Displaying publications 61 - 80 of 226 in total

Abstract:
Sort:
  1. Khanam R, Kumar R, Hejazi II, Shahabuddin S, Meena R, Rajamani P, et al.
    J Cell Biochem, 2019 Feb;120(2):1651-1666.
    PMID: 30206975 DOI: 10.1002/jcb.27472
    N-benzhydrylpiperazine and 1,3,4-oxadiazoles are pharmacologically active scaffolds which exhibits significant inhibitory growth effects against various cancer cells, however, antiproliferation effects and the underlying mechanism for inducing apoptosis for aforementioned scaffolds addressing HeLa cancer cells remains uncertain. In this study, N-benzhydrylpiperazine clubbed with 1,3,4-oxadiazoles (4a-4h) were synthesized, subsequently characterized using high resolution spectroscopic techniques and eventually evaluated for their antiproliferation potential by inducing apoptosis in HeLa cancer cells. The MTT assay screening results revealed that among all, compound 4d ( N-benzhydryl-4-((5-(4-aminophenyl)-1,3,4-oxadiazol-2-yl)methyl)piperazine) in particular, exhibited IC 50 value of 28.13 ± 0.21 μg/mL and significantly inhibited the proliferation of HeLa cancer cells in concentration-dependent manner. The in vitro anticancer assays for treated HeLa cells resulted in alterations in the cell morphology, reduction in colony formation, and inhibition of cell migration in concentration-dependent treatment. Furthermore, G2/M phase arrest, variations in the nuclear morphology, degradation of chromosomal DNA confirmed the ongoing apoptosis in treated HeLa cells. Increase in the expression of cytochrome C and caspase-3 confirmed the involvement of intrinsic mitochondrial pathway regulating the cell death. Also, elevation in reactive oxygen species level and loss of mitochondrial membrane potential signified that compound 4d induced apoptosis in HeLa cells by generating the oxidative stress. Therefore, compound 4d may act as a potent chemotherapeutic agent against human cervical cancer.
  2. Kumar R, Khan FU, Sharma A, Siddiqui MH, Aziz IB, Kamal MA, et al.
    Environ Sci Pollut Res Int, 2021 Sep;28(34):47641-47650.
    PMID: 33895950 DOI: 10.1007/s11356-021-14028-9
    We are exposed to various chemical compounds present in the environment, cosmetics, and drugs almost every day. Mutagenicity is a valuable property that plays a significant role in establishing a chemical compound's safety. Exposure and handling of mutagenic chemicals in the environment pose a high health risk; therefore, identification and screening of these chemicals are essential. Considering the time constraints and the pressure to avoid laboratory animals' use, the shift to alternative methodologies that can establish a rapid and cost-effective detection without undue over-conservation seems critical. In this regard, computational detection and identification of the mutagens in environmental samples like drugs, pesticides, dyes, reagents, wastewater, cosmetics, and other substances is vital. From the last two decades, there have been numerous efforts to develop the prediction models for mutagenicity, and by far, machine learning methods have demonstrated some noteworthy performance and reliability. However, the accuracy of such prediction models has always been one of the major concerns for the researchers working in this area. The mutagenicity prediction models were developed using deep neural network (DNN), support vector machine, k-nearest neighbor, and random forest. The developed classifiers were based on 3039 compounds and validated on 1014 compounds; each of them encoded with 1597 molecular feature vectors. DNN-based prediction model yielded highest prediction accuracy of 92.95% and 83.81% with the training and test data, respectively. The area under the receiver's operating curve and precision-recall curve values were found to be 0.894 and 0.838, respectively. The DNN-based classifier not only fits the data with better performance as compared to traditional machine learning algorithms, viz., support vector machine, k-nearest neighbor, and random forest (with and without feature reduction) but also yields better performance metrics. In current work, we propose a DNN-based model to predict mutagenicity of compounds.
  3. Mahar AM, Balouch A, Talpur FN, Abdullah, Panah P, Kumar R, et al.
    Environ Sci Pollut Res Int, 2020 Mar;27(9):9970-9978.
    PMID: 31933082 DOI: 10.1007/s11356-019-07548-y
    In this study, nano-sized ITO supported Pt-Pd bimetallic catalyst was synthesized for the degradation of methyl parathion pesticide, a common extremely toxic contaminant in aqueous solution. On the characterization with different techniques, a beautiful scenario of honeycomb architecture composed of ultra-small nanoneedles or fine hairs was found. Average size of nanocatalyst also confirmed which was in the range of 3-5 nm. High percent degradation (94%) was obtained in 30 s using 1.5 × 10- 1 mg of synthesized nanocatalyst, 0.5 mM NaBH4, and 110 W microwave radiations power. Recyclability of nanocatalyst was efficient till 4th cycle observed during study of reusability. The supported Pt-Pd bimetallic nanocatalyst on ITO displayed many advantages over conventional methods for degradation of methyl parathion pesticide, such as high percent degradation, short reaction time, small amount of nanocatalyst, and multitime reusability. Graphical abstract Schematic illustration of reaction for degradation of methyl parathion.
  4. Shah MA, Hayder G, Kumar R, Kumar V, Ahamad T, Kalam MA, et al.
    Sci Rep, 2023 Aug 30;13(1):14248.
    PMID: 37648719 DOI: 10.1038/s41598-023-41446-1
    A comprehensive understanding of physiochemical properties, thermal degradation behavior and chemical composition is significant for biomass residues before their thermochemical conversion for energy production. In this investigation, teff straw (TS), coffee husk (CH), corn cob (CC), and sweet sorghum stalk (SSS) residues were characterized to assess their potential applications as value-added bioenergy and chemical products. The thermal degradation behavior of CC, CH, TS and SSS samples is calculated using four different heating rates. The activation energy values ranged from 81.919 to 262.238 and 85.737-212.349 kJ mol-1 and were generated by the KAS and FWO models and aided in understanding the biomass conversion process into bio-products. The cellulose, hemicellulose, and lignin contents of CC, CH, TS, and SSS were found to be in the ranges of 31.56-41.15%, 23.9-32.02%, and 19.85-25.07%, respectively. The calorific values of the residues ranged from 17.3 to 19.7 MJ/kg, comparable to crude biomass. Scanning electron micrographs revealed agglomerated, irregular, and rough textures, with parallel lines providing nutrient and water transport pathways in all biomass samples. Energy Dispersive X-ray spectra and X-ray diffraction analysis indicated the presence of high carbonaceous material and crystalline nature. FTIR analysis identified prominent band peaks at specific wave numbers. Based on these findings, it can be concluded that these residues hold potential as energy sources for various applications, such as the textile, plastics, paints, automobile, and food additive industries.
  5. Flora B, Kumar R, Tiwari P, Kumar A, Ruokolainen J, Narasimhan AK, et al.
    J Mech Behav Biomed Mater, 2023 Jun;142:105845.
    PMID: 37060714 DOI: 10.1016/j.jmbbm.2023.105845
    A successful attempt has been made to improve the mechanical properties of Hydroxyapatite (HAp) and reduced graphene oxide (rGO) composite nanoparticles (NPs). Various proportions of HAp and rGO were synthesized to improve the mechanical properties. HAp NPs were prepared using the wet precipitation method and further calcined to form crystalline particles. The physicochemical characterization of the HAp NPs revealed that the crystalline size and percentage of crystallinity were calculated to be 42.49 ± 1.2 nm and 44% post calcination. Furthermore, the rGO-HA composites were prepared using ball milling and obtained in the shape of pellets with different ratios of rGO (10, 20, 30, 40, 50% wt.). The mechanical properties have been evaluated through a Universal testing machine. Compared to calcined HAp (cHAp), the strength of variants significantly enhanced with the increased concentration of rGO. The compressive strength of HA-rGO with the ratio of the concentration of 60:40% by weight is a maximum of about 10.39 ± 0.43 MPa. However, the porosity has also been bolstered by increasing the concentration of rGO, which has been evaluated through the liquid displacement method. The mean surface roughness of the composites has also been evaluated from the images through Image J (an image analysis program).
  6. Paramjot, Wadhwa S, Sharma A, Singh SK, Vishwas S, Kumar R, et al.
    Curr Drug Deliv, 2024;21(1):16-37.
    PMID: 36627785 DOI: 10.2174/1567201820666230110140312
    Amongst different routes of drug delivery systems, ophthalmic drug delivery still requires a careful investigation and strict parameter measurements because the eyes are one of the most sensitive parts of the body and require special attention. The conventional systems for eyes lead to rapid elimination of formulation and hence very small contact time on the ocular epithelium. The current review article covers various types of polymers used in ocular drug delivery along with their applications/ limitations. Polymers are widely used by researchers in prodrug techniques and as a penetration enhancer in ocular delivery. This article covers the role and use of different polymeric systems which makes the final formulation a promising candidate for ophthalmic drug delivery. The researchers are still facing multiple challenges in order to maintain the therapeutic concentration of the drug in the eyes because of its complex structure. There are several barriers that further restrict the intraocular entry of the drug. In order to remove/reduce such challenges, these days various types of polymers are used for ocular delivery in order to develop different drug carrier systems for better efficacy and stability. The polymers used are highly helpful in increasing residence time by increasing the viscosity at the ocular epithelium layer. Such preparations also get easily permeated in ocular cells. The combination of different polymeric properties makes the final formulation stable with prolonged retention, high viscosity, high permeability, and better bioavailability, making the final formulation a promising candidate for ocular drug delivery.
  7. Freedberg DE, Segall L, Liu B, Jacobson JS, Mohan S, George V, et al.
    Kidney360, 2023 Dec 06.
    PMID: 38055708 DOI: 10.34067/KID.0000000000000335
    BACKGROUND: Approaches to treating end-stage kidney disease (ESKD) may vary internationally based on the availability of care and other factors. We performed a systematic review to understand the international variability in ESKD epidemiology, management, and outcomes.

    METHODS: We systematically searched Pubmed for population-based studies of chronic kidney disease (CKD) and ESKD epidemiology and management. Population-level data from 23 pre-designated nations were eligible for inclusion if they pertained to people receiving dialysis or kidney transplant for ESKD. When available, government websites were utilized to identify and extract data from relevant kidney registries . Measures gathered included those related to the prevalence and mortality of ESKD; the availability of nephrologists; per capita healthcare expenditures; and use of erythropoietin stimulating agents (ESAs).

    RESULTS: We obtained data from the United States (US), 7 nations in Eastern Europe, 4 each in Western Europe, Latin America, and Africa, and 3 in Asia. Documented prevalence of ESKD per million population varied from a high of 3,600 (Malaysia) to a low of 67 (Senegal). Annual mortality associated with ESKD varied from 31% (Ethiopia and Senegal) to 10% (UK). Nephrologist availability per million population varied from 40 (Japan) to <1 (South Africa) and was associated with per capita healthcare expenditures.

    CONCLUSIONS: The delivery of kidney care related to ESKD varies widely among countries. Higher per capita healthcare spending is associated with increased delivery of kidney care. However, in part because documentation of kidney disease varies widely, it is difficult to determine how outcomes related to ESKD may vary across nations.

  8. Selvan S, Thangaraj SJJ, Samson Isaac J, Benil T, Muthulakshmi K, Almoallim HS, et al.
    Biomed Res Int, 2022;2022:2003184.
    PMID: 35958813 DOI: 10.1155/2022/2003184
    Prenatal heart disease, generally known as cardiac problems (CHDs), is a group of ailments that damage the heartbeat and has recently now become top deaths worldwide. It connects a plethora of cardiovascular diseases risks to the urgent in need of accurate, trustworthy, and effective approaches for early recognition. Data preprocessing is a common method for evaluating big quantities of information in the medical business. To help clinicians forecast heart problems, investigators utilize a range of data mining algorithms to examine enormous volumes of intricate medical information. The system is predicated on classification models such as NB, KNN, DT, and RF algorithms, so it includes a variety of cardiac disease-related variables. It takes do with an entire dataset from the medical research database of patients with heart disease. The set has 300 instances and 75 attributes. Considering their relevance in establishing the usefulness of alternate approaches, only 15 of the 75 criteria are examined. The purpose of this research is to predict whether or not a person will develop cardiovascular disease. According to the statistics, naïve Bayes classifier has the highest overall accuracy.
  9. Garg J, Chiu MN, Krishnan S, Kumar R, Rifah M, Ahlawat P, et al.
    Appl Biochem Biotechnol, 2024 Feb;196(2):1008-1043.
    PMID: 37314636 DOI: 10.1007/s12010-023-04570-2
    Over the last few decades, the application of nanoparticles (NPs) gained immense attention towards environmental and biomedical applications. NPs are ultra-small particles having size ranges from 1 to 100 nm. NPs loaded with therapeutic or imaging compounds have proved a versatile approach towards healthcare improvements. Among various inorganic NPs, zinc ferrite (ZnFe2O4) NPs are considered as non-toxic and having an improved drug delivery characteristics . Several studies have reported broader applications of ZnFe2O4 NPs for treating carcinoma and various infectious diseases. Additionally, these NPs are beneficial for reducing organic and inorganic environmental pollutants. This review discusses about various methods to fabricate ZnFe2O4 NPs and their physicochemical properties. Further, their biomedical and environmental applications have also been explored comprehensively.
  10. Ramanunny AK, Wadhwa S, Gulati M, Singh SK, Kapoor B, Dureja H, et al.
    Eur J Pharmacol, 2021 Jan 05;890:173691.
    PMID: 33129787 DOI: 10.1016/j.ejphar.2020.173691
    Skin diseases are the fourth leading non-fatal skin conditions that act as a burden and affect the world economy globally. This condition affects the quality of a patient's life and has a pronounced impact on both their physical and mental state. Treatment of these skin conditions with conventional approaches shows a lack of efficacy, long treatment duration, recurrence of conditions, systemic side effects, etc., due to improper drug delivery. However, these pitfalls can be overcome with the applications of nanomedicine-based approaches that provide efficient site-specific drug delivery at the target site. These nanomedicine-based strategies are evolved as potential treatment opportunities in the form of nanocarriers such as polymeric and lipidic nanocarriers, nanoemulsions along with emerging others viz. carbon nanotubes for dermatological treatment. The current review focuses on challenges faced by the existing conventional treatments along with the topical therapeutic perspective of nanocarriers in treating various skin diseases. A total of 213 articles have been reviewed and the application of different nanocarriers in treating various skin diseases has been explained in detail through case studies of previously published research works. The toxicity related aspects of nanocarriers are also discussed.
  11. Chinna K, Sundarasen S, Khoshaim HB, Kamaludin K, Nurunnabi M, Baloch GM, et al.
    PLoS One, 2021;16(8):e0253059.
    PMID: 34343187 DOI: 10.1371/journal.pone.0253059
    The COVID-19 pandemic and the lockdown measures have taken a toll on every level of the society, worldwide. This study examines their psychological impact on university students in Asia. A cross-sectional online survey was conducted between April and May 2020 in Malaysia, Saudi Arabia, Pakistan, Bangladesh, China, India and Indonesia. The Zung's self-rating anxiety scale (SAS) and questions on adaptive and maladaptive coping strategies were used in this study. A total of 3,679 students from the seven countries participated in this study. Overall, 21.9% and 13.7% of the students in this study experienced mild to moderate and severe to extreme levels of anxiety. More than 20% of the students from China and Bangladesh reported severe to extreme level of anxiety compared to below 10% of the students from Indonesia, Malaysia and India. Among the female students, 15.9% experienced severe to extreme level of anxiety compared to 10.6% among the males. Females from Bangladesh, China, Malaysia, Pakistan and Saudi Arabia experienced significantly higher levels of anxiety compared to their male counterparts. Acceptance was the most used and Seeking Social Support was the least used coping strategies among the students. There were significant differences in the usage of the four strategies by countries. Stressors are predominantly financial constraints, remote online learning, and uncertainty related to their academic performance, and future career prospects.
  12. Khursheed R, Singh SK, Wadhwa S, Gulati M, Kapoor B, Awasthi A, et al.
    Expert Opin Drug Deliv, 2021 04;18(4):427-448.
    PMID: 33356647 DOI: 10.1080/17425247.2021.1846517
    Introduction: Diabetic neuropathy (DN) is one of the major complications arising from hyperglycaemia in diabetic patients. In recent years polyphenols present in plants have gained attention to treat DN. The main advantages associated with them are their action via different molecular pathways to manage DN and their safety. However, they failed to gain clinical attention due to challenges associated with their formulation development such as lipophilicity,poor bioavailability, rapid systemic elimination, and enzymatic degradation.Area covered: This article includes different polyphenols that have shown their potential against DN in preclinical studies and the research carried out towards development of their nanoformulations in order to overcome aforementioned issues.Expert opinion: In this review various polyphenol based nanoformulations such as nanospheres, self-nanoemulsifying drug delivery systems, niosomes, electrospun nanofibers, metallic nanoparticles explored exclusively to treat DN are discussed. However, the literature available related to polyphenol based nanoformulations to treat DN is limited. Moreover, these experiments are limited to preclinical studies. Hence, more focus is required towards  development of nanoformulations using simple and single step process as well as inexpensive and non-toxic excipients so that a stable, scalable, reproducible and non-toxic formulation could be achieved and clinical trials could be initiated.
  13. Barry OM, Ali F, Ronderos M, Sudhaker A, Kumar RK, Mood MC, et al.
    Catheter Cardiovasc Interv, 2021 01 01;97(1):127-134.
    PMID: 32294315 DOI: 10.1002/ccd.28908
    OBJECTIVES: To describe the development of a quality collaborative for congenital cardiac catheterization centers in low and middle-income countries (LMICs) including pilot study data and a novel procedural efficacy measure.

    BACKGROUND: Absence of congenital cardiac catheterization registries in LMICs led to the development of the International Quality Improvement Collaborative Congenital Heart Disease Catheterization Registry (IQIC-CHDCR). As a foundation for this initiative, the IQIC is a collaboration of pediatric cardiac surgical programs from LMICs. Participation in IQIC has been associated with improved patient outcomes.

    METHODS: A web-based registry was designed through a collaborative process. A pilot study was conducted from October through December 2017 at seven existing IQIC sites. Demographic, hemodynamic, and adverse event data were obtained and a novel tool to assess procedural efficacy was applied to five specific procedures. Procedural efficacy was categorized using ideal, adequate, and inadequate.

    RESULTS: A total of 429 cases were entered. Twenty-five adverse events were reported. The five procedures for which procedural efficacy was measured represented 48% of cases (n = 208) and 71% had complete data for analysis (n = 146). Procedure efficacy was ideal most frequently in patent ductus arteriosus (95%) and atrial septal defect (90%) device closure, and inadequate most frequently in coarctation procedures (100%), and aortic and pulmonary valvuloplasties (50%).

    CONCLUSIONS: The IQIC-CHDCR has designed a feasible collaborative to capture catheterization data in LMICs. The novel tool for procedural efficacy will provide valuable means to identify areas for quality improvement. This pilot study and lessons learned culminated in the full launch of the IQIC-CHDCR.

  14. Manvati S, Mangalhara KC, Kalaiarasan P, Chopra R, Agarwal G, Kumar R, et al.
    Cancer Cell Int, 2019;19:230.
    PMID: 31516387 DOI: 10.1186/s12935-019-0933-8
    Background: Despite several reports describing the dual role of miR-145 as an oncogene and a tumor suppressor in cancer, not much has been resolved and understood.

    Method: In this study, the potential targets of miR-145 were identified bio-informatically using different target prediction tools. The identified target genes were validated in vitro by dual luciferase assay. Wound healing and soft agar colony assay assessed cell proliferation and migration. miR-145 expression level was measured quantitatively by RT-PCR at different stages of breast tumor. Western blot was used to verify the role of miR-145 in EMT transition using key marker proteins.

    Result: Wound healing and soft agar colony assays, using miR-145 over-expressing stably transfected MCF7 cells, unraveled its role as a pro-proliferation candidate in cancerous cells. The association between miR-145 over-expression and differential methylation patterns in representative target genes (DR5, BCL2, TP53, RNF8, TIP60, CHK2, and DCR2) supported the inference drawn. These in vitro observations were validated in a representative set of nodal positive tumors of stage 3 and 4 depicting higher miR-145 expression as compared to early stages. Further, the role of miR-145 in epithelial-mesenchymal (EMT) transition found support through the observation of two key markers, Vimentin and ALDL, where a positive correlation with Vimentin protein and a negative correlation with ALDL mRNA expression were observed.

    Conclusion: Our results demonstrate miR-145 as a pro-cancerous candidate, evident from the phenotypes of aggressive cellular proliferation, epithelial to mesenchymal transition, hypermethylation of CpG sites in DDR and apoptotic genes and upregulation of miR-145 in later stages of tumor tissues.

  15. Rahman I, Singh P, Dev N, Arif M, Yusufi FNK, Azam A, et al.
    Materials (Basel), 2022 Nov 15;15(22).
    PMID: 36431551 DOI: 10.3390/ma15228066
    The findings of an extensive experimental research study on the usage of nano-sized cement powder and other additives combined to form cement-fine-aggregate matrices are discussed in this work. In the laboratory, dry and wet methods were used to create nano-sized cements. The influence of these nano-sized cements, nano-silica fumes, and nano-fly ash in different proportions was studied to the evaluate the engineering properties of the cement-fine-aggregate matrices concerning normal-sized, commercially available cement. The composites produced with modified cement-fine-aggregate matrices were subjected to microscopic-scale analyses using a petrographic microscope, a Scanning Electron Microscope (SEM), and a Transmission Electron Microscope (TEM). These studies unravelled the placement and behaviour of additives in controlling the engineering properties of the mix. The test results indicated that nano-cement and nano-sized particles improved the engineering properties of the hardened cement matrix. The wet-ground nano-cement showed the best result, 40 MPa 28th-day compressive strength, without mixing any additive compared with ordinary and dry-ground cements. The mix containing 50:50 normal and wet-ground cement exhibited 37.20 MPa 28th-day compressive strength. All other mixes with nano-sized dry cement, silica fume, and fly ash with different permutations and combinations gave better results than the normal-cement-fine-aggregate mix. The petrographic studies and the Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) analyses further validated the above findings. Statistical analyses and techniques such as correlation and stepwise multiple regression analysis were conducted to compose a predictive equation to calculate the 28th-day compressive strength. In addition to these methods, a repeated measures Analysis of Variance (ANOVA) was also implemented to analyse the statistically significant differences among three differently timed strength readings.
  16. Harish V, Tewari D, Mohd S, Govindaiah P, Babu MR, Kumar R, et al.
    Pharmaceutics, 2022 Nov 07;14(11).
    PMID: 36365221 DOI: 10.3390/pharmaceutics14112403
    Many natural products with greater therapeutic efficacy are limited to target several chronic diseases such as cancer, diabetes, and neurodegenerative diseases. Among the natural products from hops, i.e., Xanthohumol (XH), is a prenylated chalcone. The present research work focuses on the enhancement of the poor oral bioavailability and weak pharmacokinetic profile of XH. We exemplified the development of a Xanthohumol-loaded solid lipid nanoparticles (XH-SLNs) cargo system to overcome the limitations associated with its bioavailability. The XH-SLNs were prepared by a high-shear homogenization/ultrasonication method and graphical, numerical optimization was performed by using Box-Behnken Design. Optimized XH-SLNs showed PS (108.60 nm), PDI (0.22), ZP (-12.70 mV), %EE (80.20%) and an amorphous nature that was confirmed by DSC and PXRD. FE-SEM and HRTEM revealed the spherical morphology of XH-SLNs. The results of release studies were found to be 9.40% in 12 h for naive XH, whereas only 28.42% of XH was released from XH-SLNs. The slow release of drugs may be due to immobilization of XH in the lipid matrix. In vivo pharmacokinetic study was performed for the developed XH-SLNs to verify the enhancement in the bioavailability of XH than naive XH. The enhancement in the bioavailability of the XH was confirmed from an increase in Cmax (1.07-folds), AUC0-t (4.70-folds), t1/2 (6.47-folds) and MRT (6.13-folds) after loading into SLNs. The relative bioavailability of XH loaded in SLNs and naive XH was found to be 4791% and 20.80%, respectively. The cytotoxicity study of naive XH, XH-SLNs were performed using PC-3 cell lines by taking camptothecin as positive control. The results of cytotoxicity study revealed that XH-SLNs showed good cell inhibition in a sustained pattern. This work successfully demonstrated formulation of XH-SLNs with sustained release profile and improved oral bioavailability of XH with good anticancer properties against PC-3 cells.
  17. AlSahow A, AlQallaf A, AlYousef A, Bahbahani H, Bahbahani Y, AlHelal B, et al.
    Int Urol Nephrol, 2023 Mar;55(3):721-727.
    PMID: 36136260 DOI: 10.1007/s11255-022-03368-1
    INTRODUCTION: Hemodialysis (HD) patients are at increased risk of severe COVID-19 infection but infection rates vary. Our objectives are to describe COVID-19 positive HD patients' characteristics, infection rates, and factors associated with mortality in HD COVID-19 cases in Kuwait.

    METHODS: Data on demographics, comorbidities, and treatments received, as well as mortality for HD patients admitted to hospitals for COVID-19, from 1/March to 31/July 2020, prospectively collected and analyzed.

    RESULTS: A total of 141 infected HD patients were admitted (Mean age 58 ± 16.1; Males 56%), representing 7% of the total HD population and 0.2% of all COVID-19 cases during the study period. Of those 141 infected HD patients, 27 (19%) died, and this represents 6% of total COVID-19-related mortality and 27% of the total HD mortality. In contrast, total covid-19-related mortality of all positive cases was only 0.7%, and total HD mortality during the study period was only 5%. COVID-19-positive HD patients who died were older and 59% were males. However, the differences were not statistically significant. Of the 61 infected HD patients who needed to be switched to continuous kidney replacement therapy (CKRT), 34% died, and of the 29 infected HD patients who needed admission to intensive care, 65% died.

    CONCLUSION: HD population represents a small fraction of the total population; however, positive HD COVID-19 cases represent a sizable proportion of COVID-19 cases and a significant percentage of total COVID-19-related mortality, and total HD mortality.

  18. Kumar R, Htwe O, Baharudin A, Rhani SA, Ibrahim K, Nanra JS, et al.
    J Spinal Cord Med, 2023 Jul;46(4):682-686.
    PMID: 35604343 DOI: 10.1080/10790268.2022.2067972
    OBJECTIVE: MLC601/MLC901 has demonstrated neuroprotective and neuroregenerative properties that enhance neurological recovery in stroke and traumatic brain injury. We aimed to evaluate its safety and potential efficacy in patients with severe spinal cord injury.

    METHODS: Patients with American Spinal Injury Association (ASIA) Impairment Scale (AIS) A and B were included in an open-label cohort study. Each received a course of MLC601/MLC901 for 6 months in addition to standard care and rehabilitation. Key endpoints were safety, AIS grade and motor scores at month 6 (M6).

    RESULTS: Among 30 patients included (mean age 42.2 ± 17.6 years, 24 men), 20 patients had AIS A while 10 patients had AIS B at baseline. Ten patients experienced 14 adverse events including one serious adverse event and six deaths, none were considered treatment-related. AIS improved in 25% of AIS A and 50% of AIS B. Improvement in ASIA motor score was seen most with cervical injury (median change from baseline 26.5, IQR: 6-55). These findings appear to be better than reported rates of spontaneous recovery for SCI AIS A and B.

    CONCLUSION: MLC601/MLC901 is safe and may have a role in the treatment of patients with SCI. A controlled trial is justified.

  19. Kumar R, Basu A, Bishayee B, Chatterjee RP, Behera M, Ang WL, et al.
    Environ Res, 2023 Jul 15;229:115881.
    PMID: 37084947 DOI: 10.1016/j.envres.2023.115881
    Tanning and other leather processing methods utilize a large amount of freshwater, dyes, chemicals, and salts and produce toxic waste, raising questions regarding their environmental sensitivity and eco-friendly nature. Total suspended solids, total dissolved solids, chemical oxygen demand, and ions such as chromium, sulfate, and chloride turn tannery wastewater exceedingly toxic for any living species. Therefore, it is imperative to treat tannery effluent, and existing plants must be examined and upgraded to keep up with recent technological developments. Different conventional techniques to treat tannery wastewater have been reported based on their pollutant removal efficiencies, advantages, and disadvantages. Research on photo-assisted catalyst-enhanced deterioration has inferred that both homogeneous and heterogeneous catalysis can be established as green initiatives, the latter being more efficient at degrading organic pollutants. However, the scientific community experiences significant problems developing a feasible treatment technique owing to the long degradation times and low removal efficiency. Hence, there is a chance for an improved solution to the problem of treating tannery wastewater through the development of a hybrid technology that uses flocculation as the primary treatment, a unique integrated photo-catalyst in a precision-designed reactor as the secondary method, and finally, membrane-based tertiary treatment to recover the spent catalyst and reclaimable water. This review gives an understanding of the progressive advancement of a cutting-edge membrane-based system for the management of tanning industrial waste effluents towards the reclamation of clean water. Adaptable routes toward sludge disposal and the reviews on techno-economic assessments have been shown in detail, strengthening the scale-up confidence for implementing such innovative hybrid systems.
  20. Chowdhary S, Deka R, Panda K, Kumar R, Solomon AD, Das J, et al.
    Mol Pharm, 2023 Aug 07;20(8):3698-3740.
    PMID: 37486263 DOI: 10.1021/acs.molpharmaceut.2c01080
    Human viral oncogenesis is a complex phenomenon and a major contributor to the global cancer burden. Several recent findings revealed cellular and molecular pathways that promote the development and initiation of malignancy when viruses cause an infection. Even, antiviral treatment has become an approach to eliminate the viral infections and prevent the activation of oncogenesis. Therefore, for a better understanding, the molecular pathogenesis of various oncogenic viruses like, hepatitis virus, human immunodeficiency viral (HIV), human papillomavirus (HPV), herpes simplex virus (HSV), and Epstein-Barr virus (EBV), could be explored, especially, to expand many potent antivirals that may escalate the apoptosis of infected malignant cells while sparing normal and healthy ones. Moreover, contemporary therapies, such as engineered antibodies antiviral agents targeting signaling pathways and cell biomarkers, could inhibit viral oncogenesis. This review elaborates the recent advancements in both natural and synthetic antivirals to control viral oncogenesis. The study also highlights the challenges and future perspectives of using antivirals in viral oncogenesis.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links