The focus of this study is to analyze the level of knowledge, awareness, and attitude toward plastic waste and to distinguish the key drivers that encourage the households in Kuala Lumpur, Malaysia, to participate in "No plastic campaign," This study used the logistic regression model to explain the factors that may affect the willingness to participate (WTP) of households in the campaign. In this study, it is found that 35 % of households are willing to participate in the campaign. The results of the study also indicate that people who are more informed and more convinced of their knowledge have a more positive attitude toward recycling than their counterparts do. Furthermore, this study provides additional evidence of the level and classification of importance of motivating factors for plastic recycling, using the modified average and coefficient of variation of the models. From the analysis, the factor "helps reduce landfill use" is found as the most important factor and the factor of "raising money for charity" is found as the least important factor that motivates households to participate in recycling. The determinations of the study suggest some strategies that could hold implications for government and households to boost them to participate in the campaign "No Plastic Bag."
Textile wastewater contains methylene blue (MB), a major coloring agent in textile industry. Activated carbon (AC) is the most widely used adsorbent in removing dyes from industrial wastewater. However, high production cost of AC is the major obstacle for its wide application in dye wastewater treatment. In this study, a sustainable approach in synthesizing graphenic adsorbent from palm oil mill effluent (POME), a potential carbonaceous source, has been explored. This new development in adsorption technique is considered as green synthesis as it does not require any binder during the synthesis process, and at the same time, it helps to solve the bottleneck of palm oil industry as POME is the main cause contributed to Malaysia's water pollution problem. The synthesized GSC was characterized through XRD, FESEM, and EDX. The adsorption performance of the synthesized GSC was evaluated by adsorption of MB. The effect of initial concentration of synthetic MB solution (1-20 mg/L) and weight of GSC (5-20 g) were investigated. A remarkable change in color of synthetic MB solution from blue to crystal clear was observed at the end of adsorption study. High efficiency of the synthesized GSC for dye-contaminated wastewater treatment is concluded.
Despite a profound evidence of the human unsustainable behaviours' impact on the environment, stark disparities prevail on this narrative especially in the context of the current epidemiological situation ushered by the COVID-19. The ongoing pandemic is a global public health concern due to its sagacious impacts on environmental sustainability, social responsibility and people's quality of life. This study primarily focuses on analysing the impact of COVID-19 (COV) on the environmental awareness (EA), sustainable consumption (SC) and social responsibility (SR). Additionally, we aspire to investigate the impact of demographics of generations and religion on the proposed nexus in this study. The data was collected from 700 participants of different age groups and religious backgrounds in Malaysia, and structural equation modelling (SEM) was used to analyse this data and test the hypotheses. The findings indicate that COVID-19 has a significantly positive impact on EA, SC and SR, and the generations and religiosity moderate the relationship between COVID-19 and its impact on sustainable behaviours. This study contributes to analyse the difference in the perception of EA, SC and SR among the people that eventually will stimulate the scientific reasoning among the governments, policymakers and scientists to develop a holistic framework to combat unprecedented event such as COVID-19 and ensure the authentication of sustainable environment and exceptional quality of life. The policymakers in Malaysia may use the findings of this study to inspect the social and environmental aspects of the people during the transformation events.
Studies that associate environmental parameters with aquatic organisms in man-made lakes remain limited by accessibility and interest particularly in many Asian countries. With missed opportunities to monitor environmental transitions at Lake Kenyir, our knowledge of lake transition is restricted to the non-mixing shallow waters only. Triplicate monthly benthic invertebrate samples were collected concurrently with various environmental parameters at three locations (zones A-C) of Kenyir Lake, Malaysia. Our results affirmed that the northeast part of Lake Kenyir is oligotrophic. Abundance of phytoplankton, total suspended solids, phosphate, nitrite and nitrate drive the abundance of various groups of benthic invertebrates. All of these extrinsic variables (except phosphate) negatively influenced the density of Trichoptera and positively influenced (P<0.05) the densities of Polychaeta, Oligochaeta, Bivalvia, Gastropod, Isopoda and Copepod in all zones. Phosphate negatively influenced the density of Trichoptera and positively influenced (P<0.05) the densities of Oligochaeta, Bivalvia and Copepod. Its influences on the Polychaeta, Gastropod and Isopoda densities were zone-specific. Overall, seasons equally influenced the relationships between extrinsic and response variables in all zones. The results of this study are useful to evaluate the lake's environmental quality, in conservation and in similar projects involving environmental handling, monitoring and recovery.
Irgarol 1051 and diuron are photosystem II inhibitors in agricultural activities and antifouling paints in the shipping sector. This study focused on three major ports (western, southern, and eastern) surrounding Peninsular Malaysia to construct the distribution of both biocides on the basis of the seasonal and geographical changes. Surface seawater samples were collected from November 2011 to April 2012 and pretreated using the solid-phase extraction technique followed by quantification with GC-MS and LC-MS-MS for Irgarol 1051 and diuron, respectively. Generally, the distribution of Irgarol 1051 was lowest during November 2011 and highest during April 2012, and similar patterns were observed at all ports, whereas the distribution of diuron was rather vague. The increasing pattern of Irgarol 1051 from time to time is probably related to its accumulation in the seawater as a result of its half-life and consistent utilization. On the basis of the discriminant analysis, the temporal distribution of Irgarol 1051 varied at Klang North Port, Klang South Port, and Pasir Gudang Port, whereas diuron was temporally varied only at Kemaman Port. Furthermore, Irgarol 1051 was spatially varied during November 2011, whereas diuron did not show any significant changes throughout all sampling periods. Ecological risk assessment exhibited a high risk for diuron and Irgarol 1051, but Irgarol 1051 should be of greater concern because of its higher risk compared to that of diuron. Thus, it is recommended that the current Malaysian guidelines and regulations of biocide application should be reevaluated and improved to protect the ecosystem, as well as to prevent ecological risks to the aquatic environment.
This study examines the impact of economic growth, corruption, health, and poverty on environmental degradation for three countries from ASEAN, namely Indonesia, Malaysia, and Thailand using annual data over the period of 1994-2014. The relationship between environmental degradation (pollution) by carbon dioxide (CO2) emissions and economic growth is examined along with some other variables, namely health expenditure, poverty, agriculture value added growth, industrial value added growth, and corruption. The ordinary least squares (OLS) method is applied as an analytical technique for parameter estimation. The empirical results reveal that almost all variables are statistically significant at the 5% level of significance, whereby test rejects the null hypotheses of non-cointegration, indicating that all variables play an important role in affecting the environment across countries. Empirical results also indicate that economic growth has significant positive impact, while health expenditures show significantly negative impact on the environment. Corruption has significant positive effect on environment in the case of Malaysia; while in the case of Indonesia and Thailand, it has insignificant results. However, for the individual analysis across countries, the regression estimate suggests that economic growth has a significant positive relationship with environment for Indonesia, while it is found insignificantly negative and positive in the case of Malaysia and Thailand, respectively, during the period under the study. Empirical findings of the study suggest that policy-makers require to make technological-friendly environment sequentially to surmount unregulated pollution, steady population transfers from rural areas to urban areas are also important, and poverty alleviation and better health provision can also help to improve the environment.
The study aimed to determine the fungal diversity in clinical waste samples from a healthcare facility in Penang Malaysia. Different fungi species were detected in 83.75 % of the 92 clinical waste samples that were screened from different sections of the healthcare facility. One hundred fifty fungal isolates comprising of 8 genera and 36 species were obtained. They were purified by using single spore isolation technique. Subsequently, the isolates were identified by phenotypic method based on morphological and culture characteristics on different culture media. Among all fungal isolates, Aspergillus spp. in section Nigri 10.2 %, Aspergillus niger 9.5 %, Aspergillus fumigatus 8.8 %, Penicillium. simplicissium 8 %, Aspergillus tubingensis 7.3 %, Aspergillus terreus var. terreus 6.6 %, Penicillium waksmanii 5.9 % and Curvularia lunata 6.5 % were the most frequent. Among five sections of the Wellness Centre, the clinical wastes collected from the diagnostic labs of haematology section had the highest numbers of fungal species (29 species). Glove wastes had the highest numbers of fungal species (19 species) among 17 types of clinical wastes screened. Among all fungal species, Aspergillus spp. exhibited higher growth at 37 °C than at 28 °C, indicating the potential of these opportunistic fungi to cause diseases in human. These results indicated the potential of hospital wastes as reservoirs for fungal species.
Rainwater harvesting is an effective alternative practice, particularly within urban regions, during periods of water scarcity and dry weather. The collected water is mostly utilized for non-potable household purposes and irrigation. However, due to the increase in atmospheric pollutants, the quality of rainwater has gradually decreased. This atmospheric pollution can damage the climate, natural resources, biodiversity, and human health. In this study, the characteristics and physicochemical properties of rainfall were assessed using a qualitative approach. The three-year (2017-2019) data on rainfall in Peninsular Malaysia were analysed via multivariate techniques. The physicochemical properties of the rainfall yielded six significant factors, which encompassed 61.39% of the total variance as a result of industrialization, agriculture, transportation, and marine factors. The purity of rainfall index (PRI) was developed based on subjective factor scores of the six factors within three categories: good, moderate, and bad. Of the 23 variables measured, 17 were found to be the most significant, based on the classification matrix of 98.04%. Overall, three different groups of similarities that reflected the physicochemical characteristics were discovered among the rain gauge stations: cluster 1 (good PRI), cluster 2 (moderate PRI), and cluster 3 (bad PRI). These findings indicate that rainwater in Peninsular Malaysia was suitable for non-potable purposes.
Since developing countries experience economic and environmental sustainability challenges, it is desirable digging into the linkages between economic and environmental parameters. The purpose of this work is to evaluate the existence of the environmental Kuznets curve (EKC) theory (i.e., the inverse U-shape connection between real GDP per capita and per capita carbon dioxide emissions) in the sample of 11 developing countries. By using balanced annual panel data in the period between 1992 and 2014 and two alternative estimation techniques, we explored the potential inverted U-shaped linkage between carbon dioxide emissions and real GDP per capita in the sample of interest. For analysis purposes, Pedroni and Westerlund co-integration techniques are employed. Then, fully modified ordinary least squares, pooled mean group methods are applied for long-run parameter estimations. And, the Dumitrescu-Hurlin causality approach is employed for causal directions. Firstly, this work's findings provide the supportive evidence to the inverse U-shaped linkage in the long-run, indicating that an increase in real GDP per capita and electricity consumption tends to mitigate long-run carbon dioxide emissions in the developing countries, for the whole sample. Secondly, the country-specific findings suggested the presence of EKC theory for Brazil, China, India, Malaysia, the Russian Federation, Thailand, and Turkey. It implicated that these countries are on the path of attaining environmental sustainability in the long-run. However, Mexico, Philippines, Indonesia, and South Africa failed to lend credence to the EKC theory. It manifested that these countries need to design strategies directed to reduce carbon dioxide emissions from economic activity and electricity generation through efficiency improvement or promotion of renewables. Finally, bidirectional causal links are observed among all the variables of interest. The findings suggest that country-specific targeted action plans should be implemented to ensure the environmental sustainability in the developing world.
Reliable and accurate prediction model capturing the changes in solar radiation is essential in the power generation and renewable carbon-free energy industry. Malaysia has immense potential to develop such an industry due to its location in the equatorial zone and its climatic characteristics with high solar energy resources. However, solar energy accounts for only 2-4.6% of total energy utilization. Recently, in developed countries, various prediction models based on artificial intelligence (AI) techniques have been applied to predict solar radiation. In this study, one of the most recent AI algorithms, namely, boosted decision tree regression (BDTR) model, was applied to predict the changes in solar radiation based on collected data in Malaysia. The proposed model then compared with other conventional regression algorithms, such as linear regression and neural network. Two different normalization techniques (Gaussian normalizer binning normalizer), splitting size, and different input parameters were investigated to enhance the accuracy of the models. Sensitivity analysis and uncertainty analysis were introduced to validate the accuracy of the proposed model. The results revealed that BDTR outperformed other algorithms with a high level of accuracy. The funding of this study could be used as a reliable tool by engineers to improve the renewable energy sector in Malaysia and provide alternative sustainable energy resources.
Validity of the environmental Kuznets curve (EKC) hypothesis is consistently and widely debated among economists and environmentalists alike throughout time. In Malaysia, transport is one of the "dirtiest" sectors; it intensively consumes energy in powering engines by using fossil fuels and poses significant threats to environmental quality. Therefore, this study attempted an examination into the impact of corruption on transport carbon dioxide (CO2) emissions. By adopting the fully modified ordinary least squares, canonical cointegrating regression, and dynamic ordinary least squares in performing long-run estimations, the results obtained based on the annual data spanning from 1990 to 2017 yielded various notable findings. First, more corruption would be attributable towards increased transport CO2 emissions. Second, a monotonic increment of transport CO2 emission was seen with higher economic growth and thus invalidated the presence of EKC. Overall, this study suggests that Malaysia has yet to reach the level of economic growth synonymous with transport CO2 emission reduction due to the lack of high technology usage in the current system implemented. Therefore, this study could position policy recommendations of use to the Malaysian authorities in designing the appropriate economic and environmental policies, particularly for the transport sector.
This paper empirically investigates the impact of overall sustainability reporting as well as its components (economic, environmental, and social sustainability reporting) on the cost of debt and equity capital for Malaysian oil and gas companies. The data was collected from 41 publicly listed oil and gas companies in Malaysia for the period from 2008 to 2017. Qualitative information was gathered for sustainability reporting and then converted into quantitative form by assigning weights according to the extent of reporting. The cost of capital information was sourced through Thomson Reuters Datastream. Panel data analysis was employed using generalized least square (GLS) random effects regression to examine the relationship between sustainability reporting and cost of capital. Firm reputation, size, and profitability were included as control variables. The findings indicate that overall sustainability reporting and one component, economic sustainability reporting, reduce both cost of debt and cost of equity. However, environmental sustainability reporting reduces only the cost of debt but does not reduce the cost of equity. Social sustainability reporting shows no effect on the cost of debt or equity. The findings of this paper should be useful for regulators, legislators, shareholders, creditors, and practitioners in pursuing sustainability practices that not only improve economic and environmental performance but also enhance overall performance by reducing the cost of capital. The results of the paper highlight that companies investing in sustainability can generate positive value through the enhancement of reputational capital. This study is the first to empirically investigate the relationship between overall sustainability reporting, including its three components, and the cost of both debt and equity capital.
Corbicula fluminea (C. fluminea) is one of the mollusc species commonly eaten as a popular snack in Kelantan, Malaysia. This species contributes to the local economic activity. However, the handling process of C. fluminea at different processing stages (raw, smoke and selling stages) is believed to have affected the nutritional value in their soft tissue. Hence, this study aims to provide information about the chemical content (moisture, crude fat, ash, crude protein and carbohydrate) of C. fluminea and fatty acid of smoked C. fluminea at different processing stages. Samples were collected from Pasir Mas and Tumpat, Kelantan, Malaysia. The chemical content analysis was carried out based on the Association of Official Analytical Chemists (AOAC) standard procedures. The results have indicated that moisture (80.93 ± 0.37%) and crude fat (10.82 ± 0.21%) in C. fluminea were significantly higher (p
The main objective of this paper is to estimate the interfuel substitution elasticities between hydropower and the fossil fuels of coal and natural gas used in the generation of electricity for Malaysia. Due to the violation of the assumption behind the ordinary least squares (OLS) method on account of the correlated error terms in the system of equations, the econometrics techniques of seemingly unrelated regression (SUR) was adopted to obtain the parameter estimates using dataset that covers the period 1988 to 2016. The main finding is that there exists substantial substitution possibility between hydropower and fossil fuels in the generation of electricity for Malaysia. CO2 emissions mitigation scenarios were also conducted to explore the possible effects of substituting fossil fuels for hydropower to generate electricity. The results show that switching from high carbon-emitting fuels to renewable energy such as hydropower will substantially reduce CO2 emission and assist the country towards achieving the carbon emissions reduction targets. Policy recommendations are offered in the body of the manuscript.
Transboundary haze pollution caused by periodic forest fires has initiated a serious negative implication to the economy, tourism sectors and public health in Southeast Asia. Due to the raising concerns of health effects of haze towards the Malaysian population, the present study was conducted to investigate the degree of awareness towards haze and the number of safety measures adopted by the Malaysian population during the haze crisis based on demographic characteristics. A cross-sectional questionnaire-based study was conducted from 4 to 29 January 2016 on 387 subjects in Klang Valley, Malaysia. The results showed that more than 90% of the respondents were aware of the hazards of haze pollution. Respondents with higher education background with diploma, undergraduate and postgraduate degree possessed greater awareness on the hazards of haze (p RM 10,000/month) had higher awareness level on haze (p Malaysia. Hence, more awareness on haze pollution to engage more safety measures during haze episodes should address to the lower education level and socioeconomic group to improve their health and quality of life.
The natural catastrophic events largely damage the country's sustainability agenda through massive human fatalities and infrastructure destruction. Although it is partially supported the economic growth through the channel of "Schumpeter creative destruction" hypothesis, however, it may not be sustained in the long-run. This study examined the long-run and causal relationships between natural disasters (i.e., floods, storm, and epidemic) and per capita income by controlling FDI inflows and foreign aid in the context of Malaysia, during the period of 1965-2016. The study employed time series cointegration technique, i.e., autoregressive distributed lag (ARDL)-bounds testing approach for robust inferences. The results show that flood, storm, and epidemic disasters substantially decrease the country's per capita income, while FDI inflows and foreign aid largely supported the country's economic growth in the short-run. These results are disappeared in the long-run, where flood and storm disasters exhibit the positive association with the economic growth to support the Schumpeter creative destruction hypothesis. The foreign aid decreases the per capita income and does not maintain the "aid-effectiveness" hypotheses in a given country. The causality estimates confirmed the disaster-led growth hypothesis, as the causality estimates running from (i) storm to per capita income, (ii) epidemic to per capita income, and (iii) storm to foreign aid. The results emphasized for making disaster action plans to reduce human fatalities and infrastructure for sustainable development.
Malaysia is the second-largest producer and exporter of palm oil amounting to 39% of world palm oil production and 44% of world exports (MPOB, 2014). An enormous amount of palm oil mill effluent is released during palm oil milling, and the effluent causes a major odor problem. Many methods, such as biofiltering, can be adopted to manage the malodor. However, these methods are expensive and require high maintenance. The separation distance method can be used as an alternative due to its low cost and effectiveness. This research was conducted to verify the performance of three different methods, namely, in-field monitoring by using an olfactometer, CALPUFF model, and Gaussian plume model. Given that no research has compared the three methods, this study examined the effectiveness of the methods and determined which among them is suitable for use in Malaysia. The appropriate separation distances were 1.3 km for in-field monitoring, 1.2 km for the CALPUFF model, and 0.5 for the Gaussian plume model. These different values of separation distance were due to the various approaches involved in each method. This research determined an appropriate means to establish a proper separation distance for reducing odor nuisance in areas around palm oil mills.
Bauxite and iron ore mining is the major contributor to metal pollution in Tasik Chini, Malaysia. Deforestation of the protected zone of reserve forest exacerbates the problem. The current study is to understand the speciation of metals spatially in sediment to analyse the risk associated in terms of its mobility and bioavailability. The samples of sediment are collected from Sungai Jemberau, Laut Jemberau, and Laut Gumum of Tasik Chini. Four samplings were conducted for a year, by collecting the surface sediment. Sequential extraction method was followed for speciation of sediment and classified it into exchangeable, reducible, Fe-Mn oxides, organic and residual fractions. The results were also analyzed using principal component analysis (PCA) and cluster analysis (CA). The result reveals that Fe, Al, Mn, Zn, and Pb are the primary constituents of sediment contributing to about 98% of residual fraction. Co, Cd, Cr, As, and Ni are found in trace metal concentration and are identified to be mainly released from anthropogenic sources nearby. Although the individual proportion is less than major metals in exchangeable and carbonate fraction, they possess geochemically significant concentration above the permissible limit. More than 70-80% of all its total concentration proportion is hence found in mobile and bioavailable state. These possess toxic and have chronic effects to aquatic life and public health even in trace elemental concentration. Hence, these metals are the most toxic and bioavailable metals pausing risk for aquatic and public health. PCA analysis highlights that the enrichment of heavy metals in bioavailable fraction is mostly contributed from anthropogenic sources. The same results are emphasized by cluster analysis.
This study focuses to investigate the relationship between globalization and the ecological footprint for Malaysia from 1971 to 2014. The results of the Bayer and Hanck cointegration test and the ARDL bound test show the existence of cointegration among variables. The findings disclose that globalization is not a significant determinant of the ecological footprint; however, it significantly increases the ecological carbon footprint. Energy consumption and economic growth stimulate the ecological footprint and carbon footprint in Malaysia. Population density reduces the ecological footprint and carbon footprint. Further, financial development mitigates the ecological footprint. The causality results disclose the feedback hypothesis between energy consumption and economic growth in the long run and short run.
This study critically evaluates two COP proposals on Malaysia that have been under consideration to reduce climate damage. A top-down disaggregation framework deploying an "Empirical Regional Downscaling Dynamic Integrated Model of Climate and the Economy" is used to evaluate the local government climate roadmap and Malaysia's emissions reduction agendas under COP21 and subsequently COP22 proposals. The findings show that the costs from climate damage over the period 2010-2110 under the Malaysian Optimal Climate Action scenario will amount to MYR5,483 (US$1589) billion. The commensurate climate damage costs under the COP21 and COP22 scenario would be MYR5, 264 (US$1526) billion. Thus, the effective proposal for reducing climate damage in Malaysia over the period 2010-2110 is the COP22 time-adjusted COP21 proposal but there are a number of macroeconomic cost implications for savings and consumption that policy makers must address before acting.