Displaying publications 61 - 80 of 276 in total

Abstract:
Sort:
  1. Zhong X, Xiong Y, Wei D, Wang S, Xiao Z, Liu M, et al.
    Complement Ther Med, 2020 Aug;52:102491.
    PMID: 32951740 DOI: 10.1016/j.ctim.2020.102491
    BACKGROUND: Inconsistencies exist with regard to effect of maternal vitamin D supplementation on infant vitamin D status. The inconsistencies could be attributed to numerous factors, such as duration of intervention and dosage, among others. In this work, we conducted a systematic review and meta-analysis to determine the influence of maternal vitamin D supplementation on infant vitamin D status.

    METHODS: A comprehensive systematic search was performed in Scopus, EMBASE, Web of Science, and PubMed/MEDLINE, by investigators, from database inception until November 2019, without using any restrictions. Weighted mean difference (WMD) with the 95 % CI was used for assessing the effects of maternal vitamin D supplementation on 25(OH) D levels in infants.

    RESULTS: Overall results from 14 studies revealed a non-significant effect of maternal vitamin D administration on the level of 25(OH) D in breastfeeding infants (WMD: -0.464 ng/mL, 95 % CI: -6.68 to 5.75, p = 0.884, I2 = 98 %). Subgroup analyses demonstrated that vitamin D supplementation dosage ≥2000 IU/day (WMD: 9 ng/mL, 95 % CI: 8.19, 9.82, I2 = 99 %) and intervention duration ≥20 weeks (WMD: 16.20 ng/mL, 95 % CI: 14.89, 17.50, I2 = 99 %) significantly increased 25(OH) D.

    CONCLUSIONS: The main results indicate a non-significant increase in infant vitamin D following maternal vitamin D supplementation. Additionally, vitamin D supplementation dosage ≥2000 IU/day and intervention duration ≥20 weeks significantly increased infant 25(OH) D.

  2. Yang X, Ikhwanuddin M, Li X, Lin F, Wu Q, Zhang Y, et al.
    Mar Biotechnol (NY), 2018 Feb;20(1):20-34.
    PMID: 29152671 DOI: 10.1007/s10126-017-9784-2
    The molecular mechanism underlying sex determination and gonadal differentiation of the mud crab (Scylla paramamosain) has received considerable attention, due to the remarkably biological and economic differences between sexes. However, sex-biased genes, especially non-coding genes, which account for these differences, remain elusive in this crustacean species. In this study, the first de novo gonad transcriptome sequencing was performed to identify both differentially expressed genes and long non-coding RNAs (lncRNAs) between male and female S. paramamosain by using Illumina Hiseq2500. A total of 79,282,758 and 79,854,234 reads were generated from ovarian and testicular cDNA libraries, respectively. After filtrating and de novo assembly, 262,688 unigenes were produced from both libraries. Of these unigenes, 41,125 were annotated with known protein sequences in public databases. Homologous genes involved in sex determination and gonadal development pathways (Sxl-Tra/Tra-2-Dsx/Fru, Wnt4, thyroid hormone synthesis pathway, etc.) were identified. Three hundred and sixteen differentially expressed unigenes were further identified between both transcriptomes. Meanwhile, a total of 233,078 putative lncRNAs were predicted. Of these lncRNAs, 147 were differentially expressed between sexes. qRT-PCR results showed that nine lncRNAs negatively regulated the expression of eight genes, suggesting a potential role in sex differentiation. These findings will provide fundamental resources for further investigation on sex differentiation and regulatory mechanism in crustaceans.
  3. Yang J, Lu J, Zhu Q, Tao Y, Zhu Q, Guo C, et al.
    J Biosci Bioeng, 2021 Aug;132(2):161-166.
    PMID: 33972168 DOI: 10.1016/j.jbiosc.2020.12.016
    As one of Lianyungang's most famous specialties, Acanthogobius hasta is delicious and nutritious fish, but is extremely susceptible to spoilage during transportation and storage. In this study, Lactobacillus plantarum MMB-07 was isolated from traditional fermented sour fish to reduce losses and improve the utilization and food value of A. hasta. L. plantarum MMB-07 had good ability of acid production and acid resistance. Moreover, it could also inhibit common pathogens in food or aquatic products to ensure the safety of fermented products. MMB-07 was used to ferment A. hasta and obtain fermented Suanyu rich in nutrition value and good flavor. The volatile base nitrogen was 18.44 mg/100 g and the fermented fish meat maintained second-grade freshness. Thiobarbituric acid assay was 0.90 mg/kg and fat in fish meat was oxidized to a low degree. The studies indicated that MMB-07 has a high application prospect in low salt fermented fish.
  4. Hu J, Yew CT, Chen X, Feng S, Yang Q, Wang S, et al.
    Talanta, 2017 Apr 01;165:419-428.
    PMID: 28153277 DOI: 10.1016/j.talanta.2016.12.086
    The identification and quantification of chemicals play a vital role in evaluation and surveillance of environmental health and safety. However, current techniques usually depend on costly equipment, professional staff, and/or essential infrastructure, limiting their accessibility. In this work, we develop paper-based capacitive sensors (PCSs) that allow simple, rapid identification and quantification of various chemicals from microliter size samples with the aid of a handheld multimeter. PCSs are low-cost parallel-plate capacitors (~$0.01 per sensor) assembled from layers of aluminum foil and filter paper via double-sided tape. The developed PCSs can identify different kinds of fluids (e.g., organic chemicals) and quantify diverse concentrations of substances (e.g., heavy metal ions) based on differences in dielectric properties, including capacitance, frequency spectrum, and dielectric loss tangent. The PCS-based method enables chemical identification and quantification to take place much cheaply, simply, and quickly at the point-of-care (POC), holding great promise for environmental monitoring in resource-limited settings.
  5. Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al.
    mBio, 2017 06 27;8(3).
    PMID: 28655818 DOI: 10.1128/mBio.00543-17
    The mobile colistin resistance gene mcr-1 has attracted global attention, as it heralds the breach of polymyxins, one of the last-resort antibiotics for the treatment of severe clinical infections caused by multidrug-resistant Gram-negative bacteria. To date, six slightly different variants of mcr-1, and a second mobile colistin resistance gene, mcr-2, have been reported or annotated in the GenBank database. Here, we characterized a third mobile colistin resistance gene, mcr-3 The gene coexisted with 18 additional resistance determinants in the 261-kb IncHI2-type plasmid pWJ1 from porcine Escherichia colimcr-3 showed 45.0% and 47.0% nucleotide sequence identity to mcr-1 and mcr-2, respectively, while the deduced amino acid sequence of MCR-3 showed 99.8 to 100% and 75.6 to 94.8% identity to phosphoethanolamine transferases found in other Enterobacteriaceae species and in 10 Aeromonas species, respectively. pWJ1 was mobilized to an E. coli recipient by conjugation and contained a plasmid backbone similar to those of other mcr-1-carrying plasmids, such as pHNSHP45-2 from the original mcr-1-harboring E. coli strain. Moreover, a truncated transposon element, TnAs2, which was characterized only in Aeromonas salmonicida, was located upstream of mcr-3 in pWJ1. This ΔTnAs2-mcr-3 element was also identified in a shotgun genome sequence of a porcine E. coli isolate from Malaysia, a human Klebsiella pneumoniae isolate from Thailand, and a human Salmonella enterica serovar Typhimurium isolate from the United States. These results suggest the likelihood of a wide dissemination of the novel mobile colistin resistance gene mcr-3 among Enterobacteriaceae and aeromonads; the latter may act as a potential reservoir for mcr-3IMPORTANCE The emergence of the plasmid-mediated colistin resistance gene mcr-1 has attracted substantial attention worldwide. Here, we examined a colistin-resistant Escherichia coli isolate that was negative for both mcr-1 and mcr-2 and discovered a novel mobile colistin resistance gene, mcr-3 The amino acid sequence of MCR-3 aligned closely with phosphoethanolamine transferases from Enterobacteriaceae and Aeromonas species originating from both clinical infections and environmental samples collected in 12 countries on four continents. Due to the ubiquitous profile of aeromonads in the environment and the potential transfer of mcr-3 between Enterobacteriaceae and Aeromonas species, the wide spread of mcr-3 may be largely underestimated. As colistin has been and still is widely used in veterinary medicine and used at increasing frequencies in human medicine, the continuous monitoring of mobile colistin resistance determinants in colistin-resistant Gram-negative bacteria is imperative for understanding and tackling the dissemination of mcr genes in both the agricultural and health care sectors.
  6. Zhu P, Li J, Wen X, Huang Y, Yang H, Wang S, et al.
    J Environ Manage, 2022 Feb 07;308:114682.
    PMID: 35144065 DOI: 10.1016/j.jenvman.2022.114682
    This study investigated the effects of biochar-based solid acids (SAs) on carbon conversion, alpha diversity and bacterial community succession during cow manure composting with the goal of providing a new strategy for rapid carbon conversion during composting. The addition of SA prolonged the thermophilic phase and accelerated the degradation of lignocellulose; in particular, the degradation time of cellulose was shortened by 50% and the humus content was increased by 22.56% compared with the control group (CK). In addition, high-throughput sequencing results showed that SA improved the alpha diversity and the relative abundance of thermophilic bacteria, mainly Actinobacteria, increased by 12.955% compared with CK. A redundancy analysis (RDA) showed that Actinobacteria was positively correlated with the transformation of carbon.
  7. Liu J, Chen J, Wang S, Xie J, Wang Y, Chai TT, et al.
    Food Chem, 2022 May 30;377:132000.
    PMID: 34999460 DOI: 10.1016/j.foodchem.2021.132000
    The aim of this study was to investigate the digestion and fermentation properties of fish protein fermented by Monascus. Semi-dried fish was fermented by applying Monascus purpureus Went M 3.439. Our results show that the Monascus fermentation of the fish protein enriched the free amino acids and achieved a relatively higher glutamate content than the control group. The Monascus treatment promoted the decomposition of the fish protein during in vitro digestion, reduced the ammonia and indole content and tended to increase the propionic acid content during in vitro fermentation. The Monascus treatment considerably changed the gut microbiota composition, and particularly increased the relative abundance of Parabacteroides in the in vitro fermentation model of human distal colon. Consumption of Monascus fermented fish protein could result in positive changes in fermentation metabolites and gut microbiota, which brings potential health benefits.
  8. Babadi AA, Rahmati S, Fakhlaei R, Heidari R, Baradaran S, Akbariqomi M, et al.
    Sci Rep, 2022 Nov 12;12(1):19416.
    PMID: 36371566 DOI: 10.1038/s41598-022-23996-y
    The current COVID-19 pandemic outbreak poses a serious threat to public health, demonstrating the critical need for the development of effective and reproducible detection tests. Since the RT-qPCR primers are highly specific and can only be designed based on the known sequence, mutation sensitivity is its limitation. Moreover, the mutations in the severe acute respiratory syndrome β-coronavirus (SARS-CoV-2) genome led to new highly transmissible variants such as Delta and Omicron variants. In the case of mutation, RT-qPCR primers cannot recognize and attach to the target sequence. This research presents an accurate dual-platform DNA biosensor based on the colorimetric assay of gold nanoparticles and the surface-enhanced Raman scattering (SERS) technique. It simultaneously targets four different regions of the viral genome for detection of SARS-CoV-2 and its new variants prior to any sequencing. Hence, in the case of mutation in one of the target sequences, the other three probes could detect the SARS-CoV-2 genome. The method is based on visible biosensor color shift and a locally enhanced electromagnetic field and significantly amplified SERS signal due to the proximity of Sulfo-Cyanine 3 (Cy3) and AuNPs intensity peak at 1468 cm-1. The dual-platform DNA/GO/AuNP biosensor exhibits high sensitivity toward the viral genome with a LOD of 0.16 ng/µL. This is a safe point-of-care, naked-eye, equipment-free, and rapid (10 min) detection biosensor for diagnosing COVID-19 cases at home using a nasopharyngeal sample.
  9. Yang F, Jin C, Wang S, Wang Y, Wei L, Zheng L, et al.
    Chemosphere, 2023 May;323:138245.
    PMID: 36841450 DOI: 10.1016/j.chemosphere.2023.138245
    Due to increasing antibiotic pollution in the water environment, green and efficient adsorbents are urgently needed to solve this problem. Here we prepare magnetic bamboo-based activated carbon (MDBAC) through delignification and carbonization using ZnCl2 as activator, resulting in production of an activated carbon with large specific surface area (1388.83 m2 g-1). The influencing factors, such as solution pH, initial sulfadiazine (SD) concentration, temperature, and contact time, were assessed in batch adsorption experiments. The Langmuir isotherm model demonstrated that MDBAC adsorption capacity on SD was 645.08 mg g-1 at its maximum, being higher than majority of previously reported adsorbents. In SD adsorption, the kinetic adsorption process closely followed the pseudo-second kinetic model, and the thermodynamic adsorption process was discovered to be exothermic and spontaneous in nature. The MDBAC exhibited excellent physicochemical stability, facile magnetic recovery and acceptable recyclability properties. Moreover, the synergistic interactions between MDBAC and SD mainly involved electrostatic forces, hydrogen bonding, π-π stacking, and chelation. Within the benefits of low cost, ease of production and excellent adsorption performance, the MDBAC biosorbent shows promising utilization in removing antibiotic contaminants from wastewater.
  10. Wu C, Zhong L, Yeh PJ, Gong Z, Lv W, Chen B, et al.
    Sci Total Environ, 2024 Jan 01;906:167632.
    PMID: 37806579 DOI: 10.1016/j.scitotenv.2023.167632
    Drought affects vegetation growth to a large extent. Understanding the dynamic changes of vegetation during drought is of great significance for agricultural and ecological management and climate change adaptation. The relations between vegetation and drought have been widely investigated, but how vegetation loss and restoration in response to drought remains unclear. Using the standardized precipitation evapotranspiration index (SPEI) and the normalized difference vegetation index (NDVI) data, this study developed an evaluation framework for exploring the responses of vegetation loss and recovery to meteorological drought, and applied it to the humid subtropical Pearl River basin (PRB) in southern China for estimating the loss and recovery of three vegetation types (forest, grassland, cropland) during drought using the observed NDVI changes. Results indicate that vegetation is more sensitive to drought in high-elevation areas (lag time  8 months). Vegetation loss (especially in cropland) is found to be more sensitive to drought duration than drought severity and peak. No obvious linear relationship between drought intensity and the extent of vegetation loss is found. Regardless of the intensity, drought can cause the largest probability of mild loss of vegetation, followed by moderate loss, and the least probability of severe loss. Large spatial variability in the probability of vegetation loss and recovery time is found over the study domain, with a higher probability (up to 50 %) of drought-induced vegetation loss and a longer recovery time (>7 months) mostly in the high-elevation areas. Further analysis suggests that forest shows higher but cropland shows lower drought resistance than other vegetation types, and grassland requires a shorter recovery time (4.2-month) after loss than forest (5.1-month) and cropland (4.8-month).
  11. Peng Z, Xue H, Liu X, Wang S, Liu G, Jia X, et al.
    Front Bioeng Biotechnol, 2023;11:1222088.
    PMID: 37539434 DOI: 10.3389/fbioe.2023.1222088
    The development of cost-effective, biocompatible soft wound dressings is highly desirable; however, conventional dressings are only designed for flat wounds, which creates difficulty with promising healing efficiency in complex practical conditions. Herein, we developed a tough, adhesive biomimetic hyaluronic acid methacryloyl hydrogels composed of chemically crosslinked hyaluronic acid methacryloyl (HAMA) network and poly(N-hydroxyethyl acrylamide) (PHEAA) network rich in multiple hydrogen bonding. Due to the multiple chemical crosslinking sites (acrylamide groups) of HAMA; the bulk HEMA/PHEAA hydrogels presented significant enhancements in mechanical properties (∼0.45 MPa) than common hyaluronic acid hydrogels (<0.1 MPa). The abundant hydrogen bonding also endowed the resultant hydrogels with extremely high adhesiveness on many nonporous substrates, including glass and biological tissues (e.g., heart, liver, lung, kidney, stomach, and muscle), with a considerable interfacial toughness of ∼1432 J m-2. Accordingly, since both natural hyaluronic acid derivative polymers and hydrophilic PHEAA networks are highly biocompatible, the hydrogel matrix possesses good blood compatibility (<5% of hemolysis ratio) and satisfies the general dressing requirements (>99% of cell viability). Based on these physicochemical features, we have demonstrated that this adhesive hydrogel, administered in the form of a designed patch, could be applied to wound tissue healing by promoting epithelialization, angiogenesis, and collagen deposition. We believe that our proposed biomimetic hydrogel design holds great potential for wound repair and our developed HAMA/PHEAA hydrogels are extremely promising for the next-generation tissue healings in emergency situations.
  12. Debnath S, Elgorban AM, Bahkali AH, Eswaramoorthy R, Verma M, Tiwari P, et al.
    Front Microbiol, 2023;14:1232086.
    PMID: 37637126 DOI: 10.3389/fmicb.2023.1232086
    OBJECTIVE: This study aims to understand plant-bacteria interactions that enhance plant resistance to environmental stressors, with a focus on maize (Zea mays L.) and its vulnerability to various pathogenic organisms. We examine the potential of 1-amino-cyclopropane-1-carboxylic acid (ACCA) as a compound to boost maize's resilience against stressors and pathogens.

    BACKGROUND: With the growing global population and increased food demand, the study of endophytes, comprising bacteria and fungi, becomes crucial. They reside within plant tissues, affecting their hosts either beneficially or detrimentally. Agrobacteria are of specific interest due to their potential to contribute to developing strategies for plant resistance enhancement.

    METHODS: We conducted exhaustive research on the defense-related proteins and mechanisms involved in maize-pathogen interactions. The efficacy of ACCA as a natural-compound that could enhance maize's resistance was examined.

    RESULTS: Our research indicates that ACCA, having a binding energy of -9.98 kcal/mol, successfully strengthens maize resistance against pathogenic assaults and drought stress. It plays a crucial protective role in maize plants as they mature, outperforming other ligands in its effectiveness to improve productivity and increase yield.

    CONCLUSION: Applying ACCA to maize plants has considerable potential in enhancing their resilience and tolerance to stress, proving to be an effective strategy to boost crop yield and productivity. This could help address the increasing global food demand. However, more research is needed to optimize ACCA application methods and to gain a comprehensive understanding of its long-term effects on maize cultivations and the environment.

  13. Yang J, Gao T, Ge F, Sun H, Cui Z, Wei Z, et al.
    Front Nutr, 2021;8:810460.
    PMID: 35118108 DOI: 10.3389/fnut.2021.810460
    The demand for roasted seaweed sandwich (Porphyra yezoensis) product has risen in recent years. The product slicing process has created a huge number of scraps that are not utilized effectively. Three lactic acid bacteria (LAB) strains were used to ferment P. yezoensis sauces in this study, including Lactobacillus fermentum, Lactobacillus casei, Streptococcus thermophilus, and the mixed strains (1:1:1, v/v). The fermentation characteristics, antioxidant capacity in vitro, sensory properties, and flavoring substances of fermented P. yezoensis sauces were analyzed. After 21 days of fermentation, all LAB strains grew well in the P. yezoensis sauces, with protease activity increased to 6.6, 9.24, 5.06, and 5.5 U/mL, respectively. Also, the flavors of P. yezoensis sauces fermented with L. casei and L. fermentum were satisfactory. On this premise, gas chromatography-mass spectrometry (GC-MS) was used to investigate the changes in gustatory compounds in P. yezoensis sauces fermented with L. casei and L. fermentum. In general, 42 and 41 volatile flavor chemicals were identified after the fermentation of L. casei and L. fermentum. Furthermore, the fermented P. yezoensis sauce possessed greater DPPH scavenging activity and ferric-reducing ability power than the unfermented P. yezoensis. Overall, the flavor and taste of P. yezoensis sauce fermented by L. casei was superior.
  14. Deng H, Zhang R, Wang C, Zhang B, Wang J, Wang S, et al.
    Front Psychiatry, 2023;14:1215963.
    PMID: 37674551 DOI: 10.3389/fpsyt.2023.1215963
    BACKGROUND: This multicenter, three-armed, parallel, single-blind randomized controlled trial (RCT) primarily aims to compare the efficacy of virtual reality exposure therapy (VRET) with that of acceptance and commitment therapy (ACT) and treatment as usual (TAU) to depreciate the degree of alcohol craving among alcohol use disorder patients who have undergone in-patient detoxification across four timelines (t0 = baseline prior to intervention, t1 = 4 weeks after baseline, t2 = 12 weeks after baseline, and t3 = 24 weeks after baseline). The secondary aims of this RCT are to compare the efficacy of VRET with that of ACT and TAU to alleviate the severity of alcohol use disorder, dissipate comorbid depressive and anxiety symptoms, and normalize event-related potential (ERP) in electroencephalogram (EEG) monitoring across the four timelines.

    METHODS: Initially, after 2 weeks of in-patient detoxification, 120 patients with alcohol use disorder will be randomized into three groups (VRET, ACT, and TAU control groups) via stratified permuted block randomization in a 1:1:1 ratio. Baseline assessment (t0) commences, whereby all the participants will be administered with sociodemographic, clinical, and alcohol use characteristics questionnaire, such as Alcohol Use Disorder Identification Test (AUDIT), Penn Alcohol Craving Scale (PACS), Hamilton Anxiety Rating Scale (HAM-A), and Hamilton Depression Rating Scale (HAM-D), while event-related potential (ERP) detection in electroencephalogram (EEG) will also be carried out. Then, 4 weeks of VRET, ACT, and non-therapeutic supportive activities will be conducted in the three respective groups. For the subsequent three assessment timelines (t1, t2, and t3), the alcohol use characteristic questionnaire, such as AUDIT, PACS, HAM-D, HAM-A, and ERP monitoring, will be re-administered to all participants.

    DISCUSSION: As data on the effects of non-pharmacological interventions, such as VRET and ACT, on the treatment of alcohol craving and preventing relapse in alcohol use disorder are lacking, this RCT fills the research gap by providing these important data to treating clinicians. If proven efficacious, the efficacy of VRET and ACT for the treatment of other substance use disorders should also be investigated in future.

    CLINICAL TRIAL REGISTRATION: NCT05841823 (ClinicalTrials.gov).

  15. Nur-A Yazdani DM, Abir T, Qing Y, Ahmad J, Al Mamun A, Zainol NR, et al.
    PLoS One, 2022;17(10):e0274898.
    PMID: 36264854 DOI: 10.1371/journal.pone.0274898
    BACKGROUND: Social media addiction, a recently emerged term in medical science, has attracted the attention of researchers because of its significant physical and psychological effects on its users. The issue has attracted more attention during the COVID era because negative emotions (e.g., anxiety and fear) generated from the COVID pandemic may have increased social media addiction. Therefore, the present study investigates the role of negative emotions and social media addiction (SMA) on health problems during and after the COVID lockdown.

    METHODS: A survey was conducted with 2926 participants aged between 25 and 45 years from all eight divisions of Bangladesh. The data collection period was between 2nd September- 13th October, 2020. Partial Least Square Structural Equation Modelling (PLS-SEM) was conducted for data analysis by controlling the respondents' working time, leisure time, gender, education, and age.

    RESULTS: Our study showed that social media addiction and time spent on social media impact health. Interestingly, while anxiety about COVID increased social media addition, fear about COIVD reduced social media addition. Among all considered factors, long working hours contributed most to people's health issues, and its impact on social media addiction and hours was much higher than negative emotions. Furthermore, females were less addicted to social media and faced less health challenges than males.

    CONCLUSION: The impacts of negative emotions generated by the COVID disaster on social media addiction and health issues should be reconsidered. Government and employers control people's working time, and stress should be a priority to solve people's social media addiction-related issues.

  16. Li M, Wang S, Zhong L, Heděnec P, Tan Z, Wang R, et al.
    Front Microbiol, 2023;14:1301480.
    PMID: 38274745 DOI: 10.3389/fmicb.2023.1301480
    Intestinal parasites, such as Eimeria, are common among plateau pika (Ochotona curzoniae). The gut microbiome is an essential driver of the host response to gastrointestinal parasites. However, the effects of intestinal protozoal parasites on the temporal variations in the gut microbiome and behavioral and physiological activities remain unknown. Our study conducted treatments involving experimental feeding of pika with Eimeria oocysts or anticoccidia under laboratory conditions to focus on the parasite-associated alterations in gut bacterial communities, host behavioral activity, physiology, and host-bacteria relationships. The results showed insignificant differences in bacterial community structures among treatments on the basis of Bray-Curtis distance metrics, whereas the patterns of temporal alterations in the bacterial communities were changed by the treatments. Bacterial alpha diversities did not vary with the treatments, and experimental feeding with Eimeria slowed down the decrement rate of alpha diversity. Furthermore, few bacterial members were significantly changed by the treatments-only the genus Ruminococcus and the species Ruminococcus flavefaciens, which were associated with energy metabolism. Experimental feeding with Eimeria modified the temporal variations in the bacterial members, including a lower loss rate of the relative abundance of the dominant families Muribaculaceae and Ruminococcaceae in the group with Eimeria experimental feeding. Moreover, a shifting energy trade-off was suggested by the parasite-induced increments in thyroid hormones (triiodothyronine and tetraiodothyronine) and decrements in exploration behavior in the group with Eimeria feeding. However, we did not detect specific connections between gut bacterial communities and pika behaviors and physiology in terms of energy trade-offs. Further in-depth research is needed to examine the role of Eimeria-modified differences in the gut bacteria of plateau pika.
  17. Xiong J, Luo R, Jia Z, Ge S, Lam SS, Xie L, et al.
    Int J Biol Macromol, 2024 Jan;256(Pt 2):128399.
    PMID: 38007014 DOI: 10.1016/j.ijbiomac.2023.128399
    To develop a green and facile adsorbent for removing indoor polluted formaldehyde (HCHO) gas, the biomass porous nanofibrous membranes (BPNMs) derived from microcrystalline cellulose/chitosan were fabricated by electrospinning. The enhanced chemical adsorption sites with diverse oxygen (O) and nitrogen (N)-containing functional groups were introduced on the surface of BPNMs by non-thermal plasma modification under carbon dioxide (CO2) and nitrogen (N2) atmospheres. The average nanofiber diameters of nanofibrous membranes and their nanomechanical elastic modulus and hardness values decreased from 341 nm to 175-317 nm and from 2.00 GPa and 0.25 GPa to 1.70 GPa and 0.21 GPa, respectively, after plasma activation. The plasma-activated nanofibers showed superior hydrophilicity (WCA = 0°) and higher crystallinity than that of the control. The optimal HCHO adsorption capacity (134.16 mg g-1) of BPNMs was achieved under a N2 atmosphere at a plasma power of 30 W and for 3 min, which was 62.42 % higher compared with the control. Pyrrolic N, pyridinic N, CO and O-C=O were the most significant O and N-containing functional groups for the improved chemical adsorption of the BPNMs. The adsorption mechanism involved a synergistic combination of physical and chemical adsorption. This study provides a novel strategy that combines clean plasma activation with electrospinning to efficiently remove gaseous HCHO.
  18. Venkatraman G, Mohan PS, Abdul-Rahman PS, Sonsudin F, Muttiah B, Hirad AH, et al.
    PMID: 38509421 DOI: 10.1007/s00449-024-02995-5
    This study used Morinda citrifolia leaf (MCL) extract to synthesise Zinc oxide nanoparticles (ZnO NPs) and ZnO decorated silver nanocomposites (ZnO/Ag NCs). The synthesized nanomaterials structural morphology and crystallinity were characterized using a Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) analysis. The antimicrobial activity of ZnO NPs and ZnO/Ag NCs was evaluated using human nosocomial bacterial pathogens. The highest antimicrobial activity was recorded for ZnO/Ag NCs at the minimum inhibitory concentration (MIC) at 80 and 100 μg/mL for Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis, Staphylococcus aureus than ZnO NPs at the MIC of 120 and 140 μg/mL for Bacillus subtilis and Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus. Furthermore, ROS detection, viability assay and bacterial membrane integrity analysis of ZnO/Ag NCs treated P. aeruginosa and S. aureus revealed the fundamental bactericidal mechanism involving cell wall, cell membrane interaction and release of cytoplasmic contents. In addition, ZnO/Ag NCs and ZnO NPs showed higher toxicity towards A549 lung cancer cells than the non-cancerous RAW264 macrophage cells, with IC50 of 242 and 398 µg/mL respectively, compared to IC50 of 402 and 494 µg/mL for the macrophage cells. These results suggest that the ZnO/Ag NCs can be effectively used to develop antimicrobial and anticancer materials.
  19. Venkatraman G, Mohan PS, Mashghan MM, Wong KC, Abdul-Rahman PS, Vellasamy KM, et al.
    PMID: 38491194 DOI: 10.1007/s00449-024-02984-8
    Alternanthera sessilis (AS) leaf extract was used to synthesize zinc oxide nanoparticles (ZnO NPs). Bioanalytical characterization techniques such as X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) confirmed the formation of crystalline ZnO NPs with average sizes of 40 nm. The AS-ZnO NPs antimicrobial activity was analyzed under dark (D) and white light (WL) conditions. The improved antimicrobial activity was observed against Escherichia coli, Staphylococcus aureus and Bacillus subtilis at the minimal inhibitory concentration (MIC) of 125 and 62.5 µg/mL under WL than the D at 125 and 250 µg/mL for E. coli, B. subtilis, and Pseudomonas aeruginosa, respectively. In contrast, the growth of P. aeruginosa and S. aureus was not completely inhibited until 1 mg/mL AS-ZnO NPs under WL and D. Similarly, AS-ZnO NPs displayed a weaker inhibitory effect against carbapenem-sensitive P. aeruginosa (CSPA) and carbapenem-resistant P. aeruginosa (CRPA) strains of PAC023, PAC041 and PAC032, PAC045 under D. Interestingly, the distinct inhibitory effect was recorded against CSPA PAC041 and CRPA PAC032 in which the bacteria growth was inhibited 99.9% at 250, 500 µg/mL under WL. The cytotoxicity results suggested AS-ZnO NPs demonstrated higher toxicity to MCF-7 breast cancer cells than the RAW264.7 macrophage cells. Further, AS-ZnO NPs exhibited higher catalytic potential against tetracycline hydrochloride (TC-H) degradation at 65.6% and 60.8% under WL than the dark at 59.35% and 48.6% within 120 min. Therefore, AS-ZnO NPs can be used to design a photo-improved antimicrobial formulation and environmental catalyst for removing TC-H from wastewater.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links