Displaying publications 61 - 80 of 116 in total

Abstract:
Sort:
  1. Abd Razak NA, Abu Osman NA, Kamyab M, Wan Abas WA, Gholizadeh H
    Am J Phys Med Rehabil, 2014 May;93(5):437-44.
    PMID: 24429510 DOI: 10.1097/PHM.0b013e3182a51fc2
    This report compares wrist supination and pronation and flexion and extension movements with the common body-powered prosthesis and a new biomechatronics prosthesis with regard to patient satisfaction and problems experienced with the prosthesis. Fifteen subjects with traumatic transradial amputation who used both prosthetic systems participated in this study. Each subject completed two questionnaires to evaluate their satisfaction and problems experienced with the two prosthetic systems. Satisfaction and problems with the prosthetic's wrist movements were analyzed in terms of the following: supination and pronation; flexion and extension; appearance; sweating; wounds; pain; irritation; pistoning; smell; sound; durability; and the abilities to open a door, hold a cup, and pick up or place objects. This study revealed that the respondents were more satisfied with the biomechatronics wrist prosthesis with regard to supination and pronation, flexion and extension, pain, and the ability to open a door. However, satisfaction with the prosthesis showed no significant differences in terms of sweating, wounds, irritation, pistoning, smell, sound, and durability. The abilities to hold a cup and pick up or place an object were significantly better with the body-powered prosthesis. The results of the survey suggest that satisfaction and problems with wrist movements in persons with transradial amputation can be improved with a biomechatronics wrist prosthesis compared with the common body-powered prosthesis.
  2. Ali S, Abu Osman NA, Eshraghi A, Gholizadeh H, Abd Razak NA, Wan Abas WA
    Clin Biomech (Bristol, Avon), 2013 Nov-Dec;28(9-10):994-9.
    PMID: 24161521 DOI: 10.1016/j.clinbiomech.2013.09.004
    Transtibial amputees encounter stairs and steps during their daily activities. The excessive pressure between residual limb/socket may reduce the walking capability of transtibial prosthetic users during ascent and descent on stairs. The purposes of the research were to evaluate the interface pressure between Dermo (shuttle lock) and Seal-In X5 (prosthetic valve) interface systems during stair ascent and descent, and to determine their satisfaction effects on users.
  3. Mehdikhani M, Behtash H, Ganjavian MS, Abu Osman NA, Khalaj N
    Prosthet Orthot Int, 2014 Aug;38(4):316-20.
    PMID: 23950552 DOI: 10.1177/0309364613499063
    The Milwaukee brace is an efficient method for correcting hyperkyphosis before skeletal maturity. However, loss of correction in long-term follow-up is inevitable.
  4. Oshkour AA, Abu Osman NA, Davoodi MM, Yau YH, Tarlochan F, Wan Abas WA, et al.
    Int J Numer Method Biomed Eng, 2013 Dec;29(12):1412-27.
    PMID: 23922316 DOI: 10.1002/cnm.2583
    This study focused on developing a 3D finite element model of functionally graded femoral prostheses to decrease stress shielding and to improve total hip replacement performance. The mechanical properties of the modeled functionally graded femoral prostheses were adjusted in the sagittal and transverse planes by changing the volume fraction gradient exponent. Prostheses with material changes in the sagittal and transverse planes were considered longitudinal and radial prostheses, respectively. The effects of cemented and noncemented implantation methods were also considered in this study. Strain energy and von Mises stresses were determined at the femoral proximal metaphysis and interfaces of the implanted femur components, respectively. Results demonstrated that the strain energy increased proportionally with increasing volume fraction gradient exponent, whereas the interface stresses decreased on the prostheses surfaces. A limited increase was also observed at the surfaces of the bone and cement. The periprosthetic femur with a noncemented prosthesis exhibited higher strain energy than with a cemented prosthesis. Radial prostheses implantation displayed more strain energy than longitudinal prostheses implantation in the femoral proximal part. Functionally graded materials also increased strain energy and exhibited promising potentials as substitutes of conventional materials to decrease stress shielding and to enhance total hip replacement lifespan.
  5. Moo EK, Abusara Z, Abu Osman NA, Pingguan-Murphy B, Herzog W
    J Biomech, 2013 Aug 9;46(12):2024-31.
    PMID: 23849134 DOI: 10.1016/j.jbiomech.2013.06.007
    Morphological studies of live connective tissue cells are imperative to helping understand cellular responses to mechanical stimuli. However, photobleaching is a constant problem to accurate and reliable live cell fluorescent imaging, and various image thresholding methods have been adopted to account for photobleaching effects. Previous studies showed that dual photon excitation (DPE) techniques are superior over conventional one photon excitation (OPE) confocal techniques in minimizing photobleaching. In this study, we investigated the effects of photobleaching resulting from OPE and DPE on morphology of in situ articular cartilage chondrocytes across repeat laser exposures. Additionally, we compared the effectiveness of three commonly-used image thresholding methods in accounting for photobleaching effects, with and without tissue loading through compression. In general, photobleaching leads to an apparent volume reduction for subsequent image scans. Performing seven consecutive scans of chondrocytes in unloaded cartilage, we found that the apparent cell volume loss caused by DPE microscopy is much smaller than that observed using OPE microscopy. Applying scan-specific image thresholds did not prevent the photobleaching-induced volume loss, and volume reductions were non-uniform over the seven repeat scans. During cartilage loading through compression, cell fluorescence increased and, depending on the thresholding method used, led to different volume changes. Therefore, different conclusions on cell volume changes may be drawn during tissue compression, depending on the image thresholding methods used. In conclusion, our findings confirm that photobleaching directly affects cell morphology measurements, and that DPE causes less photobleaching artifacts than OPE for uncompressed cells. When cells are compressed during tissue loading, a complicated interplay between photobleaching effects and compression-induced fluorescence increase may lead to interpretations in cell responses to mechanical stimuli that depend on the microscopic approach and the thresholding methods used and may result in contradictory interpretations.
  6. Oshkour AA, Abu Osman NA, Yau YH, Tarlochan F, Abas WA
    Proc Inst Mech Eng H, 2013 Jan;227(1):3-17.
    PMID: 23516951
    This study aimed to develop a three-dimensional finite element model of a functionally graded femoral prosthesis. The model consisted of a femoral prosthesis created from functionally graded materials (FGMs), cement, and femur. The hip prosthesis was composed of FGMs made of titanium alloy, chrome-cobalt, and hydroxyapatite at volume fraction gradient exponents of 0, 1, and 5, respectively. The stress was measured on the femoral prosthesis, cement, and femur. Stress on the neck of the femoral prosthesis was not sensitive to the properties of the constituent material. However, stress on the stem and cement decreased proportionally as the volume fraction gradient exponent of the FGM increased. Meanwhile, stress became uniform on the cement mantle layer. In addition, stress on the femur in the proximal part increased and a high surface area of the femoral part was involved in absorbing the stress. As such, the stress-shielding area decreased. The results obtained in this study are significant in the design and longevity of new prosthetic devices because FGMs offer the potential to achieve stress distribution that more closely resembles that of the natural bone in the femur.
  7. Ku PX, Abu Osman NA, Yusof A, Wan Abas WA
    PLoS One, 2012;7(7):e41539.
    PMID: 22848523 DOI: 10.1371/journal.pone.0041539
    Postural balance is vital for safely carrying out many daily activities, such as locomotion. The purpose of this study was to determine how changes in normal standing (NS) and standing with toe-extension (SWT) impact postural control during quiet standing. Furthermore, the research aimed to examine the extent to which the effect of these factors differed between genders.
  8. Ali S, Abu Osman NA, Naqshbandi MM, Eshraghi A, Kamyab M, Gholizadeh H
    Arch Phys Med Rehabil, 2012 Nov;93(11):1919-23.
    PMID: 22579945 DOI: 10.1016/j.apmr.2012.04.024
    To investigate the effects of 3 dissimilar suspension systems on participants' satisfaction and perceived problems with their prostheses.
  9. Moo EK, Herzog W, Han SK, Abu Osman NA, Pingguan-Murphy B, Federico S
    Biomech Model Mechanobiol, 2012 Sep;11(7):983-93.
    PMID: 22234779 DOI: 10.1007/s10237-011-0367-2
    Experimental findings indicate that in-situ chondrocytes die readily following impact loading, but remain essentially unaffected at low (non-impact) strain rates. This study was aimed at identifying possible causes for cell death in impact loading by quantifying chondrocyte mechanics when cartilage was subjected to a 5% nominal tissue strain at different strain rates. Multi-scale modelling techniques were used to simulate cartilage tissue and the corresponding chondrocytes residing in the tissue. Chondrocytes were modelled by accounting for the cell membrane, pericellular matrix and pericellular capsule. The results suggest that cell deformations, cell fluid pressures and fluid flow velocity through cells are highest at the highest (impact) strain rate, but they do not reach damaging levels. Tangential strain rates of the cell membrane were highest at the highest strain rate and were observed primarily in superficial tissue cells. Since cell death following impact loading occurs primarily in superficial zone cells, we speculate that cell death in impact loading is caused by the high tangential strain rates in the membrane of superficial zone cells causing membrane rupture and loss of cell content and integrity.
  10. Gholizadeh H, Abu Osman NA, Lúvíksdóttir Á, Eshraghi A, Kamyab M, Wan Abas WA
    Prosthet Orthot Int, 2011 Dec;35(4):360-4.
    PMID: 21975850 DOI: 10.1177/0309364611423130
    Good suspension lessens the pistoning (vertical displacement) of the residual limb inside the prosthetic socket. Several methods are used for measuring the pistoning.
  11. Gholizadeh H, Abu Osman NA, Kamyab M, Eshraghi A, Lúvíksdóttir AG, Wan Abas WA
    Am J Phys Med Rehabil, 2012 Oct;91(10):894-8.
    PMID: 22173083
    The effects of Seal-In X5 and Dermo liner (Össur) on suspension and patient's comfort in lower limb amputees are unclear. In this report, we consider the case of a 51-yr-old woman with bilateral transtibial amputation whose lower limbs were amputated because of peripheral vascular disease. The subject had bony and painful residual limbs, especially at the distal ends. Two prostheses that used Seal-In X5 liners and a pair of prostheses with Dermo liners were fabricated, and the subject wore each for a period of 2 wks. Once the 2 wks had passed, the pistoning within the socket was assessed and the patient was questioned as to her satisfaction with both liners. This study revealed that Seal-In X5 liner decreased the residual limb pain experienced by the patient and that 1-2 mm less pistoning occurred within the socket compared with the Dermo liner. However, the patient needed to put in extra effort for donning and doffing the prosthesis. Despite this, it is clear that the Seal-In X5 liner offers a viable alternative for individuals with transtibial amputations who do not have enough soft tissue around the bone, especially at the end of the residual limb.
  12. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S, Yahyavi ES
    Arch Phys Med Rehabil, 2013 Aug;94(8):1584-9.
    PMID: 23262380 DOI: 10.1016/j.apmr.2012.12.007
    To compare a seal-in liner with the common suction socket with regards to patient satisfaction and problems experienced with the prosthesis.
  13. Eshraghi A, Abu Osman NA, Karimi MT, Gholizadeh H, Ali S, Wan Abas WA
    Am J Phys Med Rehabil, 2012 Dec;91(12):1028-38.
    PMID: 23168378 DOI: 10.1097/PHM.0b013e318269d82a
    The objectives of this study were to compare the effects of a newly designed magnetic suspension system with that of two existing suspension methods on pistoning inside the prosthetic socket and to compare satisfaction and perceived problems among transtibial amputees.
  14. Eshraghi A, Abu Osman NA, Gholizadeh H, Ali S, Sævarsson SK, Wan Abas WA
    Clin Biomech (Bristol, Avon), 2013 Jan;28(1):55-60.
    PMID: 23157843 DOI: 10.1016/j.clinbiomech.2012.10.002
    Different suspension systems that are used within prosthetic devices may alter the distribution of pressure inside the prosthetic socket in lower limb amputees. This study aimed to compare the interface pressure of a new magnetic suspension system with the pin/lock and Seal-In suspension systems.
  15. Tham LK, Abu Osman NA, Wan Abas WA, Lim KS
    PLoS One, 2013;8(2):e55702.
    PMID: 23409022 DOI: 10.1371/journal.pone.0055702
    The deep tendon reflex assessments that are essential to the accurate diagnosis of neurological or neuromuscular disorders are conducted subjectively in clinical neurology. Our aim was to assess deep tendon reflexes objectively with a new reflex quantification method.
  16. Ong CW, Chan BT, Lim E, Abu Osman NA, Abed AA, Dokos S, et al.
    PMID: 23367368 DOI: 10.1109/EMBC.2012.6347433
    For patient's receiving mechanical circulatory support, malfunction of the left ventricular assist device (LVADs) as well as mal-positioning of the cannula imposes serious threats to their life. It is therefore important to characterize the flow pattern and pressure distribution within the ventricle in the presence of an LVAD. In this paper, we present a 2D axisymmetric fluid structure interaction model of the passive left ventricle (LV) incorporating an LVAD cannula to simulate the effect of the LVAD cannula placement on the vortex dynamics. Results showed that larger recirculation area was formed at the cannula tip with increasing cannula insertion depth, and this is believed to reduce the risk of thrombus formation. Furthermore, we also simulated suction events (collapse of the LV) by closing the inlet. Vortex patterns were significantly altered under this condition, and the greatest LV wall displacement was observed at the part of the myocardium closest to the cannula tip.
  17. Chan BT, Ong CW, Lim E, Abu Osman NA, Al Abed A, Lovell NH, et al.
    PMID: 23367367 DOI: 10.1109/EMBC.2012.6347432
    Dilated cardiomyopathy (DCM) is a common cardiac disease which leads to the deterioration in cardiac performance. A computational fluid dynamics (CFD) approach can be used to enhance our understanding of the disease, by providing us with a detailed map of the intraventricular flow and pressure distributions. In the present work, effect of ventricular size on the intraventricular flow dynamics and intraventricular pressure gradients (IVPGs) was studied using two different implementation methods, i.e. the geometry-prescribed and the fluid structure interaction (FSI) methods. Results showed that vortex strength and IVPGs are significantly reduced in a dilated heart, leading to an increased risk of thrombus formation and impaired ventricular filling. We suggest FSI method as the ultimate method in studying ventricular dysfunction as it provides additional cardiac disease prognostic factors and more realistic model implementation.
  18. Shafiei SS, Solati-Hashjin M, Samadikuchaksaraei A, Kalantarinejad R, Asadi-Eydivand M, Abu Osman NA
    PLoS One, 2015;10(8):e0136530.
    PMID: 26317853 DOI: 10.1371/journal.pone.0136530
    In recent years, nanotechnology in merging with biotechnology has been employed in the area of cancer management to overcome the challenges of chemopreventive strategies in order to gain promising results. Since most biological processes occur in nano scale, nanoparticles can act as carriers of certain drugs or agents to deliver it to specific cells or targets. In this study, we intercalated Epigallocatechin-3-Gallate (EGCG), the most abundant polyphenol in green tea, into Ca/Al-NO3 Layered double hydroxide (LDH) nanoparticles, and evaluated its efficacy compared to EGCG alone on PC3 cell line. The EGCG loaded LDH nanohybrids were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM) and nanosizer analyses. The anticancer activity of the EGCG-loaded LDH was investigated in prostate cancer cell line (PC3) while the release behavior of EGCG from LDH was observed at pH 7.45 and 4.25. Besides enhancing of apoptotic activity of EGCG, the results showed that intercalation of EGCG into LDH can improve the anti- tumor activity of EGCG over 5-fold dose advantages in in-vitro system. Subsequently, the in-vitro release data showed that EGCG-loaded LDH had longer release duration compared to physical mixture, and the mechanism of diffusion through the particle was rate-limiting step. Acidic attack was responsible for faster release of EGCG molecules from LDH at pH of 4.25 compared to pH of 7.4. The results showed that Ca/Al-LDH nanoparticles could be considered as an effective inorganic host matrix for the delivery of EGCG to PC3 cells with controlled release properties.
  19. Asadi-Eydivand M, Ebadzadeh MM, Solati-Hashjin M, Darlot C, Abu Osman NA
    Biol Cybern, 2015 Dec;109(6):561-74.
    PMID: 26438095 DOI: 10.1007/s00422-015-0661-7
    The demand today for more complex robots that have manipulators with higher degrees of freedom is increasing because of technological advances. Obtaining the precise movement for a desired trajectory or a sequence of arm and positions requires the computation of the inverse kinematic (IK) function, which is a major problem in robotics. The solution of the IK problem leads robots to the precise position and orientation of their end-effector. We developed a bioinspired solution comparable with the cerebellar anatomy and function to solve the said problem. The proposed model is stable under all conditions merely by parameter determination, in contrast to recursive model-based solutions, which remain stable only under certain conditions. We modified the proposed model for the simple two-segmented arm to prove the feasibility of the model under a basic condition. A fuzzy neural network through its learning method was used to compute the parameters of the system. Simulation results show the practical feasibility and efficiency of the proposed model in robotics. The main advantage of the proposed model is its generalizability and potential use in any robot.
  20. Maleki-Ghaleh H, Hafezi M, Hadipour M, Nadernezhad A, Aghaie E, Behnamian Y, et al.
    PLoS One, 2015;10(9):e0138454.
    PMID: 26383641 DOI: 10.1371/journal.pone.0138454
    In the current study, a sol-gel-synthesized tricalcium magnesium silicate powder was coated on Ti-6Al-4V alloys using plasma spray method. Composition of feed powder was evaluated by X-ray diffraction technique before and after the coating process. Scanning electron microscopy and atomic force microscopy were used to study the morphology of coated substrates. The corrosion behaviors of bare and coated Ti-6Al-4V alloys were examined using potentiodynamic polarization test and electrochemical impedance spectroscopy in stimulated body fluids. Moreover, bare and coated Ti-6Al-4V alloys were characterized in vitro by culturing osteoblast and mesenchymal stem cells for several days. Results demonstrated a meaningful improvement in the corrosion resistance of Ti-6Al-4V alloys coated with tricalcium magnesium silicate compared with the bare counterparts, by showing a decrease in corrosion current density from 1.84 μA/cm2 to 0.31 μA/cm2. Furthermore, the coating substantially improved the bioactivity of Ti-6Al-4Valloys. Our study on corrosion behavior and biological response of Ti-6Al-4V alloy coated by tricalcium magnesium silicate proved that the coating has considerably enhanced safety and applicability of Ti-6Al-4V alloys, suggesting its potential use in permanent implants and artificial joints.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links