Displaying publications 41 - 60 of 362 in total

Abstract:
Sort:
  1. Hotez PJ
    Acta Trop, 2020 Feb;202:105182.
    PMID: 31550453 DOI: 10.1016/j.actatropica.2019.105182
    While the East Asia Pacific (EAP) region has experienced tremendous economic growth and development, the resulting public health gains from reductions in its neglected tropical diseases (NTDs) have been less than expected due to opposing forces of urbanization, political instability, food insecurity, and climate change, together with co-morbidities with non-communicable diseases, including diabetes and hypertension. To be sure there's been progress towards the elimination of lymphatic filariasis and trachoma through mass drug administration, and there are opportunities to extend MDA to yaws and scabies, but for most of the other NTDs we'll require new biotechnologies. So far, EAP's major technology hubs in China, Japan, Malaysia, Singapore, South Korea, and Taiwan have mostly failed to shift their attention towards new innovations for the NTDs, including new drugs, diagnostics, and vaccines, and vector control. Unless this situation changes the EAP could be facing a new grim reality of unhealthy megacities beset by emerging arbovirus infections, widespread antimicrobial resistance, and urban helminth infections.
    Matched MeSH terms: Tropical Climate
  2. Peng W, Sonne C, Lam SS, Ok YS, Alstrup AKO
    Environ Res, 2020 02;181:108887.
    PMID: 31732170 DOI: 10.1016/j.envres.2019.108887
    The Amazon rainforest has sustained human existence for more than 10,000 years. Part of this has been the way that the forest controls regional climate including precipitation important for the ecosystem as well as agroforestry and farming. In addition, the Amazon also affects the global weather systems, so cutting down the rainforest significantly increases the effects of climate change, threatening the world's biodiversity and causing local desertification and soil erosion. The current fire activities and deforestation in the Amazon rainforest therefore have consequences for global sustainability. In the light of this, the current decisions made in Brazil regarding an increase in Amazon deforestation require policy changes if the global ecosystems and biodiversity are not to be set to collapse. There is only one way to move forward and that is to increase efforts in sustainable development of the region including limitation in deforestation and to continuously measure and monitor the development. The G7 countries have offered Brazil financial support for at least 20 million euros for fighting the forest fires but the president denies receiving such financial support and says that it is more relevant to raise new forests in Europe. In fact, this is exactly what is happening in Denmark and China in order to reduce climate change. Such activities should be global and include South America, Europe, Africa and Asia where deforestation is important issue. Forest restoration reduces climate change, desertification, and preserves both the regional tropical and global environment if the wood is not burned at a later stage but instead used in e.g. roads as filling material. Changes are therefore needed through improved international understanding and agreements to better avoid the global climate changes, from cutting down the precious rainforest before it is too late as rainforest cannot be re-planted.
    Matched MeSH terms: Tropical Climate
  3. D MR, Linkie M
    PLoS One, 2020;15(12):e0243932.
    PMID: 33315909 DOI: 10.1371/journal.pone.0243932
    Across the tropics, large-bodied mammals have been affected by selective logging in ways that vary with levels of timber extraction, collateral damage, species-specific traits and secondary effects of hunting, as facilitated by improved access through logging roads. In Peninsular Malaysia, 3.0 million hectares or 61 percent of its Permanent Reserved Forests is officially assigned for commercial selective logging. Understanding how wildlife adapts and uses logged forest is critical for its management and, for threatened species, their conservation. In this study, we quantify the population status of four tropical ungulate species in a large selectively logged forest reserve and an adjacent primary forest protected area. We then conduct finer scale analyses to identify the species-specific factors that determine their occurrence. A combined indirect sign-camera trapping approach with a large sampling effort (2,665 km and 27,780 trap nights surveyed) covering a wide area (560 km2) generated species-specific detection probabilities and site occupancies. Populations of wild boar were widespread across both logged and primary forests, whereas sambar and muntjac occupancy was lower in logged forest (48.4% and 19.2% respectively), with gaur showing no significant difference. Subsequent modelling revealed the importance of conserving lower elevation habitat in both habitat types, particularly <1,000 m asl, for which occupancies of sambar, muntjac and gaur were typically higher. This finding is important because 75 percent (~13,400 km2) of Peninsular Malaysia's Main Range Forest (Banjaran Titiwangsa) is under 1,000 m asl and therefore at risk of being converted to industrial timber plantations, which calls for renewed thinking around forest management planning.
    Matched MeSH terms: Tropical Climate
  4. Brändle J, Kunert N
    Tree Physiol, 2019 12 01;39(12):1975-1983.
    PMID: 31631217 DOI: 10.1093/treephys/tpz104
    Tree autotrophic respiratory processes, especially stem respiration or stem CO2 efflux (Estem), are important components of the forest carbon budget. Despite efforts to investigate the controlling processes of Estem in recent years, a considerable lack in our knowledge remains on the abiotic and biotic drivers affecting Estem dynamics. It has been strongly advocated that long-term measurements would shed light onto those processes. The expensive scientific instruments needed to measure gas exchange have prevented Estem measurements from being applied on a larger temporal and spatial scale. Here, we present an automated closed dynamic chamber system based on inexpensive and industrially broadly applied CO2 sensors, reducing the costs for the sensing system to a minimum. The CO2 sensor was cross-calibrated with a commonly used gas exchange system in the laboratory and in the field, and we found very good accordance of these sensors. We tested the system under harsh tropical climatic conditions, characterized by heavy tropical rainfall events, extreme humidity and temperatures, in a moist lowland forest in Malaysia. We recorded Estem of three Dyera costulata (Miq.) trees with our prototype over various days. The variation of Estem was large among the three tree individuals and varied by 7.5-fold. However, clear diurnal changes in Estem were present in all three tree individuals. One tree showed high diurnal variation in Estem, and the relationship between Estem and temperature was characterized by a strong hysteresis. The large variations found within one single tree species highlight the importance of continuous measurement to quantify ecosystem carbon fluxes.
    Matched MeSH terms: Tropical Climate
  5. Qamruddin AA, Nik Husain NR, Sidek MY, Hanafi MH, Ripin ZM, Ali N
    J Occup Health, 2019 Nov;61(6):498-507.
    PMID: 31364246 DOI: 10.1002/1348-9585.12078
    BACKGROUND: Prolonged exposure to hand-arm vibration is associated with a disorder of the vascular, neurological, and musculoskeletal systems of the upper limb known as hand-arm vibration syndrome (HAVS). Currently, the evidence of HAVS in tropical environments is limited.

    OBJECTIVES: To determine the prevalence and severity of HAVS among tyre shop workers in Kelantan, Malaysia.

    METHODS: A cross-sectional study involving 200 tyre shop workers from two districts in Kelantan was performed. Part one data were collected at the field using questionnaire, and hand-arm vibration was measured. Part two involved a set of hand clinical examinations. The workers were divided into high (≥5 m s-2 ) and low/moderate (<5 m s-2 ) exposure group according to their 8-hr time weighted average [A(8)] of vibration exposure. The differences between the two exposure group were then compared.

    RESULTS: The prevalence of the vascular, neurological, and musculoskeletal symptoms was 12.5% (95% CI 10.16 to 14.84), 37.0% (95% CI 30.31 to 43.69), and 44.5% (95% CI 37.61 to 51.38) respectively. When divided according to their exposure statuses, there was a significant difference in the prevalence of HAVS for all three components of vascular, neurological, and musculoskeletal (22.68% vs 2.91%, 62.89% vs 12.62% and 50.52% and 38.83%) respectively. All the clinical examinations findings also significantly differed between the two groups with the high exposure group having a higher abnormal result.

    CONCLUSION: Exposure to high A(8) of vibration exposure was associated with a higher prevalence of all three component of HAVS. There is a need for better control of vibration exposure in Malaysia.

    Matched MeSH terms: Tropical Climate
  6. Lim FL, Hashim Z, Than LTL, Md Said S, Hashim JH, Norbäck D
    Int J Tuberc Lung Dis, 2019 11 01;23(11):1171-1177.
    PMID: 31718753 DOI: 10.5588/ijtld.18.0668
    OBJECTIVE: To examine the associations between endotoxin and (1,3)-β-glucan concentrations in office dust and respiratory symptoms and airway inflammation among 695 office workers in Malaysia.METHODS: Health data were collected using a questionnaire, sensitisation testing and measurement of fractional exhaled nitric oxide (FeNO). Indoor temperature, relative air humidity (RH) and carbon dioxide (CO₂) were measured in the offices and settled dust was vacuumed and analysed for endotoxin and (1,3)-β-glucan concentrations. Associations were analysed by two level multiple logistic regression.RESULTS: Overall, 9.6% of the workers had doctor-diagnosed asthma, 15.5% had wheeze, 18.4% had daytime attacks of breathlessness and 25.8% had elevated FeNO (≥25 ppb). The median levels in office dust were 11.3 EU/mg endotoxin and 62.9 ng/g (1,3)-β-glucan. After adjusting for personal and home environment factors, endotoxin concentration in dust was associated with wheeze (P = 0.02) and rhinoconjunctivitis (P = 0.007). The amount of surface dust (P = 0.04) and (1,3)-β-glucan concentration dust (P = 0.03) were associated with elevated FeNO.CONCLUSION: Endotoxin in office dust could be a risk factor for wheeze and rhinoconjunctivitis among office workers in mechanically ventilated offices in a tropical country. The amount of dust and (1,3)-β-glucan (a marker of indoor mould exposure) were associated with Th2 driven airway inflammation.
    Matched MeSH terms: Tropical Climate
  7. Bongalov B, Burslem DFRP, Jucker T, Thompson SED, Rosindell J, Swinfield T, et al.
    Ecol Lett, 2019 Oct;22(10):1608-1619.
    PMID: 31347263 DOI: 10.1111/ele.13357
    Both niche and stochastic dispersal processes structure the extraordinary diversity of tropical plants, but determining their relative contributions has proven challenging. We address this question using airborne imaging spectroscopy to estimate canopy β-diversity for an extensive region of a Bornean rainforest and challenge these data with models incorporating niches and dispersal. We show that remotely sensed and field-derived estimates of pairwise dissimilarity in community composition are closely matched, proving the applicability of imaging spectroscopy to provide β-diversity data for entire landscapes of over 1000 ha containing contrasting forest types. Our model reproduces the empirical data well and shows that the ecological processes maintaining tropical forest diversity are scale dependent. Patterns of β-diversity are shaped by stochastic dispersal processes acting locally whilst environmental processes act over a wider range of scales.
    Matched MeSH terms: Tropical Climate
  8. Tahir AA, Mohd Barnoh NF, Yusof N, Mohd Said NN, Utsumi M, Yen AM, et al.
    Microbes Environ, 2019 Jun 27;34(2):161-168.
    PMID: 31019143 DOI: 10.1264/jsme2.ME18117
    Oil palm empty fruit bunches (OPEFB) are the most abundant, inexpensive, and environmentally friendly lignocellulosic biomass in Malaysia. Investigations on the microbial diversity of decaying OPEFB may reveal microbes with complex enzymes that have the potential to enhance the conversion of lignocellulose into second-generation biofuels as well as the production of other value-added products. In the present study, fungal and bacterial diversities in decaying OPEFB were identified using Illumina MiSeq sequencing of the V3 region of the 16S rRNA gene and V4 region of the 18S rRNA gene. Fungal diversity in decaying OPEFB was dominated by the phylum Ascomycota (14.43%), while most of the bacterial sequences retrieved belonged to Proteobacteria (76.71%). Three bacterial strains isolated from decaying OPEFB, designated as S18, S20, and S36, appeared to grow with extracted OPEFB-lignin and Kraft lignin (KL) as the sole carbon source. 16S rRNA gene sequencing identified the 3 isolates as Paenibacillus sp.. The molecular weight distribution of KL before and after degradation showed significant depolymerization when treated with bacterial strains S18, S20, and S36. The presence of low-molecular-weight lignin-related compounds, such as vanillin and 2-methoxyphenol derivatives, which were detected by a GC-MS analysis, confirmed the KL-degrading activities of isolated Paenibacillus strains.
    Matched MeSH terms: Tropical Climate
  9. Goh HW, Lem KS, Azizan NA, Chang CK, Talei A, Leow CS, et al.
    Environ Sci Pollut Res Int, 2019 May;26(15):14904-14919.
    PMID: 30977005 DOI: 10.1007/s11356-019-05041-0
    Bioretention systems have been implemented as stormwater best management practices (BMPs) worldwide to treat non-point sources pollution. Due to insufficient research, the design guidelines for bioretention systems in tropical countries are modeled after those of temperate countries. However, climatic factors and stormwater runoff characteristics are the two key factors affecting the capacity of bioretention system. This paper reviews and compares the stormwater runoff characteristics, bioretention components, pollutant removal requirements, and applications of bioretention systems in temperate and tropical countries. Suggestions are given for bioretention components in the tropics, including elimination of mulch layer and submerged zone. More research is required to identify suitable additives for filter media, study tropical shrubs application while avoiding using grass and sedges, explore function of soil faunas, and adopt final discharged pollutants concentration (mg/L) on top of percentage removal (%) in bioretention design guidelines.
    Matched MeSH terms: Tropical Climate
  10. Chang CJ, Hsu HH, Cheah W, Tseng WL, Jiang LC
    Sci Rep, 2019 04 01;9(1):5421.
    PMID: 30931981 DOI: 10.1038/s41598-019-41889-5
    In addition to monsoon-driven rainfall, the Maritime Continent (MC) is subject to heavy precipitation caused by the Madden-Julian Oscillation (MJO), a tropical convection-coupled circulation that propagates eastward from the Indian to the Pacific Ocean. This study shows that riverine runoff from MJO-driven rainfall in the western MC significantly enhances phytoplankton biomass not only in the coastal regions but as far as the nutrient-poor Banda Sea, located 1,000 km downstream of the riverine source. We present observational estimates of the chlorophyll-a concentration in the Banda Sea increasing by 20% over the winter average within an MJO life cycle. The enhancement of phytoplankton in the central Banda Sea is attributed to two coinciding MJO-triggered mechanisms: enhanced sediment loading and eastward advection of waters with high sediment and chlorophyll concentrations. Our results highlight an unexpected effect of MJO-driven rainfall on the downstream oceanic region. This finding has significant implications for the marine food chain and biogeochemical processes in the MC, given the increasing deforestation rate and projections that global warming will intensify both the frequency and strength of MJO-driven rainfall in the MC.
    Matched MeSH terms: Tropical Climate*
  11. Dhandapani S, Ritz K, Evers S, Yule CM, Sjögersten S
    Sci Total Environ, 2019 Mar 10;655:220-231.
    PMID: 30471590 DOI: 10.1016/j.scitotenv.2018.11.046
    Tropical peatlands are globally important ecosystems with high C storage and are endangered by anthropogenic disturbances. Microbes in peatlands play an important role in sustaining the functions of peatlands as a C sink, yet their characteristics in these habitats are poorly understood. This research aimed to elucidate the responses of these complex ecosystems to disturbance by exploring greenhouse gas (GHG) emissions, nutrient contents, soil microbial communities and the functional interactions between these components in a primary and secondary peat swamp forest in Peninsular Malaysia. GHG measurements using closed chambers, and peat sampling were carried out in both wet and dry seasons. Microbial community phenotypes and nutrient content were determined using phospholipid fatty acid (PLFA) and inductively-coupled plasma mass spectrometry (ICP-MS) analyses respectively. CO2 emissions in the secondary peat swamp forest were > 50% higher than in the primary forest. CH4 emission rates were ca. 2 mg m-2 h-1 in the primary forest but the secondary forest was a CH4 sink, showing no seasonal variations in GHG emissions. Almost all the nutrient concentrations were significantly lower in the secondary forest, postulated to be due to nutrient leaching via drainage and higher rates of decomposition. Cu and Mo concentrations were negatively correlated with CO2 and CH4 emissions respectively. Microbial community structure was overwhelmingly dominated by bacteria in both forest types, however it was highly sensitive to land-use change and season. Gram-positive and Gram-negative relative abundance were positively correlated with CO2 and CH4 emissions respectively. Drainage related disturbances increased CO2 emissions, by reducing the nutrient content including some with known antimicrobial properties (Cu & Na) and by favouring Gram-positive bacteria over Gram-negative bacteria. These results suggest that the biogeochemistry of secondary peat swamp forest is fundamentally different from that of primary peat swamp forest, and these differences have significant functional impacts on their respective environments.
    Matched MeSH terms: Tropical Climate
  12. Both S, Riutta T, Paine CET, Elias DMO, Cruz RS, Jain A, et al.
    New Phytol, 2019 03;221(4):1853-1865.
    PMID: 30238458 DOI: 10.1111/nph.15444
    Plant functional traits regulate ecosystem functions but little is known about how co-occurring gradients of land use and edaphic conditions influence their expression. We test how gradients of logging disturbance and soil properties relate to community-weighted mean traits in logged and old-growth tropical forests in Borneo. We studied 32 physical, chemical and physiological traits from 284 tree species in eight 1 ha plots and measured long-term soil nutrient supplies and plant-available nutrients. Logged plots had greater values for traits that drive carbon capture and growth, whilst old-growth forests had greater values for structural and persistence traits. Although disturbance was the primary driver of trait expression, soil nutrients explained a statistically independent axis of variation linked to leaf size and nutrient concentration. Soil characteristics influenced trait expression via nutrient availability, nutrient pools, and pH. Our finding, that traits have dissimilar responses to land use and soil resource availability, provides robust evidence for the need to consider the abiotic context of logging when predicting plant functional diversity across human-modified tropical forests. The detection of two independent axes was facilitated by the measurement of many more functional traits than have been examined in previous studies.
    Matched MeSH terms: Tropical Climate
  13. Sam IC, Noraini W, Sandhu SS, Norizah I, Selvanesan S, Thayan R, et al.
    J Med Virol, 2019 03;91(3):498-502.
    PMID: 30199092 DOI: 10.1002/jmv.25313
    Influenza seasonality in equatorial countries is little understood. Seasonal and alert influenza thresholds were determined for Malaysia, using laboratory-based data obtained from the Malaysia Influenza Surveillance System and a major teaching hospital, from 2011 to 2016. Influenza was present year-round, with no clear annual seasons. Variable periods of higher transmission occurred inconsistently, in November to December, January to March, July to September, or a combination of these. These coincide with seasons in the nearby southeast Asian countries or winter seasons of the northern and southern hemispheres. Changes in the predominant circulating influenza type were only sometimes associated with increased transmission. The data can provide public health interventions such as vaccines.
    Matched MeSH terms: Tropical Climate
  14. Ghaffarianhoseini A, Berardi U, Ghaffarianhoseini A, Al-Obaidi K
    Sci Total Environ, 2019 Jan 26.
    PMID: 30857724 DOI: 10.1016/j.scitotenv.2019.01.284
    The rapid urban expansion in East-Asian cities has increased the need for comfortable public spaces. This study presents field measurements and parametric simulations to evaluate the microclimatic characteristics in a university campus in the tropical climate of Kuala Lumpur, Malaysia. The study attempts to identify the thermally uncomfortable areas and their physical and design characteristics while debating on the circumstances of enhancing the outdoor comfort conditions for the campus users. Simulations in Envi-met and IES-VE are used to investigate the current outdoor thermal conditions, using classic thermal metric indices. Findings show high levels of thermal discomfort in most of the studied spaces. As a result, suggestions to improve the design quality of outdoor areas optimizing their thermal comfort conditions are proposed. The study concludes that effective re-design of outdoor spaces in the tropics, through adequate attention to the significant impacts of shading and vegetation, can result in achieving outdoor spaces with high frequency of use and improved comfort level.
    Matched MeSH terms: Tropical Climate
  15. Hara H, Yusaimi YA, Zulkeflle SNM, Sugiura N, Iwamoto K, Goto M, et al.
    J Gen Appl Microbiol, 2019 Jan 24;64(6):284-292.
    PMID: 29877296 DOI: 10.2323/jgam.2018.02.003
    The emergence of antibiotic resistance among multidrug-resistant (MDR) microbes is of growing concern, and threatens public health globally. A total of 129 Escherichia coli isolates were recovered from lowland aqueous environments near hospitals and medical service centers in the vicinity of Kuala Lumpur, Malaysia. Among the eleven antibacterial agents tested, the isolates were highly resistant to trimethoprim-sulfamethoxazole (83.7%) and nalidixic acid (71.3%) and moderately resistant to ampicillin and chloramphenicol (66.7%), tetracycline (65.1%), fosfomycin (57.4%), cefotaxime (57.4%), and ciprofloxacin (57.4%), while low resistance levels were found with aminoglycosides (kanamycin, 22.5%; gentamicin, 21.7%). The presence of relevant resistance determinants was evaluated, and the genotypic resistance determinants were as follows: sulfonamides (sulI, sulII, and sulIII), trimethoprim (dfrA1 and dfrA5), quinolones (qnrS), β-lactams (ampC and blaCTX-M), chloramphenicol (cmlA1 and cat2), tetracycline (tetA and tetM), fosfomycin (fosA and fosA3), and aminoglycosides (aphA1 and aacC2). Our data suggest that multidrug-resistant E. coli strains are ubiquitous in the aquatic systems of tropical countries and indicate that hospital wastewater may contribute to this phenomenon.
    Matched MeSH terms: Tropical Climate
  16. Ashton LA, Griffiths HM, Parr CL, Evans TA, Didham RK, Hasan F, et al.
    Science, 2019 01 11;363(6423):174-177.
    PMID: 30630931 DOI: 10.1126/science.aau9565
    Termites perform key ecological functions in tropical ecosystems, are strongly affected by variation in rainfall, and respond negatively to habitat disturbance. However, it is not known how the projected increase in frequency and severity of droughts in tropical rainforests will alter termite communities and the maintenance of ecosystem processes. Using a large-scale termite suppression experiment, we found that termite activity and abundance increased during drought in a Bornean forest. This increase resulted in accelerated litter decomposition, elevated soil moisture, greater soil nutrient heterogeneity, and higher seedling survival rates during the extreme El Niño drought of 2015-2016. Our work shows how an invertebrate group enhances ecosystem resistance to drought, providing evidence that the dual stressors of climate change and anthropogenic shifts in biotic communities will have various negative consequences for the maintenance of rainforest ecosystems.
    Matched MeSH terms: Tropical Climate
  17. Ramli SR, Moreira GMSG, Zantow J, Goris MGA, Nguyen VK, Novoselova N, et al.
    PLoS Negl Trop Dis, 2019 01;13(1):e0007131.
    PMID: 30677033 DOI: 10.1371/journal.pntd.0007131
    BACKGROUND: Leptospirosis is the most common zoonotic disease worldwide. The diagnostic performance of a serological test for human leptospirosis is mainly influenced by the antigen used in the test assay. An ideal serological test should cover all serovars of pathogenic leptospires with high sensitivity and specificity and use reagents that are relatively inexpensive to produce and can be used in tropical climates. Peptide-based tests fulfil at least the latter two requirements, and ORFeome phage display has been successfully used to identify immunogenic peptides from other pathogens.

    METHODOLOGY/PRINCIPAL FINDINGS: Two ORFeome phage display libraries of the entire Leptospira spp. genomes from five local strains isolated in Malaysia and seven WHO reference strains were constructed. Subsequently, 18 unique Leptospira peptides were identified in a screen using a pool of sera from patients with acute leptospirosis. Five of these were validated by titration ELISA using different pools of patient or control sera. The diagnostic performance of these five peptides was then assessed against 16 individual sera from patients with acute leptospirosis and 16 healthy donors and was compared to that of two recombinant reference proteins from L. interrogans. This analysis revealed two peptides (SIR16-D1 and SIR16-H1) from the local isolates with good accuracy for the detection of acute leptospirosis (area under the ROC curve: 0.86 and 0.78, respectively; sensitivity: 0.88 and 0.94; specificity: 0.81 and 0.69), which was close to that of the reference proteins LipL32 and Loa22 (area under the ROC curve: 0.91 and 0.80; sensitivity: 0.94 and 0.81; specificity: 0.75 and 0.75).

    CONCLUSIONS/SIGNIFICANCE: This analysis lends further support for using ORFeome phage display to identify pathogen-associated immunogenic peptides, and it suggests that this technique holds promise for the development of peptide-based diagnostics for leptospirosis and, possibly, of vaccines against this pathogen.

    Matched MeSH terms: Tropical Climate
  18. Arellano G, Medina NG, Tan S, Mohamad M, Davies SJ
    New Phytol, 2019 01;221(1):169-179.
    PMID: 30067290 DOI: 10.1111/nph.15381
    What causes individual tree death in tropical forests remains a major gap in our understanding of the biology of tropical trees and leads to significant uncertainty in predicting global carbon cycle dynamics. We measured individual characteristics (diameter at breast height, wood density, growth rate, crown illumination and crown form) and environmental conditions (soil fertility and habitat suitability) for 26 425 trees ≥ 10 cm diameter at breast height belonging to 416 species in a 52-ha plot in Lambir Hills National Park, Malaysia. We used structural equation models to investigate the relationships among the different factors and tree mortality. Crown form (a proxy for mechanical damage and other stresses) and prior growth were the two most important factors related to mortality. The effect of all variables on mortality (except habitat suitability) was substantially greater than expected by chance. Tree death is the result of interactions between factors, including direct and indirect effects. Crown form/damage and prior growth mediated most of the effect of tree size, wood density, fertility and habitat suitability on mortality. Large-scale assessment of crown form or status may result in improved prediction of individual tree death at the landscape scale.
    Matched MeSH terms: Tropical Climate
  19. Sadiq LS, Hashim Z, Osman M
    J Environ Public Health, 2019;2019:9896410.
    PMID: 31061664 DOI: 10.1155/2019/9896410
    Background: Heat stress disorders may cause negative health outcome and subsequent productivity reduction especially in those who work under direct sunlight for an extended number of hours.

    Objective: This study assessed the impact of heat on the health and productivity among maize farmers in a hot tropical country.

    Methods: A cross-sectional study was conducted among 396 maize farmers, randomly selected across Gombe province, Nigeria. The wet bulb globe temperature monitor (WBGT) Model QuesTemp036 was used in determining the heat index. Health was determined using a validated questionnaire, while productivity was determined by recording work output based on the number of ridges cultivated during the working hours.

    Results: The farms recorded mean heat index with standard deviation (SD) of 31.56 (2.19) and 34.08 (1.54) in the hours of 9 am to 12 pm and 12-3 pm respectively, which exceeded the threshold level set by the ACGIH. Heavy sweating (93.2%), tiredness (48.5%), dizziness (34.1%), and headache (40.4%) were experienced by the respondents almost on daily basis. The finding further showed a significant difference in the farmers' productivity during the three time duration of the work day (p < 0.001). The productivity was significantly higher between the hours of 6-9 am (p < 0.001) and 12-3 pm (p < 0.001), compared to the hours of 9 am to 12 pm (p < 0.001). The factors that significantly predict the productivity outcome include temperature (p < 0.001), gender (p < 0.001), age (p=0.033), and BMI (p=0.008).

    Conclusion: The farmers were frequently experiencing heat exhaustion which decreased their productivity.

    Matched MeSH terms: Tropical Climate
  20. Helbert, Turjaman M, Nara K
    PLoS One, 2019;14(9):e0221998.
    PMID: 31498844 DOI: 10.1371/journal.pone.0221998
    In Southeast Asia, primary tropical rainforests are usually dominated by ectomycorrhizal (ECM) trees belonging to Dipterocarpaceae, although arbuscular mycorrhizal trees often outcompete them after disturbances such as forest fires and clear-cutting, thus preventing dipterocarp regeneration. In some secondary tropical forests, however, potentially ECM trees belonging to Tristaniopsis (Myrtaceae) become dominant and may help ECM dipterocarp forests to recover. However, we have no information about their mycorrhizal status in these settings. In this study, we analyzed ECM fungal communities in tropical secondary forests dominated by Tristaniopsis and investigated which ECM fungal species are shared with other tropical or temperate areas. In total, 100 samples were collected from four secondary forests dominated by Tristaniopsis on Bangka Island. ECM tips in the soil samples were subjected to molecular analyses to identify both ECM and host species. Based on a >97% ITS sequence similarity threshold, we identified 56 ECM fungal species dominated by Thelephoraceae, Russulaceae, and Clavulinaceae. Some of the ECM fungal species were shared between dominant Tristaniopsis and coexisting Eucalyptus or Quercus trees, including 5 common to ECM fungi recorded in a primary mixed dipterocarp forest at Lambir Hill, Malaysia. In contrast, no ECM fungal species were shared with other geographical regions, even with Tristaniopsis in New Caledonia. These results imply that secondary tropical forests dominated by Tristaniopsis harbor diverse ECM fungi, including those that inhabit primary dipterocarp forests in the same geographical region. They may function as refugia for ECM fungi, given that dipterocarp forests are disappearing quickly due to human activity.
    Matched MeSH terms: Tropical Climate*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links