Displaying publications 61 - 80 of 90 in total

Abstract:
Sort:
  1. Somchit N, Wong CW, Zuraini A, Ahmad Bustamam A, Hasiah AH, Khairi HM, et al.
    Drug Chem Toxicol, 2006;29(3):237-53.
    PMID: 16777703
    Itraconazole and fluconazole are potent wide spectrum antifungal drugs. Both of these drugs induce hepatotoxicity clinically. The mechanism underlying the hepatotoxicity is unknown. The purpose of this study was to investigate the role of phenobarbital (PB), an inducer of cytochrome P450 (CYP), and SKF 525A, an inhibitor of CYP, in the mechanism of hepatotoxicity induced by these two drugs in vivo. Rats were pretreated with PB (75 mg/kg for 4 days) prior to itraconazole or fluconazole dosing (20 and 200 mg/kg for 4 days). In the inhibition study, for 4 consecutive days, rats were pretreated with SKF 525A (50 mg/kg) or saline followed by itraconazole or fluconazole (20 and 200 mg/kg) Dose-dependent increases in plasma alanine aminotransferase (ALT), gamma-glutamyl transferase (gamma-GT), and alkaline phosphatase (ALP) activities and in liver weight were detected in rats receiving itraconazole treatment. Interestingly, pretreatment with PB prior to itraconazole reduced the ALT and gamma-GT activities and the liver weight of rats. No changes were observed in rats treated with fluconazole. Pretreatment with SKF 525A induced more severe hepatotoxicity for both itraconazole and fluconazole. CYP 3A activity was inhibited dose-dependently by itraconazole treatment. Itraconazole had no effects on the activity of CYP 1A and 2E. Fluconazole potently inhibited all three isoenzymes of CYP. PB plays a role in hepatoprotection to itraconazole-induced but not fluconazole-induced hepatotoxicity. SKF 525A enhanced the hepatotoxicity of both antifungal drugs in vivo. Therefore, it can be concluded that inhibition of CYP may play a key role in the mechanism of hepatotoxicity induced by itraconazole and fluconazole.
  2. Zakaria ZA, Gopalan HK, Zainal H, Mohd Pojan NH, Morsid NA, Aris A, et al.
    Yakugaku Zasshi, 2006 Nov;126(11):1171-8.
    PMID: 17077618
    AIM: The present study was carried out to evaluate the antinociceptive, anti-inflammatory and antipyretic effects of chloroform extract of Solanum nigrum leaves using various animal models.

    METHODS: The extract was prepared by soaking (1:20; w/v) the air-dried powdered leaves (20 g) in chloroform for 72 hrs followed by evaporation (40 degrees C) under reduced pressure to dryness (1.26 g) and then dissolved (1:50; w/v) in dimethylsulfoxide (DMSO). The supernatant, considered as the stock solution with dose of 200 mg/kg, was diluted using DMSO to 20 and 100 mg/kg, and all doses were administered (s.c.; 10 ml/kg) in mice/rats 30 min prior to tests.

    RESULTS: The extract exhibited significant (p<0.05) antinociceptive activity when assessed using the abdominal constriction, hot plate and formalin tests. The extract also produced significant (p<0.05) anti-inflammatory and antipyretic activities when assessed using the carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests. Overall, the activities occurred in a dose-independent manner.

    CONCLUSION: The present study demonstrated that the lipid-soluble extract of S. nigrum leaves possessed antinociceptive, anti-inflammatory and anti-pyretic properties and confirmed the traditional claims.

  3. Lee YZ, Ming-Tatt L, Lajis NH, Sulaiman MR, Israf DA, Tham CL
    Molecules, 2012 Dec 07;17(12):14555-64.
    PMID: 23222902 DOI: 10.3390/molecules171214555
    A sensitive and accurate high performance liquid chromatography with ultraviolet/visible light detection (HPLC-UV/VIS) method for the quantification of 2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) in rat plasma was developed and validated. BHMC and the internal standard, harmaline, were extracted from plasma samples by a simple liquid-liquid extraction using 95% ethyl acetate and 5% methanol. Plasma concentration of BHMC and internal standard were analyzed by reversed phase chromatography using a C₁₈ column (150 × 4.6 mm I.D., particle size 5 µm) and elution with a gradient mobile phase of water and methanol at a flow rate of 1.0 mL/min. Detection of BHMC and internal standard was done at a wavelength of 380 nm. The limit of quantification was 0.02 µg/mL. The calibration curves was linear (R² > 0.999) over the concentration range of 0.02-2.5 µg/mL. Intra- and inter-day precision were less than 2% coefficient of variation. The validated method was then applied to a pharmacokinetic study in rats by intravenous administration of BHMC at a single dose of 10 mg/kg. Pharmacokinetic parameters such as half-life, maximum plasma concentration, volume of distribution, clearance and elimination rate constant for BHMC were calculated.
  4. Somchit N, Norshahida AR, Hasiah AH, Zuraini A, Sulaiman MR, Noordin MM
    Hum Exp Toxicol, 2004 Nov;23(11):519-25.
    PMID: 15625777
    Itraconazole and fluconazole are oral antifungal drugs, which have a wide spectrum antifungal activity and better efficacy than the older drugs. However, both drugs have been associated with hepatotoxicity in susceptible patients. The mechanism of antifungal drug-induced hepatotoxicity is largely unknown. Therefore, the aim of this present study was to investigate and compare the hepatotoxicity induced by these drugs in vivo. Rats were treated intraperitoneally with itraconazole or fluconazole either single (0, 10, 100 and 200 mg/kg) or subchronic (0, 10, 50 and 100 mg/kg per day for 14 days) doses. Plasma and liver samples were taken at the end of the study. A statistically significant and dose dependent increase of plasma alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities were detected in the subchronic itraconazole-treated group. In addition, dose-dependent hepatocellular necrosis, degeneration of periacinar and mizonal hepatocytes, bile duct hyperplasia and biliary cirrhosis and giant cell granuloma were observed histologically in the same group. Interestingly, fluconazole treated rats had no significant increase in transaminases for both single and subchronic groups. In the subchronic fluconazole treated rats, only mild degenerative changes of centrilobular hepatocytes were observed. These results demonstrated that itraconazole was a more potent hepatotoxicant than fluconazole in vivo in rats.
  5. Zakaria ZA, Safarul M, Valsala R, Sulaiman MR, Fatimah CA, Somchit MN, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2005 Jul;372(1):55-62.
    PMID: 16133487
    A series of preliminary studies was carried out to evaluate the antinociceptive (pain relief) activity of the aqueous extract of Corchorus olitorius L. leaves (COAE) and to determine the influence of temperature and opioid receptors on COAE activity using the abdominal constriction and hot plate tests in mice. COAE, at concentrations of 10, 25, 50, 75, and 100%, showed both peripheral and central antinociception that are non-concentration- and concentration-dependent respectively. The peripheral activity was clearly observed at a concentration of 25% and diminished at a concentration of 100%, while the central activity was observed at all the concentrations of COAE used. Furthermore, the insignificant results obtained indicated that this peripheral activity (at concentrations of 25 and 50%) was comparable to that of morphine (0.8 mg/kg). Pre-heating COAE at a temperature of 80 degrees C and 100 degrees C, or 60 degrees C and 80 degrees C was found to enhance its peripheral and central antinociception respectively. Pre-treatment with naloxone (10 mg/kg), a general opioid receptor antagonist, for 5 min, followed by COAE, was found to completely block its peripheral, but not central, antinociceptive activity. Based on this observation, we conclude that the antinociceptive activity exhibited by C. olitorius is enhanced by the increase in temperature and may be mediated peripherally, but not centrally, at least in part, via an opioid receptor.
  6. Zakaria ZA, Sulaiman MR, Somchit MN, Jais AM, Ali DI
    J Pharm Pharm Sci, 2005;8(2):199-206.
    PMID: 16124931
    To determine the involvement of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway in aqueous supernatant of haruan (Channa striatus) fillet (ASH) antinociception using the acetic acid-induced abdominal constriction test.
  7. Pariyani R, Ismail IS, Azam AA, Abas F, Shaari K, Sulaiman MR
    Biomed Res Int, 2015;2015:742420.
    PMID: 26819955 DOI: 10.1155/2015/742420
    The term Java tea refers to the decoction of Orthosiphon stamineus (OS) Benth (Lamiaceae) leaves, which are widely consumed by the people in Europe and South East Asian countries. The OS leaves are known for their use in traditional medicinal systems as a prophylactic and curative agent for urinary stone, diabetes, and hypertension and also as a diuretic agent. The present study was aimed at evaluating its possible toxicity. Herein, the major phytochemical constituents of microwave dried OS leaf, which is the common drying process for tea sachets in the market, were also identified. The acute oral toxicity test of aqueous, 50% aqueous ethanolic, and ethanolic extracts of OS was performed at a dose of 5000 mg/Kg body weight of Sprague-Dawley rats. During the 14-day study, the animals were observed for any mortality, behavioral, motor-neuronal abnormalities, body weight, and feed-water consumption pattern. The hematological and serum biochemical parameters to assess the kidney and liver functions were carried out, along with the histological analysis of these organs. It was found that all microwave dried OS leaf extracts did not cause any toxic effects or mortality at the administered dose. No abnormality was noticed in all selected parameters in rats of both sexes as compared with their respective control groups. Thus, the possible oral lethal dose for microwave dried Java tea leaves is more than 5000 mg/Kg body weight.
  8. Zulazmi NA, Gopalsamy B, Farouk AA, Sulaiman MR, Bharatham BH, Perimal EK
    Fitoterapia, 2015 Sep;105:215-21.
    PMID: 26205045 DOI: 10.1016/j.fitote.2015.07.011
    Neuropathic pain is a chronic condition that is difficult to be treated. Current therapies available are either ineffective or non-specific thus requiring newer treatment approaches. In this study, we investigated the antiallodynic and antihyperalgesic effects of zerumbone, a bioactive sesquiterpene from Zingiber zerumbet in chronic constriction injury (CCI)-induced neuropathic pain animal model. Our findings showed that single and repeated dose of intra-peritoneal administration of zerumbone (5, 10, 50, 100 mg/kg) significantly attenuated the CCI-induced neuropathic pain when evaluated using the electronic von Frey anesthesiometer, cold plate, Randall-Selitto analgesiometer and the Hargreaves plantar test. Zerumbone significantly alleviated tactile and cold allodynia as well as mechanical and thermal hyperalgesia. Our findings are in comparison to the positive control drugs thatused gabapentin (20 mg/kgi.p.) and morphine (1 mg/kgi.p.). Together, these results showed that the systemic administration of zerumbone produced marked antiallodynic and antihyperalgesic effects in the CCI-induced neuropathic pain in mice and may serve as a potential lead compound for further analysis.
  9. Zakaria ZA, Mat Jais AM, Goh YM, Sulaiman MR, Somchit MN
    Clin Exp Pharmacol Physiol, 2007 Mar;34(3):198-204.
    PMID: 17250639
    1. The present study was performed in order to determine the amino acid and fatty acid composition of an aqueous extract of the freshwater fish Channa striatus, obtained by soaking (1:2, w/v) fresh fillets overnight in a chloroform:methanol (2:1, v/v) solvent, to elucidate the mechanism responsible for its antinociceptive activity and to clarify the relationship between the presence of the amino and fatty acids and the expected activity. 2. The aqueous extract was found to contain all amino acids with the major amino acids glycine, alanine, lysine, aspartic acid and proline making up 35.77 +/- 0.58, 10.19 +/- 1.27, 9.44 +/- 0.56, 8.53 +/- 1.15 and 6.86 +/- 0.78% of the total protein, respectively. 3. In addition, the aqueous extract was found to have a high palmitic acid (C16:0) content, which contributed approximately 35.93 +/- 0.63% to total fatty acids. The other major fatty acids in the aqueous extract were oleic acid (C18:1), stearic acid (C18:0), linoleic acid (C18:2) and arachidonic acid (C20:4), contributing 22.96 +/- 0.40, 15.31 +/- 0.33, 11.45 +/- 0.31 and 7.44 +/- 0.83% of total fatty acids, respectively. 4. Furthermore, the aqueous extract was demonstrated to possess concentration-dependent antinociceptive activity, as expected, when assessed using the abdominal constriction test in mice. 5. It is concluded that the aqueous extract of C. striatus contains all the important amino acids, but only some of the important fatty acids, which are suggested to play a key role in the observed antinociceptive activity of the extract, as well as in the traditionally claimed wound healing properties of the extract.
  10. Gopalsamy B, Chia JSM, Farouk AAO, Sulaiman MR, Perimal EK
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858809 DOI: 10.3390/molecules25173880
    Zerumbone, a monocyclic sesquiterpene from the wild ginger plant Zingiber zerumbet (L.) Smith, attenuates allodynia and hyperalgesia. Currently, its mechanisms of action in neuropathic pain conditions remain unclear. This study examines the involvement of potassium channels and opioid receptors in zerumbone-induced analgesia in a chronic constriction injury (CCI) neuropathic pain mice model. Male Institute of Cancer Research (ICR) mice were subjected to CCI and behavioral responses were tested on day 14. Responses toward mechanical allodynia and thermal hyperalgesia were tested with von Frey's filament and Hargreaves' tests, respectively. Symptoms of neuropathic pain were significantly alleviated following treatment with zerumbone (10 mg/kg; intraperitoneal, i.p.). However, when the voltage-dependent K+ channel blocker tetraethylammonium (TEA, 4 mg/kg; i.p.), ATP-sensitive K+ channel blocker, glibenclamide (GLIB, 10 mg/kg; i.p.); small-conductance Ca2+-activated K+ channel inhibitor apamin (APA, 0.04 mg/kg; i.p.), or large-conductance Ca2+-activated K+ channel inhibitor charybdotoxin (CHAR, 0.02 mg/kg; i.p.) was administered prior to zerumbone (10 mg/kg; i.p.), the antiallodynic and antihyperalgesic effects of zerumbone were significantly reversed. Additionally, non-specific opioid receptors antagonist, naloxone (NAL, 10 mg/kg; i.p.), selective µ-, δ- and κ-opioid receptor antagonists; β-funaltrexamine (β-FN, 40 mg/kg; i.p.), naltrindole (20 mg/kg; s.c.), nor-binaltorphamine (10 mg/kg; s.c.) respectively attenuated the antiallodynic and antihyperalgesic effects of zerumbone. This outcome clearly demonstrates the participation of potassium channels and opioid receptors in the antineuropathic properties of zerumbone. As various clinically used neuropathic pain drugs also share this similar mechanism, this compound is, therefore, a highly potential substitute to these therapeutic options.
  11. Abu Bakar NA, Sulaiman MR, Lajis N, Akhtar MN, Mohamad AS
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S711-S717.
    PMID: 33828366 DOI: 10.4103/jpbs.JPBS_344_19
    Introduction: Pain is a major global health issue, where its pharmacotherapy prompts unwanted side effects; hence, the development of effective alternative compounds from natural derivatives with lesser side effects is clinically needed. Chalcone; the precursors of flavonoid, and its derivatives have been widely investigated due to its pharmacological properties.

    Objective: This study addressed the therapeutic effect of 3-(2,5-dimethoxyphenyl)-1-(5-methyl furan-2-yl) prop-2-en-1-one (DMPF-1); synthetic chalcone derivative, on antinociceptive activity in vivo.

    Materials and Methods: The antinociceptive profile was evaluated using acetic-acid-induced abdominal writhing, hot plate, and formalin-induced paw licking test. Capsaicin, phorbol 12-myristate 12 acetate (PMA), and glutamate-induced paw licking test were carried out to evaluate their potential effects toward different targets.

    Results: It was shown that the doses of 0.1, 0.5, 1, and 5 mg/kg of DMPF-1 given via intraperitoneal injection showed significant reduction in writhing responses and increased the latency time in hot-plate test where reduced time spent on licking the injected paw in formalin and dose contingency inhibition was observed. The similar results were observed in capsaicin, PMA, and glutamate-induced paw licking test. In addition, the challenge with nonselective opioid receptor antagonist (naloxone) aimed to evaluate the involvement of the opioidergic system, which showed no reversion in analgesic profile in formalin and hot-plate test.

    Conclusion: Collectively, this study showed that DMPF-1 markedly inhibits both peripheral and central nociception through the mechanism involving an interaction with vanilloid and glutamatergic system regardless of the activation of the opioidergic system.

  12. Pui Ping C, Akhtar MN, Israf DA, Perimal EK, Sulaiman MR
    Molecules, 2020 Nov 18;25(22).
    PMID: 33217904 DOI: 10.3390/molecules25225385
    The perception of pain caused by inflammation serves as a warning sign to avoid further injury. The generation and transmission of pain impulses involves various pathways and receptors. Cardamonin isolated from Boesenbergia rotunda (L.) Mansf. has been reported to exert antinociceptive effects in thermal and mechanical pain models; however, the precise mechanism has yet to be examined. The present study investigated the possible mechanisms involved in the antinociceptive activity of cardamonin on protein kinase C, N-methyl-d-aspartate (NMDA) and non-NMDA glutamate receptors, l-arginine/cyclic guanosine monophosphate (cGMP) mechanism, as well as the ATP-sensitive potassium (K+) channel. Cardamonin was administered to the animals intra-peritoneally. Present findings showed that cardamonin significantly inhibited pain elicited by intraplantar injection of phorbol 12-myristate 13-acetate (PMA, a protein kinase C activator) with calculated mean ED50 of 2.0 mg/kg (0.9-4.5 mg/kg). The study presented that pre-treatment with MK-801 (NMDA receptor antagonist) and NBQX (non-NMDA receptor antagonist) significantly modulates the antinociceptive activity of cardamonin at 3 mg/kg when tested with glutamate-induced paw licking test. Pre-treatment with l-arginine (a nitric oxide precursor), ODQ (selective inhibitor of soluble guanylyl cyclase) and glibenclamide (ATP-sensitive K+ channel inhibitor) significantly enhanced the antinociception produced by cardamonin. In conclusion, the present findings showed that the antinociceptive activity of cardamonin might involve the modulation of PKC activity, NMDA and non-NMDA glutamate receptors, l-arginine/nitric oxide/cGMP pathway and ATP-sensitive K+ channel.
  13. Rajajendram R, Tham CL, Akhtar MN, Sulaiman MR, Israf DA
    Mediators Inflamm, 2015;2015:176926.
    PMID: 26300589 DOI: 10.1155/2015/176926
    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The interaction between airway epithelium and inflammatory mediators plays a key role in the pathogenesis of asthma. In vitro studies evaluated the inhibitory effects of 3-(2,5-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DMPF-1), a synthetic chalcone analogue, upon inflammation in the A549 lung epithelial cell line. DMPF-1 selectively inhibited TNF-α-stimulated CC chemokine secretion (RANTES, eotaxin-1, and MCP-1) without any effect upon CXC chemokine (GRO-α and IL-8) secretion. Western blot analysis further demonstrated that the inhibitory activity resulted from disruption of p65NF-κB nuclear translocation without any effects on the mitogen-activated protein kinase (MAPK) pathway. Treatment of ovalbumin-sensitized and ovalbumin-challenged BALB/c mice with DMPF-1 (0.2-100 mg/kg) demonstrated significant reduction in the secretion and gene expression of CC chemokines (RANTES, eotaxin-1, and MCP-1) and Th2 cytokines (IL-4, IL-5, and IL-13). Furthermore, DMPF-1 treatment inhibited eosinophilia, goblet cell hyperplasia, peripheral blood total IgE, and airway hyperresponsiveness in ovalbumin-sensitized and ovalbumin-challenged mice. In conclusion, these findings demonstrate the potential of DMPF-1, a nonsteroidal compound, as an antiasthmatic agent for further pharmacological evaluation.
  14. Kaswan NK, Mohammed Izham NAB, Tengku Mohamad TAS, Sulaiman MR, Perimal EK
    Molecules, 2021 Jun 16;26(12).
    PMID: 34208700 DOI: 10.3390/molecules26123677
    Cardamonin, a naturally occurring chalcone isolated from Alpinia species has shown to possess strong anti-inflammatory and anti-nociceptive activities. Previous studies have demonstrated that cardamonin exerts antihyperalgesic and antiallodynic properties in chronic constriction injury (CCI)-induced neuropathic pain animal model. However, the mechanisms underlying cardamonin's effect have yet to be fully understood. The present study aims to investigate the involvement of the serotonergic system in cardamonin induced antihyperalgesic and antiallodynic effects in CCI-induced neuropathic pain mice model. The neuropathic pain symptoms in the CCI mice model were assessed using Hargreaves Plantar test and von-Frey filament test on day 14 post-surgery. Central depletion of serotonin along the descending serotonergic pathway was done using ρ-chlorophenylalanine (PCPA, 100 mg/kg, i.p.), an inhibitor of serotonin synthesis for four consecutive days before cardamonin treatment, and was found to reverse the antihyperalgesic and antiallodynic effect produced by cardamonin. Pretreatment of the mice with several 5-HT receptor subtypes antagonists: methiothepin (5-HT1/6/77 receptor antagonist, 0.1 mg/kg), WAY 100635 (5-HT1A receptor antagonist, 1 mg/kg), isamoltane (5-HT1B receptor antagonist, 2.5 mg/kg), ketanserin (5-HT2A receptor antagonist, 0.3 mg/kg), and ondansetron (5-HT3 receptor antagonist, 0.5 mg/kg) were shown to abolish the effect of cardamonin induced antihyperalgesic and antiallodynic effects. Further evaluation of the 5-HT1A receptor subtype protein expressions reveals that cardamonin significantly upregulated its expression in the brainstem and spinal cord. Our results suggest that the serotonergic pathway is essential for cardamonin to exert its antineuropathic effect in CCI mice through the involvement of the 5-HT1A receptor subtype in the central nervous system.
  15. Sambasevam Y, Omar Farouk AA, Tengku Mohamad TA, Sulaiman MR, Bharatham BH, Perimal EK
    Eur J Pharmacol, 2017 Feb 05;796:32-38.
    PMID: 27988285 DOI: 10.1016/j.ejphar.2016.12.020
    Neuropathic pain arises from the injury of nervous system. The condition is extremely difficult to be treated due to the ineffectiveness and presence of various adverse effects of the currently available drugs. In the present study, we investigated the antiallodynic and antihyperlagesic properties of cardamonin, a naturally occurring chalcone in chronic constriction injury (CCI)-induced neuropathic pain mice model. Our findings showed that single and repeated dose of intra-peritoneal administration of cardamonin (3, 10, 30mg/kg) significantly inhibited (P<0.001) the chronic constriction injury-induced neuropathic pain using the Hargreaves plantar test, Randall-Selitto analgesiometer test, dynamic plantar anesthesiometer test and the cold plate test in comparison with the positive control drug used (amitriptyline hydrochloride, 20mg/kg, i.p.). Pre-treatment with naloxone hydrochloride (1mg/kg, i.p.) and naloxone methiodide (1mg/kg, s.c) significantly reversed the antiallodynic and antihyperalgesic effects of cardamonin in dynamic plantar anesthesiometer test and Hargreaves plantar test, respectively. In conclusion, the current findings demonstrated novel antiallodynic and antihyperalgesic effects of cardamonin through the activation of the opioidergic system both peripherally and centrally and may prove to be a potent lead compound for the development of neuropathic pain drugs in the future.
  16. Sim TY, Harith HH, Tham CL, Md Hashim NF, Shaari K, Sulaiman MR, et al.
    Molecules, 2018 Jun 05;23(6).
    PMID: 29874809 DOI: 10.3390/molecules23061355
    Alveolar epithelial barrier dysfunction contributes to lung edema and can lead to acute lung injury (ALI). The features include increased epithelial permeability, upregulation of inflammatory mediators and downregulation of junctional complex molecules; these changes are often induced by inflammation. tHGA is an acetophenone analogue with therapeutic potential in asthma. Its therapeutic potential in ALI is presently unknown. Herein, the effects of tHGA on epithelial barrier dysfunction were determined in TNF-α-induced human alveolar epithelial cells. The anti-inflammatory properties of tHGA were assessed by monocyte adhesion assay and analysis of MCP-1 and ICAM-1 expression. The epithelial barrier function was assessed by paracellular permeability and transepithelial electrical resistance (TEER) assays, and analysis of junctional complex molecules expression. To elucidate the mechanism of action, the effects of tHGA on the NF-κB and MAPK pathways were determined. Gene and protein expression were analyzed by RT-PCR and Western blotting or ELISA, respectively. tHGA suppressed leukocyte adhesion to TNF-α-induced epithelium and reduced MCP-1 and ICAM-1 gene expression and secretion. tHGA also increased TEER readings, reduced epithelial permeability and enhanced expression of junctional complex molecules (zona occludens-1, occludin and E-cadherin) in TNF-α-induced cells. Correspondingly, the NF-κB, ERK and p38 MAPK pathways were also inhibited by tHGA. These findings suggest that tHGA is able to preserve alveolar epithelial barrier function in response to acute inflammation, via its anti-inflammatory activity and stabilization of epithelial barrier integrity, mediated by NF-κB, ERK and p38 MAPK signaling.
  17. Jafarian S, Ling KH, Hassan Z, Perimal-Lewis L, Sulaiman MR, Perimal EK
    Alzheimers Dement (N Y), 2019;5:637-643.
    PMID: 31687471 DOI: 10.1016/j.trci.2019.09.009
    Introduction: We investigated the effects of zerumbone (1 and 10 mg/kg) against hyperactivity, anxiety and memory impairment in scopolamine-induced dementia in Sprague-Dawley rats.

    Methods: Open field tests, elevated plus maze and Morris water maze were performed to assess general locomotor activity, anxiety-like behaviours and learning and memory processes respectively in rats pretreated with scopolamine.

    Results: Scopolamine-treated rats showed high total activity, stereotype, and total distance travelled in the open field arena, reduced number of entries to open arms, decreased the percentage of time spent in open arms and higher escape latency time in the Morris water maze test. Interestingly, single administration of zerumbone (1 and 10 mg/kg) reversed the hyperactivity, anxiety-like behaviours, and learning impairment effects of scopolamine in the three experimental model studied respectively.

    Discussion: Our findings demonstrated that the scopolamine-induced impairment of learning and memory was reversed by the administration of zerumbone. As a conclusion, our findings presented the positive effects of zerumbone on dementia-like behaviours in the animal model used and could possibly contribute for future research to manage hyperactivity, anxiety, and learning disabilities.

  18. Yap HM, Israf DA, Harith HH, Tham CL, Sulaiman MR
    Front Pharmacol, 2019;10:1148.
    PMID: 31649532 DOI: 10.3389/fphar.2019.01148
    Increased ASM mass, primarily due to ASM hyperplasia, has been recognized as a hallmark of airway remodeling in asthma. Increased ASM mass is the major contributor to the airway narrowing, thus worsening the bronchoconstriction in response to stimuli. Inflammatory mediators and growth factors released during inflammation induce increased ASM mass surrounding airway wall via increased ASM proliferation, diminished ASM apoptosis and increased ASM migration. Several major pathways, such as MAPKs, PI3K/AKT, JAK2/STAT3 and Rho kinase, have been reported to regulate these cellular activities in ASM and were reported to be interrelated at certain points. This article aims to provide an overview of the signaling pathways/molecules involved in ASM hyperplasia as well as the mapping of the interplay/crosstalk between these major pathways in mediating ASM hyperplasia. A more comprehensive understanding of the complexity of cellular signaling in ASM cells will enable more specific and safer drug development in the control of asthma.
  19. Gopalsamy B, Farouk AAO, Tengku Mohamad TAS, Sulaiman MR, Perimal EK
    J Pain Res, 2017;10:2605-2619.
    PMID: 29184437 DOI: 10.2147/JPR.S143024
    Background: Neuropathic pain is a debilitating condition that severely affects the quality of life for those with this pain condition, and treatment for pain relief is greatly sought-after. Zerumbone (Zer), a sesquiterpene compound isolated from the rhizomes of a Southeast Asian ginger plant, Zingiber zerumbet (L.) Roscoe ex Smith. (Zingiberaceae), showed antinociceptive and antiinflammatory properties when previously tested on models of nociception and inflammation.

    Objective: This study investigated the effects of prophylactic administration of zerumbone on allodynia and hyperalgesia in a mouse model of chronic constriction injury (CCI)-induced neuropathic pain.

    Methods: Intraperitoneal administration of Zer (5-50 mg/kg) from day 1 post-surgery was carried out to identify the onset and progression of the pain condition. Responses toward mechanical and cold allodynia, and mechanical and thermal hyperalgesia were assessed on days 3, 5, 7, 9, 11, and 14 post-surgery. Blood plasma and spinal cord levels of interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and IL-10 were screened using enzyme-linked immunosorbent assay on day 15.

    Results: Zer (10 and 50 mg/kg) attenuated pain symptoms on all days of behavioral testing without any signs of sedation in the rotarod test. ED50 values for mechanical allodynia, cold allodynia, thermal hyperalgesia, and mechanical hyperalgesia were 9.25, 9.507, 8.289, and 9.801 mg/kg, respectively. Blood plasma and spinal levels of IL-1β, IL-6, and tumor necrosis factor-α but not IL-10 were significantly (p<0.05) suppressed by zer treatment.

    Discussion and conclusion: Zer exhibits its antiallodynic and antihyperalgesic properties via reduced sensitization at nociceptor neurons possibly through the suppression of inflammatory mediators. Zer may prove to be a novel and beneficial alternative for the management of neuropathic pain.

  20. Lee YZ, Yap HM, Shaari K, Tham CL, Sulaiman MR, Israf DA
    Front Pharmacol, 2017;8:837.
    PMID: 29201006 DOI: 10.3389/fphar.2017.00837
    Epithelial-mesenchymal transition (EMT) is currently recognized as the main cellular event that contributes to airway remodeling. Eosinophils can induce EMT in airway epithelial cells via increased transforming growth factor (TGF)-β production. We assessed the effect of synthetic 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA) upon eosinophil-induced EMT in a cellular model. The human eosinophil cell line EoL-1 was used to induce EMT in BEAS-2B human bronchial epithelial cells. The induction of EMT was dose-dependently suppressed following tHGA treatment in which the epithelial morphology and E-cadherin expression were not altered. Protein and mRNA expression of vimentin, collagen I and fibronectin in eosinophil-induced epithelial cells were also significantly suppressed by tHGA treatment. Following pathway analysis, we showed that tHGA suppressed eosinophil-induced activator protein-1-mediated TGF-β production by targeting c-Jun N-terminal kinase and phosphoinositide 3-kinase signaling pathways. These findings corroborated previous findings on the ability of tHGA to inhibit experimental murine airway remodeling.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links