Displaying publications 41 - 60 of 362 in total

Abstract:
Sort:
  1. Evers S, Yule CM, Padfield R, O'Reilly P, Varkkey H
    Glob Chang Biol, 2017 Feb;23(2):534-549.
    PMID: 27399889 DOI: 10.1111/gcb.13422
    Pristine tropical peat swamp forests (PSFs) represent a unique wetland ecosystem of distinctive hydrology which support unique biodiversity and globally significant stores of soil carbon. Yet in Indonesia and Malaysia, home to 56% of the world's tropical peatland, they are subject to considerable developmental pressures, including widespread drainage to support agricultural needs. In this article, we review the ecology behind the functioning and ecosystem services provided by PSFs, with a particular focus on hydrological processes as well as the role of the forest itself in maintaining those services. Drawing on this, we review the suitability of current policy frameworks and consider the efficacy of their implementation. We suggest that policies in Malaysia and Indonesia are often based around the narrative of oil palm and other major monocrops as drivers of prosperity and development. However, we also argue that this narrative is also being supported by a priori claims concerning the possibility of sustainability of peat swamp exploitation via drainage-based agriculture through the adherence to best management practices. We discuss how this limits their efficacy, uptake and the political will towards enforcement. Further, we consider how both narratives (prosperity and sustainability) clearly exclude important considerations concerning the ecosystem value of tropical PSFs which are dependent on their unimpacted hydrology. Current research clearly shows that the actual debate should be focused not on how to develop drainage-based plantations sustainably, but on whether the sustainable conversion to drainage-based systems is possible at all.
    Matched MeSH terms: Tropical Climate*
  2. Varghese G
    Mycopathol Mycol Appl, 1972 Oct 09;48(1):43-61.
    PMID: 4677628
    Matched MeSH terms: Tropical Climate*
  3. Barker G, Barton H, Bird M, Daly P, Datan I, Dykes A, et al.
    J Hum Evol, 2007 Mar;52(3):243-61.
    PMID: 17161859
    Recent research in Europe, Africa, and Southeast Asia suggests that we can no longer assume a direct and exclusive link between anatomically modern humans and behavioral modernity (the 'human revolution'), and assume that the presence of either one implies the presence of the other: discussions of the emergence of cultural complexity have to proceed with greater scrutiny of the evidence on a site-by-site basis to establish secure associations between the archaeology present there and the hominins who created it. This paper presents one such case study: Niah Cave in Sarawak on the island of Borneo, famous for the discovery in 1958 in the West Mouth of the Great Cave of a modern human skull, the 'Deep Skull,' controversially associated with radiocarbon dates of ca. 40,000 years before the present. A new chronostratigraphy has been developed through a re-investigation of the lithostratigraphy left by the earlier excavations, AMS-dating using three different comparative pre-treatments including ABOX of charcoal, and U-series using the Diffusion-Absorption model applied to fragments of bones from the Deep Skull itself. Stratigraphic reasons for earlier uncertainties about the antiquity of the skull are examined, and it is shown not to be an 'intrusive' artifact. It was probably excavated from fluvial-pond-desiccation deposits that accumulated episodically in a shallow basin immediately behind the cave entrance lip, in a climate that ranged from times of comparative aridity with complete desiccation, to episodes of greater surface wetness, changes attributed to regional climatic fluctuations. Vegetation outside the cave varied significantly over time, including wet lowland forest, montane forest, savannah, and grassland. The new dates and the lithostratigraphy relate the Deep Skull to evidence of episodes of human activity that range in date from ca. 46,000 to ca. 34,000 years ago. Initial investigations of sediment scorching, pollen, palynomorphs, phytoliths, plant macrofossils, and starch grains recovered from existing exposures, and of vertebrates from the current and the earlier excavations, suggest that human foraging during these times was marked by habitat-tailored hunting technologies, the collection and processing of toxic plants for consumption, and, perhaps, the use of fire at some forest-edges. The Niah evidence demonstrates the sophisticated nature of the subsistence behavior developed by modern humans to exploit the tropical environments that they encountered in Southeast Asia, including rainforest.
    Matched MeSH terms: Tropical Climate
  4. Ewers RM, Didham RK, Fahrig L, Ferraz G, Hector A, Holt RD, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3292-302.
    PMID: 22006969 DOI: 10.1098/rstb.2011.0049
    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.
    Matched MeSH terms: Tropical Climate
  5. Ewers RM, Boyle MJ, Gleave RA, Plowman NS, Benedick S, Bernard H, et al.
    Nat Commun, 2015 Apr 13;6:6836.
    PMID: 25865801 DOI: 10.1038/ncomms7836
    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.
    Matched MeSH terms: Tropical Climate
  6. Osaki M, Watanabe T, Ishizawa T, Nilnond C, Nuyim T, Shinano T, et al.
    Plant Foods Hum Nutr, 2003;58(2):93-115.
    PMID: 12906350
    Acid sulfate, peat, sandy podzolic, and saline soils are widely distributed in the lowlands of Thailand and Malaysia. The nutrient concentrations in the leaves of plants grown in these type of soils were studied with the aim of developing a nutritional strategy for adapting to such problem soils. In sago and oil palms that were well-adapted to peat soil, the N, P, and K concentrations were the same in the mature leaves, while the Ca, Mg, Na, and Fe concentrations were higher in the mature leaves of the oil palm than of the sago palm. Melastoma malabathricum and Melaleuca cajuputi plants that were well-adapted to low pH soils, peat. and acid sulfate soils were also studied. It was observed that a high amount of Al accumulated in the M. marabathricum leaves, while Al did not accumulate in M. cajuputi leaves. M. cajuputi plants accumulated large amounts of Na in their leaves or stems regardless of the exchangeable Na concentration in the soil, while M. malabathricum that was growing in saline-affected soils excluded Na. Positive relationships between macronutrients were recognized between P and N, between K and N, and between P and K. Al showed antagonistic relationships with P, K, Ca, Mg, Fe, Zn, Cu, and Na. Na also showed antagonistic relationships with P, K, Zn, Mn, Cu, and Al. Fe showed weak antagonistic relationships with Zn, Mn, Cu, and Al.
    Matched MeSH terms: Tropical Climate*
  7. Fukue Y, Kado T, Lee SL, Ng KK, Muhammad N, Tsumura Y
    J Plant Res, 2007 May;120(3):413-20.
    PMID: 17387430
    Pristine tropical rainforests in Southeast Asia have rich species diversity and are important habitats for many plant species. However, the extent of these forests has declined in recent decades and they have become fragmented due to human activities. These developments may reduce the genetic diversity of species within them and, consequently, the species' ability to adapt to environmental changes. Our objective in the study presented here was to clarify the effect of tree density on the genetic diversity and gene flow patterns of Shorea leprosula Miq. populations in Peninsular Malaysia. For this purpose, we related genetic diversity and pollen flow parameters of seedling populations in study plots to the density of mature trees in their vicinity. The results show that gene diversity and allelic richness were not significantly correlated to the mature tree density. However, the number of rare alleles among the seedlings and the selfing rates of the mother trees were negatively correlated with the density of the adult trees. Furthermore, in a population with high mature tree density pollination distances were frequently <200 m, but in populations with low adult tree density the distances were longer. These findings suggest that the density of flowering trees affects selfing rates, gene flow and, thus, the genetic diversity of S. leprosula populations. We also found an individual S. leprosula tree with a unique reproductive system, probably apomictic, mating system.
    Matched MeSH terms: Tropical Climate
  8. Ohtani M, Kondo T, Tani N, Ueno S, Lee LS, Ng KK, et al.
    Mol Ecol, 2013 Apr;22(8):2264-79.
    PMID: 23432376 DOI: 10.1111/mec.12243
    Tropical rainforests in South-East Asia have been affected by climatic fluctuations during past glacial eras. To examine how the accompanying changes in land areas and temperature have affected the genetic properties of rainforest trees in the region, we investigated the phylogeographic patterns of a widespread dipterocarp species, Shorea leprosula. Two types of DNA markers were used: expressed sequence tag-based simple sequence repeats and chloroplast DNA (cpDNA) sequence variations. Both sets of markers revealed clear genetic differentiation between populations in Borneo and those in the Malay Peninsula and Sumatra (Malay/Sumatra). However, in the south-western part of Borneo, genetic admixture of the lineages was observed in the two marker types. Coalescent simulation based on cpDNA sequence variation suggested that the two lineages arose 0.28-0.09 million years before present and that following their divergence migration from Malay/Sumatra to Borneo strongly exceeded migration in the opposite direction. We conclude that the genetic structure of S. leprosula was largely formed during the middle Pleistocene and was subsequently modified by eastward migration across the subaerially exposed Sunda Shelf.
    Matched MeSH terms: Tropical Climate
  9. Dantas-Torres F, Ketzis J, Mihalca AD, Baneth G, Otranto D, Tort GP, et al.
    Vet Parasitol, 2020 Jul;283:109167.
    PMID: 32580071 DOI: 10.1016/j.vetpar.2020.109167
    The Tropical Council for Companion Animal Parasites Ltd. (TroCCAP) is a not-for-profit organisation whose mission is to independently inform, guide and make best-practice recommendations for the diagnosis, treatment and control of companion animal parasites in the tropics and sub-tropics, with the aim of protecting animal and human health. In line with this primary mission, TroCCAP recently developed guidelines for the diagnosis, treatment and control of feline and canine parasites in the tropics. The development of these guidelines required unique and complex considerations to be addressed, often inapplicable to developed nations. Much of the tropics encompass middle-to-low income countries in which poor standards of environmental hygiene and large populations of stray dogs and cats coexist. In these regions, a range of parasites pose a high risk to companion animals, which ultimately may place their owners at risk of acquiring parasitic zoonoses. These considerations led to the development of unique recommendations with regard, for example, to deworming and endoparasite testing intervals for the control of both global and 'region-specific' parasites in the tropics. Moreover, the 'off-' or 'extra'-label use of drugs for the treatment and control of parasitic infections is common practice in many tropical countries and many generic products lack manufacturers' information on efficacy, safety, and quality control. Recommendations and advice concerning the use of such drugs and protocols are also addressed in these guidelines. The formation of these guidelines is an important first step towards improving the education of veterinarians specifically regarding best-practice for the diagnosis, treatment and control of canine and feline parasites in the tropics.
    Matched MeSH terms: Tropical Climate
  10. Chow MF, Yusop Z, Toriman ME
    Water Sci Technol, 2013;67(8):1822-31.
    PMID: 23579839 DOI: 10.2166/wst.2013.048
    Urbanization and frequent storms play important roles in increasing faecal bacteria pollution, especially for tropical urban catchments. However, only little information on the faecal bacteria levels from different land use types and the factors that influence bacteria concentrations is available. Thus, the objectives of this study were to quantify the levels and transport mechanism of faecal coliforms (FCs) from residential and commercial catchments. Stormwaters were sampled and the runoff flow rates were measured from both catchments during four storm events in Skudai, Malaysia. The samples were then analysed for FC, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids (TSS) and ammoniacal-nitrogen (NH3-N) concentrations. Intra-storm and inter-storm characteristics of FC bacteria were investigated in order to identify the level and transport pattern of FC. The commercial catchment showed significantly higher event mean concentration (EMC) of FC than the residential catchment. For the residential catchment, the highest bacterial concentrations occurred during the early part of stormwater runoff with peak concentrations usually preceding the peak flow. First flush effect was more prevalent at the residential catchment.
    Matched MeSH terms: Tropical Climate
  11. Wijayanto T, Wakabayashi H, Lee JY, Hashiguchi N, Saat M, Tochihara Y
    Int J Biometeorol, 2011 Jul;55(4):491-500.
    PMID: 20824480 DOI: 10.1007/s00484-010-0358-5
    The objective of this study was to investigate thermoregulatory responses to heat in tropical (Malaysian) and temperate (Japanese) natives, during 60 min of passive heating. Ten Japanese (mean ages: 20.8 ± 0.9 years) and ten Malaysian males (mean ages: 22.3 ± 1.6 years) with matched morphological characteristics and physical fitness participated in this study. Passive heating was induced through leg immersion in hot water (42°C) for 60 min under conditions of 28°C air temperature and 50% RH. Local sweat rate on the forehead and thigh were significantly lower in Malaysians during leg immersion, but no significant differences in total sweat rate were observed between Malaysians (86.3 ± 11.8 g m(-2) h(-1)) and Japanese (83.2 ± 6.4 g m(-2) h(-1)) after leg immersion. In addition, Malaysians displayed a smaller rise in rectal temperature (0.3 ± 0.1°C) than Japanese (0.7 ± 0.1°C) during leg immersion, with a greater increase in hand skin temperature. Skin blood flow was significantly lower on the forehead and forearm in Malaysians during leg immersion. No significant different in mean skin temperature during leg immersion was observed between the two groups. These findings indicated that regional differences in body sweating distribution might exist between Malaysians and Japanese during heat exposure, with more uniform distribution of local sweat rate over the whole body among tropical Malaysians. Altogether, Malaysians appear to display enhanced efficiency of thermal sweating and thermoregulatory responses in dissipating heat loss during heat loading. Thermoregulatory differences between tropical and temperate natives in this study can be interpreted as a result of heat adaptations to physiological function.
    Matched MeSH terms: Tropical Climate/adverse effects
  12. Wakabayashi H, Wijayanto T, Lee JY, Hashiguchi N, Saat M, Tochihara Y
    Int J Biometeorol, 2011 Jul;55(4):509-17.
    PMID: 20949285 DOI: 10.1007/s00484-010-0374-5
    This study investigated the differences in heat dissipation response to intense heat stress during exercise in hot and humid environments between tropical and temperate indigenes with matched physical characteristics. Ten Japanese (JP) and ten Malaysian (MY) males participated in this study. Subjects performed exercise for 60 min at 55% peak oxygen uptake in 32°C air with 70% relative humidity, followed by 30 min recovery. The increase in rectal temperature (T(re)) was smaller in MY during exercise compared to JP. The local sweat rate and total body mass loss were similar in both groups. Both skin blood flow and mean skin temperature was lower in MY compared to JP. A significantly greater increase in hand skin temperature was observed in MY during exercise, which is attributable to heat loss due to the greater surface area to mass ratio and large number of arteriovenous anastomoses. Also, the smaller increase in T(re) in MY may be explained by the presence of a significantly greater core-skin temperature gradient in MY than JP. The thermal gradient is also a major factor in increasing the convective heat transfer from core to skin as well as skin blood flow. It is concluded that the greater core-skin temperature gradient observed in MY is responsible for the smaller increase in T(re).
    Matched MeSH terms: Tropical Climate/adverse effects
  13. Saat M, Sirisinghe RG, Singh R, Tochihara Y
    J Physiol Anthropol Appl Human Sci, 2005 Sep;24(5):541-9.
    PMID: 16237263
    This study investigates the effects of a short-term aerobic training program in a hot environment on thermoregulation, blood parameters, sweat secretion and composition in tropic-dwellers who have been exposed to passive heat. Sixteen healthy Malaysian-Malay male volunteers underwent heat acclimation (HA) by exercising on a bicycle ergometer at 60% of VO2max for 60 min each day in a hot environment (Ta: 31.1+/-0.1 degrees C, rh: 70.0+/-4.4%) for 14 days. All parameters mentioned above were recorded on Day 1 and at the end of HA (Day 16). On these two days, subjects rested for 10 min, then cycled at 60% of VO2max for 60 min and rested again for 20 min (recovery) in an improvised heat chamber. Rectal temperature (Tre), mean skin temperature (Tsk) heart rate (HR), ratings of perceived exertion (RPE), thermal sensation (TS), local sweat rate and percent dehydration were recorded during the test. Sweat concentration was analysed for sodium [Na+]sweat and potassium. Blood samples were analysed for biochemical changes, electrolytes and hematologic indices. Urine samples were collected before and after each test and analysed for electrolytes.After the period of acclimation the percent dehydration during exercise significantly increased from 1.77+/-0.09% (Day 1) to 2.14+/-0.07% (Day 16). Resting levels of hemoglobin, hematocrit and red blood cells decreased significantly while [Na+]sweat increased significantly. For Tre and Tsk there were no differences at rest. Tre, HR, RPE, TS, plasma lactate concentration, hemoglobin and hematocrit at the 40th min of exercise were significantly lower after the period of acclimation but mean corpuscular hemoglobin and serum osmolality were significantly higher while no difference was seen in [Na+]sweat and Tsk. It can be concluded that tropic-dwelling subjects, although exposed to prolonged passive heat exposure, were not fully heat acclimatized. To achieve further HA, they should gradually expose themselves to exercise-heat stress in a hot environment.
    Matched MeSH terms: Tropical Climate
  14. Othman M, Genapathy S, Liew PS, Ch'ng QT, Loh HS, Khoo TJ, et al.
    Nat Prod Res, 2011 Nov;25(19):1857-64.
    PMID: 21838540 DOI: 10.1080/14786419.2010.537274
    The world's rainforests hold untold potential for drug discovery. Rainforest plants are thought to contain evolved defensive active metabolites of greater diversity compared to plants from temperate regions. In recent years, the interest and overall output from pharmaceutical companies on novel antibacterial agents has diminished at a time when there is a critical need for them to fight the threat of resistance. In this study, we have investigated the antimicrobial properties of 21 flowering plants from 16 different families against six bacterial strains consisting of two Gram negative and four Gram positive. Using the pour plate disc diffusion technique, almost all extracts from these plants were found to be active against some of the bacterial strains tested. The most interesting and active plants with broad spectrum activities include Duabanga grandiflora, Acalypha wilkesiana and Pseuduvaria macrophylla where the minimum inhibitory concentration, minimum bactericidal concentration and phytochemical analysis were carried out. This is the first report describing the antimicrobial and phytochemical properties of D. grandiflora and P. macrophylla. Our findings support the utilisation of higher plant species in the search for new antimicrobial molecules to combat new emerging infective diseases and the problem of drug resistant pathogens.
    Matched MeSH terms: Tropical Climate
  15. Saha M, Togo A, Mizukawa K, Murakami M, Takada H, Zakaria MP, et al.
    Mar Pollut Bull, 2009 Feb;58(2):189-200.
    PMID: 19117577 DOI: 10.1016/j.marpolbul.2008.04.049
    We collected surface sediment samples from 174 locations in India, Indonesia, Malaysia, Thailand, Vietnam, Cambodia, Laos, and the Philippines and analyzed them for polycyclic aromatic hydrocarbons (PAHs) and hopanes. PAHs were widely distributed in the sediments, with comparatively higher concentrations in urban areas (Sigma PAHs: approximately 1000 to approximately 100,000 ng/g-dry) than in rural areas ( approximately 10 to approximately 100g-dry), indicating large sources of PAHs in urban areas. To distinguish petrogenic and pyrogenic sources of PAHs, we calculated the ratios of alkyl PAHs to parent PAHs: methylphenanthrenes to phenanthrene (MP/P), methylpyrenes+methylfluoranthenes to pyrene+fluoranthene (MPy/Py), and methylchrysenes+methylbenz[a]anthracenes to chrysene+benz[a]anthracene (MC/C). Analysis of source materials (crude oil, automobile exhaust, and coal and wood combustion products) gave thresholds of MP/P=0.4, MPy/Py=0.5, and MC/C=1.0 for exclusive combustion origin. All the combustion product samples had the ratios of alkyl PAHs to parent PAHs below these threshold values. Contributions of petrogenic and pyrogenic sources to the sedimentary PAHs were uneven among the homologs: the phenanthrene series had a greater petrogenic contribution, whereas the chrysene series had a greater pyrogenic contribution. All the Indian sediments showed a strong pyrogenic signature with MP/P approximately 0.5, MPy/Py approximately 0.1, and MC/C approximately 0.2, together with depletion of hopanes indicating intensive inputs of combustion products of coal and/or wood, probably due to the heavy dependence on these fuels as sources of energy. In contrast, sedimentary PAHs from all other tropical Asian cities were abundant in alkylated PAHs with MP/P approximately 1-4, MPy/Py approximately 0.3-1, and MC/C approximately 0.2-1.0, suggesting a ubiquitous input of petrogenic PAHs. Petrogenic contributions to PAH homologs varied among the countries: largest in Malaysia whereas inferior in Laos. The higher abundance of alkylated PAHs together with constant hopane profiles suggests widespread inputs of automobile-derived petrogenic PAHs to Asian waters.
    Matched MeSH terms: Tropical Climate*
  16. Lim SP, Gan SN, Tan IK
    Appl Biochem Biotechnol, 2005 Jul;126(1):23-33.
    PMID: 16014996
    Bacterial polyhydroxyalkanoates (PHAs) are perceived to be a suitable alternative to petrochemical plastics because they have similar material properties, are environmentally degradable, and are produced from renewable resources. In this study, the in situ degradation of medium-chain-length PHA (PHAMCL) films in tropical forest and mangrove soils was assessed. The PHAMCL was produced by Pseudomonas putida PGA1 using saponified palm kernel oil (SPKO) as the carbon source. After 112 d of burial, there was 16.7% reduction in gross weight of the films buried in acidic forest soil (FS), 3.0% in the ones buried in alkaline forest soil by the side of a stream (FSst) and 4.5% in those buried in mangrove soil (MS). There was a slight decrease in molecular weight for the films buried in FS but not for the films buried in FSst and in MS. However, no changes were observed for the melting temperature, glass transition temperature, monomer compositions, structure, and functional group analyses of the films from any of the burial sites during the test period. This means that the integral properties of the films were maintained during that period and degradation was by surface erosion. Scanning electron microscopy of the films from the three sites revealed holes on the film surfaces which could be attributed to attack by microorganisms and bigger organisms such as detritivores. For comparison purposes, films of polyhydroxybutyrate (PHB), a short-chain-length PHA, and polyethylene (PE) were buried together with the PHAMCL films in all three sites. The PHB films disintegrated completely in MS and lost 73.5% of their initial weight in FSst, but only 4.6% in FS suggesting that water movement played a major role in breaking up the brittle PHB films. The PE films did not register any weight loss in any of the test sites.
    Matched MeSH terms: Tropical Climate
  17. Ho YH, Gan SN, Tan IK
    Appl Biochem Biotechnol, 2002 10 25;102-103(1-6):337-47.
    PMID: 12396135
    The medium-chain-length polyhydroxyalkanoate (PHA(MCL)) produced by Pseudomonas putida PGA1 using saponified palm kernel oil as the carbon source could degrade readily in water taken from Kayu Ara River in Selangor, Malaysia. A weight loss of 71.3% of the PHA film occurred in 86 d. The pH of the river water medium fell from 7.5 (at d 0) to 4.7 (at d 86), and there was a net release of CO2. In sterilized river water, the PHA film also lost weight and the pH of the water fell, but to lesser extents. The C8 monomer of the PHA was completely removed after 6 d of immersion in the river water, while the proportions of the other monomers (C10, C12, and C14) were reversed from that of the undegraded PHA. By contrast, the monomer composition of the PHA immersed in sterilized river water did not change significantly from that of the undegraded PHA. Scanning electron microscopy showed physical signs of degradation on the PHA film immersed in the river water, but the film immersed in sterilized river water was relatively unblemished. The results thus indicate that the PHA(MCL) was degraded in tropical river water by biologic as well as nonbiologic means. A significant finding is that shorter-chain monomers were selectively removed throughout the entire PHA molecule, and this suggests enzymatic action.
    Matched MeSH terms: Tropical Climate
  18. Carrizosa Moog J, Kakooza-Mwesige A, Tan CT
    Seizure, 2017 Jan;44:108-112.
    PMID: 27986419 DOI: 10.1016/j.seizure.2016.11.032
    Epilepsy is considered by the World Health Organization a public health priority with more than 50 million human beings affected by the disease. More than 80% of persons with epilepsy live in low and middle income countries and most of them in tropical areas. Several emerging, re-emerging and neglected diseases are symptomatic etiologies that jointly contribute to the enormous global burden of epilepsy. Besides the clinical strengths to reduce diagnostic and treatment gaps, other strategies in social, economic, cultural, educational and health policies are needed to prevent and treat appropriately vulnerable and affected persons with epilepsy. From the public health point of view, several of those strategies could be more effective in reducing the incidence and burden of the disease than the clinical approach of diagnosis and treatment. Special attention has to be given to stigma reduction and promotion of human rights. Several aspects mentioned in this abstract slip away the scope of the article, but it is a remainder to approach epilepsy in an inter- and transdisciplinary manner, an integral and pertinent approach needed and requested in tropical counties. The article focuses only on emergent and re-emergent etiologies of epilepsy in the tropics like malaria, HIV, neurocysticercosis, viral encephalitis and traumatic brain injury.
    Matched MeSH terms: Tropical Climate*
  19. Isobe KO, Tarao M, Zakaria MP, Chiem NH, Minh le Y, Takada H
    Environ Sci Technol, 2002 Nov 1;36(21):4497-507.
    PMID: 12433157
    This is the first report on fecal pollution using molecular markers in Southeast Asia where serious sewage pollution has occurred. A simple and sensitive analytical method using gas chromatography-mass spectrometry for 10 sterols in various environmental samples was developed to monitor extensive areas of tropical Asia. First, the method was applied to wastewater to confirm that >95% of sterols existed in the particulate phase. Then the approach was applied to a tropical Asian region, Malaysia and Vietnam, with a selection of 59 sampling stations in total. River water and sediment samples were collected and analyzed for chemical markers (coprostanol and other sterols) and microbiological markers (fecal coliforms and fecal streptococci). Particulate coprostanol concentrations ranged from <0.0001 to 13.47 microg/L in tropical river and estuarine waters, indicating severe fecal pollution in populous areas. Coprostanol concentrations in the sediments ranged from 0.005 to 15.5 microg/g-dry. The sedimentary coprostanol concentrations were lower than those reported in some urban areas of industrialized countries. This is probably because frequent heavy rain induces intensive input of eroded soil, which dilutes fecal material in river sediments. The relationship between the concentrations of fecal sterols and bacterial indicators was examined in an attempt to develop public health criteria for coprostanol levels applicable to the tropical region. Coprostanol concentrations of 30-100 ng/L or percent coprostanol levels of 2% corresponded to approximately 1000 fecal coliforms per 100 mL, which is set for secondary contact limit in many countries. These coprostanol concentrations were lower than those proposed as criteria in temperate countries, probably owing to greater survival of bacteria in warmer tropical waters. On the basis of these criteria, extensive monitoring of sediments suggests that poor sanitary conditions exist in most of the urbanized area of Malaysia and in several urban and rural sites in Vietnam.
    Matched MeSH terms: Tropical Climate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links