Displaying publications 61 - 80 of 112 in total

Abstract:
Sort:
  1. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latif MA
    J Sci Food Agric, 2017 Jul;97(9):2810-2818.
    PMID: 27778337 DOI: 10.1002/jsfa.8109
    BACKGROUND: The rice cultivar MR219 is famous for its better yield and long and fine grain quality; however, it is susceptible to blast disease. The main objective of this study was to introgress blast resistance genes into MR219 through marker-assisted selection (MAS). The rice cultivar MR219 was used as the recurrent parent, and Pongsu Seribu 1 was used as the donor.

    RESULTS: Marker-assisted foreground selection was performed using RM6836 and RM8225 to identify plants possessing blast resistance genes. Seventy microsatellite markers were used to estimate recurrent parent genome (RPG) recovery. Our analysis led to the development of 13 improved blast resistant lines with Piz, Pi2 and Pi9 broad-spectrum blast resistance genes and an MR219 genetic background. The RPG recovery of the selected improved lines was up to 97.70% with an average value of 95.98%. Selected improved lines showed a resistance response against the most virulent blast pathogen pathotype, P7.2. The selected improved lines did not express any negative effect on agronomic traits in comparison with MR219.

    CONCLUSION: The research findings of this study will be a conducive approach for the application of different molecular techniques that may result in accelerating the development of new disease-resistant rice varieties, which in turn will match rising demand and food security worldwide. © 2016 Society of Chemical Industry.

  2. Sahebi M, Hanafi MM, Rafii MY, Azizi P, Abiri R, Kalhori N, et al.
    Biomed Res Int, 2017;2017:9064129.
    PMID: 28191468 DOI: 10.1155/2017/9064129
    Silicon (Si) is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties.
  3. Jasim Aljumaili S, Rafii MY, Latif MA, Sakimin SZ, Arolu IW, Miah G
    Biomed Res Int, 2018;2018:7658032.
    PMID: 29736396 DOI: 10.1155/2018/7658032
    Aromatic rice cultivars constitute a small but special group of rice and are considered the best in terms of quality and aroma. Aroma is one of the most significant quality traits of rice, and variety with aroma has a higher price in the market. This research was carried out to study the genetic diversity among the 50 aromatic rice accessions from three regions (Peninsular Malaysia, Sabah, and Sarawak) with 3 released varieties as a control using the 32 simple sequence repeat (SSR) markers. The objectives of this research were to quantify the genetic divergence of aromatic rice accessions using SSR markers and to identify the potential accessions for introgression into the existing rice breeding program. Genetic diversity index among the three populations such as Shannon information index (I) ranged from 0.25 in control to 0.98 in Sabah population. The mean numbers of effective alleles and Shannon's information index were 0.36 and 64.90%, respectively. Similarly, the allelic diversity was very high with mean expected heterozygosity (H
    e
    ) of 0.60 and mean Nei's gene diversity index of 0.36. The dendrogram based on UPGMA and Nei's genetic distance classified the 53 rice accessions into 10 clusters. Analysis of molecular variance (AMOVA) revealed that 89% of the total variation observed in this germplasm came from within the populations, while 11% of the variation emanated among the populations. These results reflect the high genetic differentiation existing in this aromatic rice germplasm. Using all these criteria and indices, seven accessions (Acc9993, Acc6288, Acc6893, Acc7580, Acc6009, Acc9956, and Acc11816) from three populations have been identified and selected for further evaluation before introgression into the existing breeding program and for future aromatic rice varietal development.
  4. Ridzuan R, Rafii MY, Mohammad Yusoff M, Ismail SI, Miah G, Usman M
    J Sci Food Agric, 2019 Jan 15;99(1):269-280.
    PMID: 29851100 DOI: 10.1002/jsfa.9169
    BACKGROUND: Assessment of the different desirable characters among chili genotypes has expanded the effective selection for crop improvement. Identification of genetically superior parents is important in assortment of the best parents to develop new chili hybrids.

    RESULTS: This study was done to assess the hereditary assorted variety of selected genotypes of Capsicum annuum based on their morphophysiological and yield traits in two planting seasons. The biochemical properties, capsaicinoid content (capsaicin and dihydrocapsaicin), total phenolics content and antioxidant action determination of unripe and ripe chili pepper fruits were carried out in dry fruits. AVPP9813 and Kulai 907 were observed to have high fruit yields, with 541.39 and 502.64 g per plant, respectively. The most increased genotypic coefficient of variation (GCV) and phenotypic coefficient of variation (PCV) were shown by the fruit number per plant (49.71% and 66.04%, respectively). High heritability was observed in yield characters viz-à-viz fruit weight, length and girth and indicated high genetic advance. Eight groups were obtained from the cluster analysis. For the biochemical analysis, the capsaicinoid content and total phenolic content were high in Chili Bangi 3 at unripe and ripe fruit stages, while for antioxidant activity SDP203 was the highest in ripe dry fruit.

    CONCLUSION: Higher GCV and PCV, combined with moderate to high heritability and high hereditary progress, were seen in number of fruit per plant, fruit yield per plant and fruit weight per fruit. These findings are beneficial for chili pepper breeders to select desirable quantitative characters in C. annuum in their breeding program. © 2018 Society of Chemical Industry.

  5. Ismail NA, Rafii MY, Mahmud TMM, Hanafi MM, Miah G
    Biomed Res Int, 2019;2019:5904804.
    PMID: 31198786 DOI: 10.1155/2019/5904804
    Fifty-seven accessions of torch ginger (Etlingera elatior) collected from seven states in Peninsular Malaysia were evaluated for their molecular characteristics using ISSR and SSR markers to assess the pattern of genetic diversity and association among the characteristics. Diversity study through molecular characterization showed that high variability existed among the 57 torch ginger accessions. ISSR and SSR molecular markers revealed the presence of high genetic variability among the torch ginger accessions. The combination of different molecular markers offered reliable and convincing information about the genetic diversity of torch ginger germplasm. This study found that SSR marker was more informative compared to ISSR marker in determination of gene diversity, polymorphic information content (PIC), and heterozygosity in this population. SSR also revealed high ability in evaluating diversity levels, genetic structure, and relationships of torch ginger due to their codominance and rich allelic diversity. High level of genetic diversity discovered by SSR markers showed the effectiveness of this marker to detect the polymorphism in this germplasm collection.
  6. Rahaman F, Juraimi AS, Rafii MY, Uddin MK, Hassan L, Chowdhury AK, et al.
    Plants (Basel), 2021 Sep 26;10(10).
    PMID: 34685826 DOI: 10.3390/plants10102017
    Rice has been subjected to a great deal of stress during its brief existence, but it nevertheless ranked first among cereal crops in terms of demand and productivity. Weeds are characterized as one of the major biotic stresses by many researchers. This research aims to determine the most potential allelopathic rice variety among selected rice accessions. For obtaining preeminent varieties, seventeen rice genotypes were collected from Bangladesh and Malaysia. Two prevalent procedures, relay seeding and the sandwich technique were employed to screen the seventeen rice (donor) accessions against barnyard grass (tested plant). In both approaches, only the BR17 variety demonstrated substantial inhibition of germination percentage, root length, and dry matter of barnyard grass. The rice variety BR17 exclusively took the zenith position, and it inhibited the development of barnyard grass by more than 40-41% on an average. BR17 is originated from KN-1B-361-1-8-6-10 (Indonesia) and developed by the Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh in 1985, having a high yielding capacity of more than 6 t/ha. Our study suggested that the usage of the allelopathy-weed inverse relationship to treat the weed problem can be a fantastic choice in the twenty-first century.
  7. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Al Mamun M
    Sci Rep, 2022 09 19;12(1):15658.
    PMID: 36123374 DOI: 10.1038/s41598-022-19003-z
    This investigation was carried out to explore G × E interaction for yield and its associated attributes in 30 Bambara groundnut genotypes across four environments in tropical Malaysia. Such evaluations are essential when the breeding program's objective is to choose genotypes with broad adaption and yield potential. Studies of trait relationships, variance components, mean performance, and genetic linkage are needed by breeders when designing, evaluating, and developing selection criteria for improving desired characteristics in breeding programs. The evaluation of breeding lines of Bambara groundnut for high yield across a wide range of environments is important for long-term production and food security. Each site's experiment employed a randomized complete block design with three replicates. Data on vegetative and yield component attributes were recorded. The analysis of variance revealed that there were highly significant (p ≤ 0.01) differences among the 30 genotypes for all variables evaluated. A highly significant and positive correlation was identified between yield per hectare and dry seed weight (0.940), hundred seed weight (0.844), fresh pod weight (0.832), and total pod weight (0.750); the estimated correlation between dry weight of pods and seed yield was 1.0. The environment was more important than genotype and G × E in determining yield and yield components.A total of 49% variation is covered by PC1 (33.9%) and PC2 (15.1%) and the genotypes formed five distinct clusters based on Ward hierarchical clustering (WHC) method. The genotypes S5G1, S5G3, S5G5, S5G6, S5G8, S5G7, S5G2, S5G4, S5G10, S5G13, S5G11, and S5G14 of clusters I, II, and III were closest to the ideal genotype with superior yield across the environments. The PCA variable loadings revealed that an index based on dry pod weight, hundred seed weight, number of total pods and fresh pod weight could be used as a selection criteria to improve seed yield of Bambara groundnut.
  8. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Al Mamun M
    Sci Rep, 2022 01 07;12(1):245.
    PMID: 34996953 DOI: 10.1038/s41598-021-03692-z
    In a breeding program, studies of genotypic and phenotypic relationships among agricultural crop traits are useful to design, evaluate, and develop selection criteria for desirable traits. Using path coefficient analysis, the present study was executed to estimate the phenotypic, genotypic, and environmental correlation coefficients between yield and yield-related traits and to determine the direct and indirect effects of yield-related traits on yield per plant. A total of 30 genotypes of Vigna subterranea were studied under tropical conditions at two sites over two planting seasons (considered as four environments). The experiment at each site used a randomized complete block design with three replicates. Data were collected on vegetative and yield component attributes. Based on analysis of variance, pooled results showed that there were positive and highly significant differences (p ≤ 0.01) among the 30 genotypes for all attributes studied. Highly significant and positive strong correlation at phenotypic level was observed for dry seed weight (0.856), hundred seed weight (0.754), fresh pod weight (0.789), and total pod weight (0.626) with yield in kg per hectare, while moderate positive correlations were observed for harvest cut (0.360) and days to maturity (0.356). However, a perfect positive correlation was observed for the dry weight of pods with seed yield. In contrast, days to 50% flowering (- 0.350) showed a negative significant relationship with yield per hectare. The dried pod weight attribute (1.00) had a high positive direct effect on yield. Fresh pod weight had the greatest indirect effect on yield per hectare, followed by the number of total pods by dry pod weight. As a result, dry pod weight, hundred seed weight, number of total pods, and fresh pod weight could be used as selection criteria to improve the seed yield of Bambara groundnut (Vigna subterranea).
  9. Chukwu SC, Ibeji CA, Ogbu C, Oselebe HO, Okporie EO, Rafii MY, et al.
    Sci Rep, 2022 Nov 09;12(1):19054.
    PMID: 36351926 DOI: 10.1038/s41598-022-16833-9
    Mushrooms are fleshy fungi valued globally for their nutritional and medical benefits. The study was conducted at Ebonyi State University Mushroom Center, Abakaliki, to determine an optimum level of limestone (CaCO3) on the genotypes for maximum growth and yield. The experiment was carried out as a split-plot experiment in a completely randomized design (CRD) with the use of Oyster mushroom variety. The two genotypes (GI and GII) were placed in the whole plot while limestone was placed in the sub-plot which consisted of five rates of CaCO3(Og,5 g, 10 g, 15 g and 20 g). Sawdust and rice husk substrates were used at the ratio of 60:40 and sterilized for six hours at 121 °C using the steam sterilization cylinder. The media bags were off-loaded after one day and allowed to further cool for another day before inoculation. The cultured spawn was used to inoculate the media upon cooling at room temperature. Data were collected on agro-morphological parameters such as primordial initiation, stalk height, stalk diameter, number of branches, number of fruits, number of productive bags, fresh and dry weights, and subjected to analysis of variance (ANOVA). The result obtained indicated that there was a significant difference (P  0.05) in all parameters evaluated except the stalk diameter. Genotype I initiated more primordial compared to primordial initiation in genotype II and they differed significantly (p 
  10. Alam MA, Juraimi AS, Rafii MY, Hamid AA, Aslani F, Hakim MA
    Biol Res, 2016 Apr 18;49:24.
    PMID: 27090643 DOI: 10.1186/s40659-016-0084-5
    This study was undertaken to determine the effects of varied salinity regimes on the morphological traits (plant height, number of leaves, number of flowers, fresh and dry weight) and major mineral composition of 13 selected purslane accessions. Most of the morphological traits measured were reduced at varied salinity levels (0.0, 8, 16, 24 and 32 dS m(-1)), but plant height was found to increase in Ac1 at 16 dS m(-1) salinity, and Ac13 was the most affected accession. The highest reductions in the number of leaves and number of flowers were recorded in Ac13 at 32 dS m(-1) salinity compared to the control. The highest fresh and dry weight reductions were noted in Ac8 and Ac6, respectively, at 32 dS m(-1) salinity, whereas the highest increase in both fresh and dry weight was recorded in Ac9 at 24 dS m(-1) salinity compared to the control. In contrast, at lower salinity levels, all of the measured mineral levels were found to increase and later decrease with increasing salinity, but the performance of different accessions was different depending on the salinity level. A dendrogram was also constructed by UPGMA based on the morphological traits and mineral compositions, in which the 13 accessions were grouped into 5 clusters, indicating greater diversity among them. A three-dimensional principal component analysis also confirmed the output of grouping from cluster analysis.
  11. Haque MA, Rafii MY, Yusoff MM, Ali NS, Yusuff O, Arolu F, et al.
    Mol Biol Rep, 2023 Mar;50(3):2795-2812.
    PMID: 36592290 DOI: 10.1007/s11033-022-07853-9
    Natural and man-made ecosystems worldwide are subjected to flooding, which is a form of environmental stress. Genetic variability in the plant response to flooding involves variations in metabolism, architecture, and elongation development that are related with a low oxygen escape strategy and an opposing quiescence scheme that enables prolonged submergence endurance. Flooding is typically associated with a decrease in O2 in the cells, which is especially severe when photosynthesis is absent or limited, leading to significant annual yield losses globally. Over the past two decades, considerable advancements have been made in understanding of mechanisms of rice adaptation and tolerance to flooding/submergence. The mapping and identification of Sub1 QTL have led to the development of marker-assisted selection (MAS) breeding approach to improve flooding-tolerant rice varieties in submergence-prone ecosystems. The Sub1 incorporated in rice varieties showed tolerance during flash flood, but not during stagnant conditions. Hence, gene pyramiding techniques can be applied to combine/stack multiple resistant genes for developing flood-resilient rice varieties for different types of flooding stresses. This review contains an update on the latest advances in understanding the molecular mechanisms, metabolic adaptions, and genetic factors governing rice flooding tolerance. A better understanding of molecular genetics and adaptation mechanisms that enhance flood-tolerant varieties under different flooding regimes was also discussed.
  12. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Al Mamun M
    Sci Rep, 2021 Nov 23;11(1):22791.
    PMID: 34815427 DOI: 10.1038/s41598-021-01411-2
    The stability and high yielding of Vigna subterranea L. Verdc. genotype is an important factor for long-term development and food security. The effects of G × E interaction on yield stability in 30 Bambara groundnut genotypes in four different Malaysian environments were investigated in this research. The experiment used a randomized complete block design with three replications in each environment. Over multiple harvests, yield component traits such as the total number of pods per plant, fresh pods weight (g), hundred seeds weight (g), and yield per hectare were evaluated in the main and off-season in 2020 and 2021. Stability tests for multivariate stability parameters were performed based on analyses of variance. For all the traits, the pooled analysis of variance revealed highly significant (p 
  13. Ridzuan R, Rafii MY, Ismail SI, Mohammad Yusoff M, Miah G, Usman M
    Int J Mol Sci, 2018 Oct 11;19(10).
    PMID: 30314374 DOI: 10.3390/ijms19103122
    Chili anthracnose is one of the most devastating fungal diseases affecting the quality and yield production of chili. The aim of this review is to summarize the current knowledge concerning the chili anthracnose disease, as well as to explore the use of marker-assisted breeding programs aimed at improving anthracnose disease resistance in this species. This disease is caused by the Colletotrichum species complex, and there have been ongoing screening methods of chili pepper genotypes with resistance to anthracnose in the field, as well as in laboratories. Conventional breeding involves phenotypic selection in the field, and it is more time-consuming compared to molecular breeding. The use of marker-assisted selection (MAS) on the basis of inheritance, the segregation ratio of resistance to susceptibility, and the gene-controlling resistance may contribute to the development of an improved chili variety and speed up the selection process, while also reducing genetic drag in the segregating population. More importantly, by using molecular markers, the linkage groups are determined dominantly and co-dominantly, meaning that the implementation of a reliable method to produce resistant varieties is crucial in future breeding programs. This updated information will offer a supportive direction for chili breeders to develop an anthracnose-resistant chili variety.
  14. Halim AABA, Rafii MY, Osman MB, Chukwu SC, Oladosu Y
    Foods, 2023 May 31;12(11).
    PMID: 37297452 DOI: 10.3390/foods12112207
    Heat treatment could affect the structure and properties of rice varieties. The present study was conducted in order to determine the effects of heat treatment on the physicochemical properties and tissue structure of Mahsuri Mutan, Basmati 370 and MR219 rice varieties. The three rice varieties were subjected to heat treatment (ageing) at 90 °C, using an oven, for 3 h. After the heat treatment, the samples were cooled at room temperature (25 °C) for 1 h. Physicochemical properties, such as alkali digestion value, water uptake ratio, solids in cooking water, high kernel elongation ratio and amylose contents, were determined. The procedure used in determining both apparent and absolute amylose involved measuring the iodine affinity of defatted whole starch. Ahigh-performance anion-exchange chromatograph was used to analyse branch chain length distribution of amylopectin quantitatively. The starch structure of the rice samples was observed under a scanning electron microscope. Data collected on physicochemical traits, heat treatment and control (ageing and non-ageing) were subjected to an analysis of variance using SAS software version 9.4. In this study, Mahsuri Mutan and Basmati 370 showed superior high kernel elongation as compared to their respective rice progenies. This study also found that heat treatment directly affected the increasingly high kernel elongation for both populations. The phenotypic correlation co-efficient indicated that there was a high positive correlation between high kernel elongation and water uptake ratio, implying that selection for water uptake ratio would increase the high kernel elongation characteristic. The heat treatment showed significant difference in all the physicochemical traits of the varieties studied. Heat treatment also affected the very long branch chains of starch, such as amylose. Observation under an electron microscope showed that the samples subjected to heat treatment had more cracks on the tissue structure compared to normal rice samples. The hexagon structure in Mahsuri Mutan produced a greater elongation effect on its kernel. The findings from this study could be useful to breeders in the selection and development of a new high kernel elongation rice variety.
  15. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Al Mamun M, Kundu BC
    Mol Biol Rep, 2023 Sep;50(9):7619-7637.
    PMID: 37531035 DOI: 10.1007/s11033-023-08693-x
    BACKGROUND: A set of 44 selected Bambara groundnut (Vigna subterranea [L.] Verdc.) accessions was sampled from 11 distinct populations of four geographical zones to assess the genetic drift, population structure, phylogenetic relationship, and genetic differentiation linked with ISSR primers.

    METHODS AND RESULTS: The amplification of genomic DNA with 32 ISSR markers detected an average of 97.64% polymorphism while 35.15% and 51.08% polymorphism per population and geographical zone, respectively. Analysis of molecular variance revealed significant variation within population 75% and between population 25% whereas within region 84% and between region 16%. The Bidillali exposed greater number of locally common band i.e., NLCB (≤ 25%) = 25 and NLCB (≤ 50%) = 115 were shown by Cancaraki while the lowest was recorded as NLCB (≤ 25%) = 6 and NLCB (≤ 50%) = 72 for Roko and Maibergo, accordingly. The highest PhiPT value was noted between Roko and Katawa (0.405*) whereas Nei's genetic distance was maximum between Roko and Karu (0.124). Based on Nei's genetic distance, a radial phylogenetic tree was constructed that assembled the entire accessions into 3 major clusters for further confirmation unrooted NJ vs NNet split tree analysis based on uncorrected P distance exposed the similar result. Principal coordinate analysis showed variation as PC1 (15.04%) > PC2 (5.81%).

    CONCLUSIONS: The current study leads to prompting the genetic improvement and future breeding program by maximum utilization and better conservation of existing accessions. The accessions under Cancaraki and Jatau are population documented for future breeding program due to their higher genetic divergence and homozygosity.

  16. Oladosu Y, Rafii MY, Abdullah N, Magaji U, Hussin G, Ramli A, et al.
    Biomed Res Int, 2016;2016:7985167.
    PMID: 27429981 DOI: 10.1155/2016/7985167
    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw.
  17. Ismail NA, Rafii MY, Mahmud TM, Hanafi MM, Miah G
    Mol Biol Rep, 2016 Dec;43(12):1347-1358.
    PMID: 27585572
    Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.
  18. Sahmat SS, Rafii MY, Oladosu Y, Jusoh M, Hakiman M, Mohidin H
    Sci Rep, 2024 Jan 19;14(1):1698.
    PMID: 38242885 DOI: 10.1038/s41598-023-50381-0
    Evaluation of genotypes to identify high-yielding and stable varieties is crucial for chilli production sustainability and food security. These analyses are essential, particularly when the breeding program aims to select lines with great adaptability and stability. Thirty chilli genotypes were evaluated for yield stability under four soilless planting systems viz; fertigation, HydroStock (commercial hydrogel), BioHydrogel (biodegradable hydrogel), and hydroponic to study the influence of genotype by environment interaction. The research used a split-plot randomized complete block design (RCBD) with two cropping cycles and five replications. The GGE biplot analysis was employed to assess the mean versus stability perspective in explaining the variation in genotypic and genotype-by-environment effects on the yield-related attributes for yield per plant, fruit number, fruit length, and width. Stability analysis denoted genotypes G26 and G30 as the most stable for yield per plant, while G16, G22, and G30 were stable for the number of fruits per plant. Among the four planting systems evaluated, HydroStock and BioHydrogel outperformed the others in yield per plant, demonstrating the highest level of informativeness or discrimination. These findings offer critical insights for future crop breeding programs and the optimization of agricultural practices.
  19. Usman MG, Rafii MY, Martini MY, Yusuff OA, Ismail MR, Miah G
    Cell Stress Chaperones, 2018 Mar;23(2):223-234.
    PMID: 28812232 DOI: 10.1007/s12192-017-0836-3
    Backcrossing together with simple sequence repeat marker strategy was adopted to improve popular Malaysian chilli Kulai (Capsicum annuum L.) for heat tolerance. The use of molecular markers in backcross breeding and selection contributes significantly to overcoming the main drawbacks such as increase linkage drag and time consumption, in the ancient manual breeding approach (conventional), and speeds up the genome recovery of the recurrent parent. The strategy was adopted to introgress heat shock protein gene(s) from AVPP0702 (C. annuum L.), which are heat-tolerant, into the genetic profile of Kulai, a popular high-yielding chilli but which is heat sensitive. The parents were grown on seed trays, and parental screening was carried out with 252 simple sequence repeat markers. The selected parents were crossed and backcrossed to generate F1 hybrids and backcross generations. Sixty-eight markers appeared to be polymorphic and were used to assess the backcross generation; BC1F1, BC2F1 and BC3F1. The average recipient allele of the selected four BC1F1 plants was 80.75% which were used to produce the BC2F1 generation. BC1-P7 was the best BC1F1 plant because it had the highest recovery at 83.40% and was positive to Hsp-linked markers (Hsp70-u2 and AGi42). After three successive generations of backcrossing, the average genome recovery of the recurrent parent in the selected plants in BC3F1 was 95.37%. Hsp gene expression analysis was carried out on BC1F1, BC2F1 and BC3F1 selected lines. The Hsp genes were found to be up-regulated when exposed to heat treatment. The pattern of Hsp expression in the backcross generations was similar to that of the donor parent. This confirms the successful introgression of a stress-responsive gene (Hsp) into a Kulai chilli pepper variety. Furthermore, the yield performance viz. plant height, number of fruits, fruit length and weight and total yield of the improved plant were similar with the recurrent parent except that the plant height was significantly lower than the Kulai (recurrent) parent.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links