Displaying publications 61 - 80 of 136 in total

Abstract:
Sort:
  1. Das R, Vecitis CD, Schulze A, Cao B, Ismail AF, Lu X, et al.
    Chem Soc Rev, 2017 Sep 29.
    PMID: 28959815 DOI: 10.1039/c6cs00921b
    The efficient handling of wastewater pollutants is a must, since they are continuously defiling limited fresh water resources, seriously affecting the terrestrial, aquatic, and aerial flora and fauna. Our vision is to undertake an exhaustive examination of current research trends with a focus on nanomaterials (NMs) to considerably improve the performance of classical wastewater treatment technologies, e.g. adsorption, catalysis, separation, and disinfection. Additionally, NM-based sensor technologies are considered, since they have been significantly used for monitoring water contaminants. We also suggest future directions to inform investigators of potentially disruptive NM technologies that have to be investigated in more detail. The fate and environmental transformations of NMs, which need to be addressed before large-scale implementation of NMs for water purification, are also highlighted.
  2. Ibrahim GPS, Isloor AM, Inamuddin, Asiri AM, Ismail N, Ismail AF, et al.
    Sci Rep, 2017 Nov 21;7(1):15889.
    PMID: 29162869 DOI: 10.1038/s41598-017-16131-9
    In this work, poly(MBAAm-co-SBMA) zwitterionic polymer nanoparticles were synthesized in one-step via distillation-precipitation polymerization (DPP) and were characterized. [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) as monomer and N, N'-methylene bis(acrylamide) (MBAAm) as cross-linker are used for the synthesis of nanoparticles. As  far as our knowledge, this is the first such report on the synthesis of poly(MBAAm-co-SBMA) nanoparticles via DPP. The newly synthesized nanoparticles were further employed for the surface modification of polysulfone (PSF) hollow fiber membranes for dye removal. The modified hollow fiber membrane exhibited the improved permeability (56 L/ m2 h bar) and dye removal (>98% of Reactive Black 5 and >80.7% of Reactive orange 16) with the high permeation of salts. Therefore, the as-prepared membrane can have potential application in textile and industrial wastewater treatment.
  3. Hebbar RS, Isloor AM, Prabhu B, Inamuddin, Asiri AM, Ismail AF
    Sci Rep, 2018 03 16;8(1):4665.
    PMID: 29549259 DOI: 10.1038/s41598-018-22837-1
    Functional surfaces and polymers with branched structures have a major impact on physicochemical properties and performance of membrane materials. With the aim of greener approach for enhancement of permeation, fouling resistance and detrimental heavy metal ion rejection capacity of polyetherimide membrane, novel grafting of poly (4-styrenesulfonate) brushes on low cost, natural bentonite was carried out via distillation-precipitation polymerisation method and employed as a performance modifier. It has been demonstrated that, modified bentonite clay exhibited significant improvement in the hydrophilicity, porosity, and water uptake capacity with 3 wt. % of additive dosage. SEM and AFM analysis showed the increase in macrovoides and surface roughness with increased additive concentration. Moreover, the inclusion of modified bentonite displayed an increase in permeation rate and high anti-irreversible fouling properties with reversible fouling ratio of 75.6%. The humic acid rejection study revealed that, PEM-3 membrane having rejection efficiency up to 87.6% and foulants can be easily removed by simple hydraulic cleaning. Further, nanocomposite membranes can be significantly employed for the removal of hazardous heavy metal ions with a rejection rate of 80% and its tentative mechanism was discussed. Conspicuously, bentonite clay-bearing poly (4-styrenesulfonate) brushes are having a synergistic effect on physicochemical properties of nanocomposite membrane to enhance the performance in real field applications.
  4. Mallineni SK, Nuvvula S, Ismail AF, Aldhuwayhi S, Shaikh SA, Deeban Y, et al.
    Eur Rev Med Pharmacol Sci, 2022 Dec;26(23):9030-9039.
    PMID: 36524522 DOI: 10.26355/eurrev_202212_30578
    OBJECTIVE: To assess the influence of information sources on the knowledge regarding COVID-19 among undergraduate dental students in India, Saudi Arabia, Malaysia, and Turkey.

    SUBJECTS AND METHODS: An online questionnaire in a Google form link was circulated among the target population via various online platforms. It consisted of 14 close-ended questions assessing these students' knowledge and source of COVID-19-related information. SPSS software version 21.0 (IBM Corp., Armonk, NY, USA) was used to compute descriptive statistics, Chi-square test, independent t-test, and ANOVA tests for comparing various variables, and a p-value<0.05 was considered statistically significant.

    RESULTS: The study yielded 809 responses from dental undergraduate students from India, Saudi Arabia, Malaysia, and Turkey. Dental students from Turkey reported a higher mean knowledge score of 7.91±1.34 and 7.88±0.58 for Malaysian dental students. In contrast, the lower scores were achieved by Saudi Arabia (7.36±1.22) and India (7.37±1.21) dental students, and the findings were statistically significant (p<0.05). The study population used various sources to attain information regarding COVID-19. Most respondents (63.1%) utilized information regarding COVID-19 from multiple sources rather than single sources (36.9%).

    CONCLUSIONS: Reliable and validated information sources resulted in higher knowledge scores. Turkey and Malaysia dental students reported a higher mean knowledge score and the lowest for Saudi Arabia and India dental students. There is increased popularity of social media platforms as information sources.

  5. Saleem H, Goh PS, Saud A, Khan MAW, Munira N, Ismail AF, et al.
    Nanomaterials (Basel), 2022 Nov 24;12(23).
    PMID: 36500777 DOI: 10.3390/nano12234154
    Forward osmosis (FO) technology for desalination has been extensively studied due to its immense benefits over conventionally used reverse osmosis. However, there are some challenges in this process such as a high reverse solute flux (RSF), low water flux, and poor chlorine resistance that must be properly addressed. These challenges in the FO process can be resolved through proper membrane design. This study describes the fabrication of thin-film composite (TFC) membranes with polyethersulfone solution blown-spun (SBS) nanofiber support and an incorporated selective layer of graphene quantum dots (GQDs). This is the first study to sustainably develop GQDs from banyan tree leaves for water treatment and to examine the chlorine resistance of a TFC FO membrane with SBS nanofiber support. Successful GQD formation was confirmed with different characterizations. The performance of the GQD-TFC-FO membrane was studied in terms of flux, long-term stability, and chlorine resistance. It was observed that the membrane with 0.05 wt.% of B-GQDs exhibited increased surface smoothness, hydrophilicity, water flux, salt rejection, and chlorine resistance, along with a low RSF and reduced solute flux compared with that of neat TFC membranes. The improvement can be attributed to the presence of GQDs in the polyamide layer and the utilization of SBS nanofibrous support in the TFC membrane. A simulation study was also carried out to validate the experimental data. The developed membrane has great potential in desalination and water treatment applications.
  6. Shokravi H, Heidarrezaei M, Shokravi Z, Ong HC, Lau WJ, Din MFM, et al.
    J Biotechnol, 2022 Dec 10;360:23-36.
    PMID: 36272575 DOI: 10.1016/j.jbiotec.2022.10.010
    Biofuels from microalgae have promising potential for a sustainable bioeconomy. Algal strains' oil content and biomass yield are the most influential cost drivers in the fourth generation biofuel (FGB) production. Genetic modification is the key to improving oil accumulation and biomass yield, consequently developing the bioeconomy. This paper discusses current practices, new insights, and emerging trends in genetic modification and their bioeconomic impact on FGB production. It was demonstrated that enhancing the oil and biomass yield could significantly improve the probability of economic success and the net present value of the FGB production process. The techno-economic and socioeconomic burden of using genetically modified (GM) strains and the preventive control strategies on the bioeconomy of FGB production is reviewed. It is shown that the fully lined open raceway pond could cost up to 25% more than unlined ponds. The cost of a plastic hoop air-supported greenhouse covering cultivation ponds is estimated to be US 60,000$ /ha. The competitiveness and profitability of large-scale cultivation of GM biomass are significantly locked to techno-economic and socioeconomic drivers. Nonetheless, it necessitates further research and careful long-term follow-up studies to understand the mechanism that affects these parameters the most.
  7. Parham S, Kharazi AZ, Bakhsheshi-Rad HR, Nur H, Ismail AF, Sharif S, et al.
    Antioxidants (Basel), 2020 Dec 21;9(12).
    PMID: 33371338 DOI: 10.3390/antiox9121309
    Recently, increasing public concern about hygiene has been driving many studies to investigate antimicrobial and antiviral agents. However, the use of any antimicrobial agents must be limited due to their possible toxic or harmful effects. In recent years, due to previous antibiotics' lesser side effects, the use of herbal materials instead of synthetic or chemical drugs is increasing. Herbal materials are found in medicines. Herbs can be used in the form of plant extracts or as their active components. Furthermore, most of the world's populations used herbal materials due to their strong antimicrobial properties and primary healthcare benefits. For example, herbs are an excellent material to replace nanosilver as an antibiotic and antiviral agent. The use of nanosilver involves an ROS-mediated mechanism that might lead to oxidative stress-related cancer, cytotoxicity, and heart diseases. Oxidative stress further leads to increased ROS production and also delays the cellular processes involved in wound healing. Therefore, existing antibiotic drugs can be replaced with biomaterials such as herbal medicine with high antimicrobial, antiviral, and antioxidant activity. This review paper highlights the antibacterial, antiviral, and radical scavenger (antioxidant) properties of herbal materials. Antimicrobial activity, radical scavenger ability, the potential for antimicrobial, antiviral, and anticancer agents, and efficacy in eliminating bacteria and viruses and scavenging free radicals in herbal materials are discussed in this review. The presented herbal antimicrobial agents in this review include clove, portulaca, tribulus, eryngium, cinnamon, turmeric, ginger, thyme, pennyroyal, mint, fennel, chamomile, burdock, eucalyptus, primrose, lemon balm, mallow, and garlic, which are all summarized.
  8. Yusof MSM, Othman MHD, Mustafa A, Rahman MA, Jaafar J, Ismail AF
    Environ Sci Pollut Res Int, 2018 Aug;25(22):21644-21655.
    PMID: 29785602 DOI: 10.1007/s11356-018-2286-6
    Palm oil fuel ash (POFA) is an agricultural waste which was employed in this study to produce novel adsorptive ceramic hollow fibre membranes. The membranes were fabricated using phase inversion-based extrusion technique and sintered at 1150 °C. The membranes were then evaluated on their ability to adsorb cadmium (Cd(II)). These membranes were characterised using (nitrogen) N2 adsorption-desorption analysis, field emission scanning electron microscopy-energy-dispersive X-ray spectroscopy (FESEM-EDX) mapping, X-ray fluorescence (XRF), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses while adsorptivity activity was examined by batch adsorption studies. The adsorption test results show that the quantity of hollow fibre used and water pH level significantly affected the adsorption performance with the 3-fibre membrane yielding 96.4% Cd(II) removal in 30 min equilibrium time at pH 7. These results are comparable to those reported by other studies, and hence demonstrate a promising alternative of low-cost hollow fibre adsorbent membrane. Graphical abstract Figure of FESEM image of the hollow fibre, proposed mechanism and the graph of percentage removal of Cd(II) using POFA.
  9. Subramaniam MN, Goh PS, Kanakaraju D, Lim JW, Lau WJ, Ismail AF
    Environ Sci Pollut Res Int, 2022 Feb;29(9):12506-12530.
    PMID: 34101123 DOI: 10.1007/s11356-021-14676-x
    The presence of conventional and emerging pollutants infiltrating into our water bodies is a course of concern as they have seriously threatened water security. Established techniques such as photocatalysis and membrane technology have proven to be promising in removing various persistent organic pollutants (POP) from wastewaters. The emergence of hybrid photocatalytic membrane which incorporates both photocatalysis and membrane technology has shown greater potential in treating POP laden wastewater based on their synergistic effects. This article provides an in-depth review on the roles of both photocatalysis and membrane technology in hybrid photocatalytic membranes for the treatment of POP containing wastewaters. A concise introduction on POP's in terms of examples, their origins and their effect on a multitude of organisms are critically reviewed. The fundamentals of photocatalytic mechanism, current directions in photocatalyst design and their employment to treat POP's are also discussed. Finally, the challenges and future direction in this field are presented.
  10. Makhtar SNNM, Rahman MA, Ismail AF, Othman MHD, Jaafar J
    Environ Sci Pollut Res Int, 2017 Jul;24(19):15918-15928.
    PMID: 28589281 DOI: 10.1007/s11356-017-9405-7
    This work discusses the preparation and characterizations of glass hollow fiber membranes prepared using zeolite-5A as a starting material. Zeolite was formed into a hollow fiber configuration using the phase inversion technique. It was later sintered at high temperatures to burn off organic materials and change the zeolite into glass membrane. A preliminary study, that used thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), confirmed that zeolite used in this study changed to glass at temperatures above 1000 °C. The glass hollow fiber membranes prepared using the phase inversion technique has three different microstructures, namely (i) sandwich-like structure that originates from inner layer, (ii) sandwich-like that originates from outer layer, and (iii) symmetric sponge like. These variations were influenced by zeolite weight loading and the flow rate of water used to form the lumen. The separation performances of the glass hollow fiber membrane were studied using the pure water permeability and the rejection test of bovine serum albumin (BSA). The glass hollow fiber membrane prepared from using 48 wt% zeolite loading and bore fluid with 9 mL min(-1) flow rate has the highest BSA rejection of 85% with the water permeability of 0.7 L m(-2) h(-1) bar(-1). The results showed that the separation performance of glass hollow fiber membranes was in the ultrafiltration range, enabled the retention of solutes with molecular sizes larger than 67 kDa such as milk proteins, endotoxin pyrogen, virus, and colloidal silica.
  11. Mohtor NH, Othman MHD, Ismail AF, Rahman MA, Jaafar J, Hashim NA
    Environ Sci Pollut Res Int, 2017 Jul;24(19):15905-15917.
    PMID: 28620856 DOI: 10.1007/s11356-017-9341-6
    Despite its extraordinary price, ceramic membrane can still be able to surpass polymeric membrane in the applications that require high temperature and pressure conditions, as well as harsh chemical environment. In order to alleviate the high cost of ceramic material that still becomes one of the major factors that contributes to the high production cost of ceramic membrane, various attempts have been made to use low cost ceramic materials as alternatives to well-known expensive ceramic materials such as alumina, silica, and zirconia in the fabrication of ceramic membrane. Thus, local Malaysian kaolin has been chosen as the ceramic material in this study for the preparation of kaolin hollow fibre membrane since it is inexpensive and naturally abundant in Malaysia. Due to the fact that the sintering process plays a prominent role in obtaining the desired morphology, properties, and performances of prepared ceramic membrane, the aim of this work was to study the effect of different sintering temperatures applied (ranging from 1200 to 1500 °C) in the preparation of kaolin hollow fibre membrane via dry/wet phase inversion-based spinning technique and sintering process. The morphology and properties of membrane were then characterised by SEM, AFM, FTIR, XRD, and three-point bending test, while the performances of membrane were investigated by conducting water permeation and Reactive Black 5 (RB5) dye rejection tests. From the experimental results obtained, the sintering temperature of 1400 °C could be selected as the optimum sintering temperature in preparing the kaolin hollow fibre membrane with the dense sponge-like structure of separation layer that resulted in the good mechanical strength of 70 MPa with the appreciable water permeation of 75 L/h m(2) bar and RB5 rejection of 68%.
  12. Kamaludin R, Othman MHD, Kadir SHSA, Khan J, Ismail AF, Rahman MA, et al.
    Environ Sci Pollut Res Int, 2023 Jan;30(1):259-273.
    PMID: 35902521 DOI: 10.1007/s11356-022-22121-w
    Various treatments of choice are available to overcome contamination of bisphenol A (BPA) in the environment including membrane technologies; however, the treatment still releases contaminants that threaten the human being. Therefore, the present study is conducted to investigate the degradation of BPA by recently developed visible-light-driven photocatalytic nitrogen-doping titanium dioxide (N-doped TiO2) dual-layer hollow fibre (DLHF) membrane and its efficiency in reducing the level of BPA in contaminated water. Fabricated with suitable polymer/photocatalyst (15/7.5 wt.%) via co-extrusion spinning method, the DLHF was characterized morphologically, evaluated for BPA degradation by using submerged photocatalytic membrane reactor under visible light irradiations followed by the investigation of intermediates formed. BPA exposure effects were accessed by immunohistochemistry staining of gastrointestinal sample obtained from animal model. BPA has been successfully degraded up to 72.5% with 2 intermediate products, B1 and B2, being identified followed by total degradation of BPA. BPA exposure leads to the high-intensity IHC staining of Claudin family which indicated the disruption of small intestinal barrier (SIB) integrity. Low IHC staining intensity of Claudin family in treated BPA group demonstrated that reducing the level of BPA by N-doped TiO2 DLHF is capable of protecting the important component of SIB. Altogether, the fabricated photocatalytic DLHF membrane is expected to have an outstanding potential in removing BPA and its health effect for household water treatment to fulfil the public focus on the safety of their household water and their need to consume clean water.
  13. Nazemi N, Rajabi N, Aslani Z, Kharaziha M, Kasiri-Asgarani M, Bakhsheshi-Rad HR, et al.
    J Biomater Appl, 2023 Jan;37(6):979-991.
    PMID: 36454961 DOI: 10.1177/08853282221140672
    Porous structure, biocompatibility and biodegradability, large surface area, and drug-loading ability are some remarkable properties of zeolite structure, making it a great possible option for bone tissue engineering. Herein, we evaluated the potential application of the ZSM-5 scaffold encapsulated GEN with high porosity structure and significant antibacterial properties. The space holder process has been employed as a new fabrication method with interconnected pores and suitable mechanical properties. In this study, for the first time, ZSM-5 scaffolds with GEN drug-loading were fabricated with the space holder method. The results showed excellent open porosity in the range of 70-78% for different GEN concentrations and appropriate mechanical properties. Apatite formation on the scaffold surface was determined with Simulation body fluid (SBF), and a new bone-like apatite layer shaping on all samples confirmed the in vitro bioactivity of ZSM-5-GEN scaffolds. Also, antibacterial properties were investigated against both gram-positive and gram-negative bacteria. The incorporation of various amounts of GEN increased the inhibition zone from 24 to 28 (for E. coli) and 26 to 37 (for S. aureus). In the culture with MG63 cells, great cell viability and high cell proliferation after 7 days of culture were determined.
  14. Said N, Lau WJ, Zainol Abidin MN, Mansourizadeh A, Ismail AF
    Environ Technol, 2023 Apr 09.
    PMID: 36976335 DOI: 10.1080/09593330.2023.2197127
    Membrane fouling during the filtration process is a perennial issue and could lead to reduced separation efficiency. In this work, poly(citric acid)-grafted graphene oxide (PGO) was incorporated into a matrix of single-layer hollow fibre (SLHF) and dual-layer hollow fibrr (DLHF) membranes, respectively, aiming to improve membrane antifouling properties during water treatment. Different loadings of PGO ranging from 0 to 1 wt% were first introduced into the SLHF to identify the best PGO loading for the DLHF preparation with its outer layer modified by nanomaterials. The findings showed that at the optimized PGO loading of 0.7 wt%, the resultant SLHF membrane could achieve higher water permeability and bovine serum albumin rejection compared to the neat SLHF membrane. This is due to the improved surface hydrophilicity and increased structural porosity upon incorporation of optimized PGO loading. When 0.7 wt% PGO was introduced only to the outer layer of DLHF, the cross-sectional matrix of the membrane was altered, forming microvoids and spongy-like structures (more porous). Nevertheless, the BSA rejection of the membrane was improved to 97.7% owing to an inner selectivity layer produced from a different dope solution (without the PGO). The DLHF membrane also demonstrated significantly higher antifouling properties than the neat SLHF membrane. Its flux recovery rate is 85%, i.e. 37% better than that of a neat membrane. By incorporating hydrophilic PGO into the membrane, the interaction of the hydrophobic foulants with the membrane surface is greatly reduced.
  15. Nasir AM, Awang N, Hubadillah SK, Jaafar J, Othman MHD, Wan Salleh WN, et al.
    J Water Process Eng, 2021 Aug;42:102111.
    PMID: 35592059 DOI: 10.1016/j.jwpe.2021.102111
    Photocatalytic technology offers powerful virus disinfection in wastewater via oxidative capability with minimum harmful by-products generation. This review paper aims to provide state-of-the-art photocatalytic technology in battling transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. Prior to that, the advantages and limitations of the existing conventional and advanced oxidation processes for virus disinfection in water systems were thoroughly examined. A wide spectrum of virus degradation by various photocatalysts was then considered to understand the potential mechanism for deactivating this deadly virus. The challenges and future perspectives were comprehensively discussed at the end of this review describing the limitations of current photocatalytic technology and suggesting a realistic outlook on advanced photocatalytic technology as a potential solution in dealing with similar upcoming pandemics. The major finding of this review including discovery of a vision on the possible photocatalytic approaches that have been proven to be outstanding against other viruses and subsequently combatting SARS-CoV-2 in wastewater. This review intends to deliver insightful information and discussion on the potential of photocatalysis in battling COVID-19 transmission through wastewater.
  16. Abdullah WNAS, Mohd Nawi NS, Lau WJ, Ho YC, Aziz F, Ismail AF
    Polymers (Basel), 2023 Mar 27;15(7).
    PMID: 37050277 DOI: 10.3390/polym15071665
    The commercial thin-film composite (TFC) nanofiltration (NF) membrane is unsuitable for engineered osmosis processes because of its thick non-woven fabric and semi-hydrophilic substrate that could lead to severe internal concentration polarization (ICP). Hence, we fabricated a new type of NF-like TFC membrane using a hydrophilic coated polyacrylonitrile/polyphenylsulfone (PAN/PPSU) substrate in the absence of non-woven fabric, aiming to improve membrane performance for water and wastewater treatment via the engineered osmosis process. Our results showed that the substrate made of a PAN/PPSU weight ratio of 1:5 could produce the TFC membrane with the highest water flux and divalent salt rejection compared to the membranes made of different PAN/PPSU substrates owing to the relatively good compatibility between PAN and PPSU at this ratio. The water flux of the TFC membrane was further improved without compromising salt rejection upon the introduction of a hydrophilic polydopamine (PDA) coating layer containing 0.5 g/L of graphene oxide (PDA/GO0.5) onto the bottom surface of the substrate. When tested using aerobically treated palm oil mill effluent (AT-POME) as a feed solution and 4 M MgCl2 as a draw solution, the best performing TFC membrane with the hydrophilic coating layer achieved a 67% and 41% higher forward osmosis (FO) and pressure retarded osmosis (PRO) water flux, respectively, compared to the TFC membrane without the coating layer. More importantly, the coated TFC membrane attained a very high color rejection (>97%) during AT-POME treatment, while its water flux and reverse solute flux were even better compared to the commercial NF90 and NF270 membranes. The promising outcomes were attributed to the excellent properties of the PAN/PPSU substrate that was coated with a hydrophilic PDA/GO coating and the elimination of the thick non-woven fabric during TFC membrane fabrication.
  17. Krishnan SAG, Gumpu MB, Arthanareeswaran G, Goh PS, Aziz F, Ismail AF
    Chemosphere, 2023 Jan;311(Pt 2):137016.
    PMID: 36374783 DOI: 10.1016/j.chemosphere.2022.137016
    Herbicides such as atrazine and humus substances such as fulvic acid are widely used in agricultural sector. They can be traced in surface and groundwater around the agriculture field at concentrations beyond the approved limit due to their mobility and persistence. Bismuth-based photocatalysts activated by visible light are potential materials for removing various organic pollutants from water bodies. These photocatalysts can also be suitable candidates for developing a hybrid membrane with anti-fouling properties. In this study, Bi2WO6 nanoparticles were synthesized via the hydrothermal method and integrated into the cellulose acetate (CA), polyetherimide (PEI), polysulfone (PSF) and polyvinylidene fluoride (PVDF) polymers via physical blending approach. The hybrid membranes were then characterized by FTIR, XPS and FESEM to confirm the chemical bonding, chemical composition and surface morphology of Bi2WO6. Thus, the pure water flux of CA (35.6 L m-2 h-1), PEI (46.56 L m-2 h-1), PSF (6.84 L m-2 h-1), and PVDF (68.47 L m-2 h-1) hybrid membranes has significantly enhanced than the pristine CA, PEI, PSF and PVDF membranes. The significant rejection of atrazine-fulvic acid was observed with hybrid membranes in the order of CA (84.1%) > PVDF (72.7%) > PEI (47.8%) > PSF (37.2%), and these membranes have shown an excellent flux recovery ratio than pristine membranes. Further, electrochemical quantification studies were performed to analyze the removal efficiency of atrazine-fulvic acid from water. In this present work, GO-modified SPE was employed for electrochemical sensing studies. The resultant CA hybrid membrane achieved removal efficiency of 84.08% for atrazine. It was observed that the Bi2WO6 established strong bonding with CA, and PVDF membranes, thus showing a significant removal efficiency and FRR than other hybrid and pristine membranes.
  18. Said N, Lau WJ, Ho YC, Lim SK, Zainol Abidin MN, Ismail AF
    Membranes (Basel), 2021 Oct 07;11(10).
    PMID: 34677533 DOI: 10.3390/membranes11100767
    Dialyzers have been commercially used for hemodialysis application since the 1950s, but progress in improving their efficiencies has never stopped over the decades. This article aims to provide an up-to-date review on the commercial developments and recent laboratory research of dialyzers for hemodialysis application and to discuss the technical aspects of dialyzer development, including hollow fiber membrane materials, dialyzer design, sterilization processes and flow simulation. The technical challenges of dialyzers are also highlighted in this review, which discusses the research areas that need to be prioritized to further improve the properties of dialyzers, such as flux, biocompatibility, flow distribution and urea clearance rate. We hope this review article can provide insights to researchers in developing/designing an ideal dialyzer that can bring the best hemodialysis treatment outcomes to kidney disease patients.
  19. Abdullah B, Kandiah R, Hassan NFHN, Ismail AF, Mohammad ZW, Wang Y
    World Allergy Organ J, 2020 Dec;13(12):100482.
    PMID: 33294114 DOI: 10.1016/j.waojou.2020.100482
    BACKGROUND: Primary care practitioners (PCPs), being the front liners, play an important role in treating allergic rhinitis (AR). As there is no proper tool to assess their perception, attitude, and practice in utilizing the guidelines, we aimed to develop and validate a new questionnaire for such purpose.

    METHODS: The development phase consists of both literature and expert panel review. The validation phase consists of content validity, face validity, and construct validity. Cronbach's alpha was used to verify internal consistency. The development phase produced a questionnaire with 3 domains: perception, attitude, and practice consisting of 60 items (PAP-PCP questionnaire). Item response theory analysis for perception demonstrated the difficulty and discrimination values were acceptable except for 3 items. Exploratory factor analysis for attitude and practice domains showed the psychometric properties were good except for 3 items in practice domain. Experts judgement was used to decide on the final selection of questionnaire which consists of 59 items.

    RESULTS: The final validated questionnaire has 3 domains with 59 items. All domains had Cronbach's alpha above 0.65 which was reliable. 302 physicians completed the questionnaire. 98% PCPs diagnosed AR based on clinical history. Although, majority agree AR guidelines is useful (67%), they had difficulty in using it to classify AR (54.9%) and determine AR severity (73.9%). Oral anti-histamines (first and second generation) were the most prescribed (>75%) followed by intranasal corticosteroids (59%) and combined intranasal corticosteroid and oral anti-histamine (51%). Majority agreed that treatment efficacy (81.8%), adverse effects (83.8%), fear of adverse effects (73.5%), route of administration (69.4%), dosing frequency (72.5%), taste (64.6%) and cost (73.5%) affect treatment compliance.

    CONCLUSIONS: The newly developed and validated questionnaire is a promising instrument in understanding the treatment gap in AR. Although further testing and refinement are needed, it provides an initial means for evaluating knowledge and understanding of PCPs in treating AR.

  20. Hanafi MM, Azizi P, Akinbola ST, Ismail R, Sahibin AR, Wan Mohd Razi I, et al.
    Sci Rep, 2021 Jul 27;11(1):15234.
    PMID: 34315931 DOI: 10.1038/s41598-021-93704-9
    Sandy texture soil, a major problem for agriculture requires structure and capacity improvements. However, utilization of soil conditioner may arrest this problem. This research was carried out to investigate the accumulated levels of metal ions and radionuclides in water, soil and plants following phosphogypsum organic (PG organic) added to a sandy soil for 23-month in 3 cropping seasons. The condition in the field was simulated in the laboratory using an open leaching column for 30-day under constant but different pH of leachant. More ions were released at pH  5.6. The metal ions measured in the surface and borehole water, and soils were below the target values for respective standard raw drinking water. The metal ions did not accumulate in soil, plant and grain, and water as indicated by biological accumulation coefficients, contamination factors, I-geo index and pollution load index in a sandy soil that received the PG organic. Naturally occurring radionuclide concentrations, such as 226Ra, 228Ra, and 40K, in soil and plant tissue were found to be lower than the average value reported by several earlier studies. Under field condition the pH of water (i.e., rainfall) was greater than pH 5.6, thus renders PG organic became less soluble. There was no leaching of natural occurring radionuclides to the groundwater. Therefore, the application of PG organic to the studied soil had no impact on the soil, plants, and water and suitable as a soil conditioner in sandy texture soils.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links