaluate and discuss its effectiveness in cardiovascular diseases, according to the recent literature. An electronic search for literature was carried out using the following databases: PubMed, Scopus, Google Scholar, preprint platforms, and the Cochrane Database of Systematic Reviews. Articles were gathered from the inception of the database until August 2021. Moreover, the traditional uses and phytochemistry of coriander were surveyed in the original resources and summarized. As a result, most of the studies that cover cardiovascular benefits and fulfilled the eligibility criteria were in vivo, while only a few were in vitro and clinical studies. In conclusion, C. sativum can be deemed a functional food due to its wide range of cardiovascular benefits such as antihypertensive, anti-atherogenic, antiarrhythmic, hypolipidemic as well as cardioprotective effects.
    Matched MeSH terms: Plants, Medicinal/chemistry
  17. Ang HH, Lee EL, Matsumoto K
    Hum Exp Toxicol, 2003 Aug;22(8):445-51.
    PMID: 12948085 DOI: 10.1191/0960327103ht382oa
    In Malaysia, the phase 3 registration for traditional medicines was implemented on 1 January 1992 under the Control of Drugs and Cosmetics Regulation 1984, emphasizing quality, efficacy and safety (including the detection of the presence of heavy metals) in all pharmaceutical dosage forms of traditional medicine preparations. Therefore, a total of 100 products in various pharmaceutical dosage forms of a herbal preparation, were analysed for lead content using atomic absorption spectrophotometer. Results showed that 8% (eight products) possessed 10.64-20.72 ppm of lead, and therefore, do not comply with the quality requirement for traditional medicines in Malaysia. One of these products, M-Tongkat Ali (exhibited 10.64 +/-0.37 ppm of lead), was in fact already registered with the DCA Malaysia. The rest, Sukarno Tongkat Ali, Eurycoma Madu, Super Pill Tongkat Ali, Force Pill Tongkat Ali, Tender Pill Tongkat Ali, Super Pill Tongkat Ali Plus and Great Pill Tongkat Ali Plus have not registered with the DCA Malaysia and exhibited 12.24-20.72 ppm of lead. Although this study showed that only 92% of the products complied with the quality requirement for traditional medicines in Malaysia, however, they cannot be assumed safe from lead contamination because of batch-to-batch inconsistency.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  18. Soon L, Ng PQ, Chellian J, Madheswaran T, Panneerselvam J, Gupta G, et al.
    J Environ Pathol Toxicol Oncol, 2019;38(3):205-216.
    PMID: 31679308 DOI: 10.1615/JEnvironPatholToxicolOncol.2019029397
    Artemisia vulgaris is a traditional Chinese herb believed to have a wide range of healing properties; it is traditionally used to treat numerous health ailments. The plant is commonly called mugwort or riverside wormwood. The plant is edible, and in addition to its medicinal properties, it is also used as a culinary herb in Asian cooking in the form of a vegetable or in soup. The plant has garnered the attention of researchers in the past few decades, and several research studies have investigated its biological effects, including antioxidant, anti-inflammatory, anticancer, hypolipidemic, and antimicrobial properties. In this review, various studies on these biological effects are discussed along with the tests conducted, compounds involved, and proposed mechanisms of action. This review will be of interest to the researchers working in the field of herbal medicine, pharmacology, medical sciences, and immunology.
    Matched MeSH terms: Plants, Medicinal/chemistry
  19. Ang HH, Cheang HS
    Arch Pharm Res, 2001 Oct;24(5):437-40.
    PMID: 11693547 DOI: 10.1007/BF02975191
    It has been reported that Eurycoma longifolia Jack commonly known as Tongkat Ali has gained notoreity as a symbol of man's ego and strength by the Malaysian men because it increases male virility and sexual prowess during sexual activities. As such, the effects of 200, 400 and 800 mg/kg of butanol, methanol, water and chloroform fractions of E. longifolia Jack were studied on the laevator ani muscle in both uncastrated and testosterone-stimulated castrated intact male rats after dosing them for 12 consecutive weeks. Results showed that 800 mg/kg of butanol, methanol, water and chloroform fractions of E. longifolia Jack significantly increased (p<0.05) the leavator ani muscle to 58.56+/-1.22, 58.23+/-0.31, 60.21 +/-0.86 and 62.35 +/-0.98 mg/100 g body weight, respectively, when compared with the control (untreated) in the uncastrated intact male rats and 49.23+/-0.82, 52.23+/-0.36, 50.21+/-0.66 and 52.35+/-0.58 mg/100 g body weight, respectively, when compared to control (untreated) in the testosterone-stimulated castrated intact male rats. Hence, the pro-androgenic effect as shown by this study further supported the traditional use of this plant as an aphrodisiac.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  20. Zèches M, Mesbah K, Loukaci A, Richard B, Schaller H, Sévenet T, et al.
    Planta Med, 1995 Feb;61(1):97.
    PMID: 7701009
    Matched MeSH terms: Plants, Medicinal/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links