Displaying publications 61 - 80 of 98 in total

Abstract:
Sort:
  1. Diyana Jamaluddin N, Ibrahim N, Yuziana Mohd Yusof N, Ta Goh C, Ling Tan L
    Opt Laser Technol, 2023 Jan;157:108763.
    PMID: 36212170 DOI: 10.1016/j.optlastec.2022.108763
    The coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a major public health outbreak in late 2019 and was proclaimed a global pandemic in March 2020. A reflectometric-based RNA biosensor was developed by using cysteamine-stabilized gold nanoparticles (cysAuNPs) as the colorimetric probe for bioassay of COVID-19 RNA (SARS-CoV-2 RNA) sequence. The cysAuNPs aggregated in the presence of DNA probes via cationic and anionic electrostatic attraction between the positively charged cysteamine ligands and the negatively charged sugar-phosphate backbone of DNA, whilst in the presence of target RNAs, the specific recognition between DNA probes and targets depleted the electrostatic interaction between the DNA probes and cysAuNPs signal probe, leading to dispersed particles. This has rendered a remarkable shifting in the surface plasmon resonance (SPR) on the basis of visual color change of the RNA biosensor from red to purplish hue at the wavelength of 765 nm. Optical evaluation of SARS-CoV-2 RNA by means on reflectance transduction of the RNA biosensor based on cysAuNPs optical sensing probes demonstrated rapid response time of 30 min with high sensitivity, good linearity and high reproducibility across a COVID-19 RNA concentration range of 25 nM to 200 nM, and limit of detection (LOD) at 0.12 nM. qPCR amplification of SARS-CoV-2 viral RNA showed good agreement with the proposed RNA biosensor by using spiked RNA samples of the oropharyngeal swab from COVID-19 patients. Therefore, this assay is useful for rapid and early diagnosis of COVID-19 disease including asymptomatic carriers with low viral load even in the presence of co-infection with other viruses that manifest similar respiratory symptoms.
  2. Mohd Yusof N, Saleh AK, Abuomira IEAA, Attallah AA, Elshal EA, Khames AAA
    Orthop Res Rev, 2022;14:437-443.
    PMID: 36444242 DOI: 10.2147/ORR.S383863
    BACKGROUND AND AIM: Maintenance of stability using external fixation devices is an important principle to ensure successful treatment of osteomyelitis (OM). In this study, we report our experience with femoral OM treated with acute compression and bone transport using the Orthofix limb reconstruction system (LRS).

    PATIENTS AND METHODS: This prospective study included 30 consecutive patients with femoral OM. LRS insertion and corticotomy were done according to the standard technique. Radiographic evaluation was performed every 2 weeks during the distraction phase and every 2-4 weeks during the consolidation phase. The clinical outcome measurements included union time, limb length discrepancy, additional operative procedures, refracture and infection.

    RESULTS: The present study included 30 patients with femoral OM. They comprised 27 males (90.0%) and 3 females (10.0%) with an age of 28.1 ± 15.6 years. All, except one, achieved union with a mean union time of 8.6 months (range 4-20 months). The mean union time for acute compression was 7.6 months (range 4-20 months) while for patients with bone transport it was 14.5 months (range 12-18 months). The mean limb length discrepancy was 1.8 cm (range 0-4 cm). At the end of the follow=up, two patients were not able to ambulate without support; one due to non-union and one due to paraplegia.

    CONCLUSION: The present study identified treatment of femoral OM using LRS as a feasible and effective technique with good outcomes. Reported complications could be adequately managed in most cases.

  3. Aziz ME, Yusof NR, Abdullah MS, Yusof AH, Yusof MI
    Singapore Med J, 2005 Aug;46(8):426-8.
    PMID: 16049615
    Persistent sciatic artery is a very uncommon embryological vascular variant. This case report highlights this rare vascular anomaly, diagnostic difficulty, complication and subsequent treatment in a 43-year-old man who presented with sudden onset of right leg pain for a few hours. He was unable to walk because of pain and numbness. Emergency right lower limb angiogram showed a large aneurysm that was initially thought to arise from the right common femoral artery, associated with thrombus formation within the right popliteal artery. A below knee amputation was performed due to worsening ischaemia of the right leg. The persistent right sciatic artery was later obliterated using percutaneous stenting and endovascular grafting, with deployment of two wallstents.
  4. Mansor A, Ariffin AF, Yusof N, Mohd S, Ramalingam S, Md Saad AP, et al.
    Cell Tissue Bank, 2023 Mar;24(1):25-35.
    PMID: 35610332 DOI: 10.1007/s10561-022-10013-9
    Bone processing and radiation were reported to influence mechanical properties of cortical bones due in part to structural changes and denaturation of collagen composition. This comparative study was to determine effects of bone processing on mechanical properties and organic composition, and to what extent the radiation damaging after each processing. Human femur cortical bones were processed by freezing, freeze-drying and demineralisation and then gamma irradiated at 5, 15, 20, 25 and 50 kGy. In the compression test, freeze drying significantly decreased the Young's Modulus by 15%, while demineralisation reduced further by 90% (P 
  5. Yang Harmony TC, Yusof N, Ramalingam S, Baharin R, Syahrom A, Mansor A
    Clin Orthop Relat Res, 2022 Feb 01;480(2):407-418.
    PMID: 34491235 DOI: 10.1097/CORR.0000000000001968
    BACKGROUND: Gamma irradiation, which minimizes the risk of infectious disease transmission when human bone allograft is used, has been found to negatively affect its biomechanical properties. However, in those studies, the deep-freezing temperature during irradiation was not necessarily maintained during transportation and sterilization, which may have affected the findings. Prior reports have also suggested that controlled deep freezing may mitigate the detrimental effects of irradiation on the mechanical properties of bone allograft.

    QUESTION/PURPOSE: Does a controlled deep-freezing temperature during irradiation help preserve the compressive mechanical properties of human femoral cortical bone allografts?

    METHODS: Cortical bone cube samples, each measuring 64 mm3, were cut from the mid-diaphyseal midshaft of five fresh-frozen cadaver femurs (four male donors, mean [range] age at procurement 42 years [42 to 43]) and were allocated via block randomization into one of three experimental groups (with equal numbers of samples from each donor allocated into each group). Each experimental group consisted of 20 bone cube samples. Samples irradiated in dry ice were subjected to irradiation doses ranging from 26.7 kGy to 27.1 kGy (mean 26.9 kGy) at a deep-freezing temperature below -40°C (the recommended long-term storage temperature for allografts). Samples irradiated in gel ice underwent irradiation doses ranging from 26.2 kGy and 26.4 kGy (mean 26.3 kGy) in a freezing temperature range between -40°C and 0°C. Acting as controls, samples in a third group were not subjected to gamma irradiation. The mechanical properties (0.2% offset yield stress, ultimate compression stress, toughness, and the Young modulus) of samples from each group were subsequently evaluated via axial compression loading to failure along the long axis of the bone. The investigators were blinded to sample group during compression testing.

    RESULTS: The mean ultimate compression stress (84 ± 27 MPa versus 119 ± 31 MPa, mean difference 35 [95% CI 9 to 60]; p = 0.005) and toughness (3622 ± 1720 kJ/m3 versus 5854 ± 2900 kJ/m3, mean difference 2232 [95% CI 70 to 4394]; p = 0.009) of samples irradiated at a higher temperature range (-40°C to 0°C) were lower than in those irradiated at deep-freezing temperatures (below -40°C). The mean 0.2% offset yield stress (73 ± 28 MPa versus 109 ± 38 MPa, mean difference 36 [95% CI 11 to 60]; p = 0.002) and ultimate compression stress (84 ± 27 MPa versus 128 ± 40 MPa, mean difference 44 [95% CI 17 to 69]; p < 0.001) of samples irradiated at a higher temperature range (-40°C to 0°C) were lower than the nonirradiated control group samples. The mean 0.2% offset yield stress (73 ± 28 MPa versus 101 ± 28 MPa, mean difference 28 [95% CI 3 to 52]; p = 0.02; effect size = 1.0 [95% CI 0.8 to 1.2]) of samples irradiated at higher temperature range (-40°C to 0°C) were no different with the numbers available to those irradiated at deep-freezing temperature. The mean toughness (3622 ± 1720 kJ/m3 versus 6231 ± 3410 kJ/m3, mean difference 2609 [95% CI 447 to 4771]; p = 0.02; effect size = 1.0 [95% CI 0.8 to 1.2]) of samples irradiated at higher temperature range (-40°C to 0°C) were no different with the numbers available to the non-irradiated control group samples. The mean 0.2% offset yield stress, ultimate compression stress, and toughness of samples irradiated in deep-freezing temperatures (below -40°C) were not different with the numbers available to the non-irradiated control group samples. The Young modulus was not different with the numbers available among the three groups.

    CONCLUSION: In this study, maintenance of a deep-freezing temperature below -40°C, using dry ice as a cooling agent, consistently mitigated the adverse effects of irradiation on the monotonic-compression mechanical properties of human cortical bone tissue. Preserving the mechanical properties of a cortical allograft, when irradiated in a deep-freezing temperature, may have resulted from attenuation of the deleterious, indirect effects of gamma radiation on its collagen architecture in a frozen state. Immobilization of water molecules in this state prevents radiolysis and the subsequent generation of free radicals. This hypothesis was supported by an apparent loss of the protective effect when a range of higher freezing temperatures was used during irradiation.

    CLINICAL RELEVANCE: Deep-freezing temperatures below -40°C during gamma irradiation may be a promising approach to better retain the native mechanical properties of cortical bone allografts. A further study of the effect of deep-freezing during gamma radiation sterilization on sterility and other important biomechanical properties of cortical bone (such as, tensile strength, fracture toughness, and fatigue) is needed to confirm these findings.

  6. Esmat SM, Sulong AF, Awang MS, Oon ZS, Mohd Yusof N
    Cureus, 2023 Aug;15(8):e43448.
    PMID: 37711923 DOI: 10.7759/cureus.43448
    Growth plate injuries over the distal femur typically occur due to high-energy trauma. It is commonly associated with serious complications such as growth disturbance. Its occurrence in children undergoing limb-lengthening procedures is uncommon. We report a case of distal femur growth plate injury in a 13-year-old boy undergoing a limb-lengthening procedure for femoral hypoplasia. Conservative treatment yielded a good functional outcome in this patient.
  7. Murizan NIS, Mustafa NS, Ngadiman NHA, Mohd Yusof N, Idris A
    Polymers (Basel), 2020 Nov 27;12(12).
    PMID: 33261121 DOI: 10.3390/polym12122818
    Nanocrystalline cellulose is an abundant and inexhaustible organic material on Earth. It can be derived from many lignocellulosic plants and also from agricultural residues. They endowed exceptional physicochemical properties, which have promoted their intensive exploration in biomedical application, especially for tissue engineering scaffolds. Nanocrystalline cellulose has been acknowledged due to its low toxicity and low ecotoxicological risks towards living cells. To explore this field, this review provides an overview of nanocrystalline cellulose in designing materials of bone scaffolds. An introduction to nanocrystalline cellulose and its isolation method of acid hydrolysis are discussed following by the application of nanocrystalline cellulose in bone tissue engineering scaffolds. This review also provides comprehensive knowledge and highlights the contribution of nanocrystalline cellulose in terms of mechanical properties, biocompatibility and biodegradability of bone tissue engineering scaffolds. Lastly, the challenges for future scaffold development using nanocrystalline cellulose are also included.
  8. Azhar Hilmy SH, Nordin N, Yusof MYPM, Soh TYT, Yusof N
    Nutr J, 2024 Jan 17;23(1):11.
    PMID: 38233923 DOI: 10.1186/s12937-023-00884-3
    Excessive sugar consumption is well documented as a common risk factor for many Non-Communicable Diseases (NCDs). Thus, an adequate intervention description is important to minimise research waste and improve research usability and reproducibility. A systematic review was conducted to identify components in published evidence interventions pertaining to the health promotions on reducing sugar intake among adults. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and used the Mixed Methods Appraisal Tool (MMAT) for quality appraisal. The period for the selected study was from 2000 to 2022, and articles were retrieved from Web of Science (WOS), Medline, Scopus, and PubMed. The target population was adults aged 18 years old and above who underwent intervention to assess the changes in their sugar intake. Data sources and all human epidemiologic studies were included. Out of the 9,333 papers identified, 25 were included. The overall quality of evidence of the studies was considered moderate. Apart from the characteristics of the reviewed studies, components of interventions are including the basis of theoretical or model for the intervention, which majority use Social Cognitive Theory, followed by PRECEDE-PROCEED model, socio-ecological and process-improvement theories and Transtheoretical Model; providers, who are commercial provider, qualified nutritionist, professor of nutrigenomics and nutrigenetics, doctor, dietitian nutritionist, lifestyle coaches, and junior public health nurses; duration of the intervention and follow-up time, varies from as short as one month to as long as 24 months; material provided either softcopy or hardcopy; tailoring approach, based on the individual goals, the process of change, genotype analysis, beliefs, barriers, and sociocultural norms; delivery mechanism either face-to-face or technology-mediated; and tools to measure the sugar consumption outcome mostly used Food Frequency Questionnaire (FFQ), besides 24-h dietary recalls, and food diaries. There are various components in downstream health promotion to reduce sugar intake among adults that can be adapted according to the local health promotion and intervention context. More well-designed interventions using integration components are encouraged in further studies.
  9. Nur Asyura Adznam S, Shahar S, Rahman SA, Yusof NA, Arshad F, Yassin Z, et al.
    J Nutr Health Aging, 2009 Dec;13(10):925-30.
    PMID: 19924355
    OBJECTIVE: Prior to the development of a healthy ageing and risk reduction of chronic diseases intervention package for older people in Malaysia, a need assessment study was conducted to identify nutritional knowledge status and information needs, as part of an action research process.

    DESIGN: A cross sectional study was conducted among 267 elderly people, 54 care givers and 66 health professionals in two rural areas of Peninsular of Malaysia (i.e Sabak Bernam, Selangor and Kuala Pilah, Negeri Sembilan). Information on nutritional knowledge was obtained from an interview based questionnaire for older subjects and caregiver and through self administered questionnaire from the health professionals. Anthropometric and functional measurements were also conducted among elderly subjects.

    RESULTS: It was found that the elderly subjects had poor nutritional knowledge with 43.8% of them classified as having unsatisfactory nutritional knowledge, followed by moderately satisfactory (33.7%), very unsatisfactory (15.7%) and good (6.7%). Talks, counselling sessions with health professionals and electronic media such as television and radio were the most preferred nutrition education sources among elderly subjects and their care givers. The majority of health professionals studied (98.5%) had good nutritional knowledge. Although most of them (93.6%) were involved in management of the elderly, only 45.5% incorporated nutritional information component in this activity. Most of the health professionals used the guidelines for management of elderly patients (63.6%). However, nutritional knowledge was very minimal in these guidelines. Multiple regression analysis indicated that 'level education', involvement in 'social activities', presence of 'hearing problems', the Instrumental Activities of Daily Living (IADL) score, having previous 'nutritional information' and 'participation in healthy eating programme' were the major predictors of nutritional knowledge score among elderly subjects.

    CONCLUSION: Based on the above findings it is thus, imperative that an appropriate nutritional intervention package and programme be developed so as to help improve nutritional knowledge and subsequently the nutritional status of the rural elderly Malays.

  10. Mohd Zohdi R, Abu Bakar Zakaria Z, Yusof N, Mohamed Mustapha N, Abdullah MN
    PMID: 21941590 DOI: 10.1155/2012/843025
    A novel cross-linked honey hydrogel dressing was developed by incorporating Malaysian honey into hydrogel dressing formulation, cross-linked and sterilized using electron beam irradiation (25 kGy). In this study, the physical properties of the prepared honey hydrogel and its wound healing efficacy on deep partial thickness burn wounds in rats were assessed. Skin samples were taken at 7, 14, 21, and 28 days after burn for histopathological and molecular evaluations. Application of honey hydrogel dressings significantly enhanced (P < 0.05) wound closure and accelerated the rate of re-epithelialization as compared to control hydrogel and OpSite film dressing. A significant decrease in inflammatory response was observed in honey hydrogel treated wounds as early as 7 days after burn (P < 0.05). Semiquantitative analysis using RT-PCR revealed that treatment with honey hydrogel significantly (P < 0.05) suppressed the expression of proinflammatory cytokines (IL-1α, IL-1β, and IL-6). The present study substantiates the potential efficacy of honey hydrogel dressings in accelerating burn wound healing.
  11. Abdullah MN, Mustapha F, Yusof N', Khan T, Sebaey TA
    Materials (Basel), 2024 Mar 11;17(6).
    PMID: 38541452 DOI: 10.3390/ma17061298
    This study aims to develop suitable formulations of geopolymer concrete (GPC) by varying the percentages of the geopolymer with aggregates and evaluating the performances in thermal and mechanical properties of palm kernel shell ash (PKSA)-GPC compared to rice husk ash (RHA)-GPC and ordinary Portland cement concrete (OPCC). Preliminary tests were conducted to select the best mix design ratios before casting the specimens. Then, the performance of the PKSA-GPC, RHA-GPC and OPCC specimens was evaluated based on their thermal performance and drying shrinkage. The mix designs of PKSA-GPC 70:30, PKSA-GPC 60:40, PKSA-GPC 50:50 and PKSA-GPC 66.6:33.3 were found to produce an acceptable consistency, rheological and thixotropic behaviour for the development of the GPC. PKSA-GPC showed a better thermal performance than the RHA-GPC and OPCC due to their strong and dense intumescent layers and slow temperature increment upon exposure to a high flame temperature from ambient temperature to 169 °C. The low molar ratio of the Si/Al present in the PKSA-GPC created a thermally stable intumescent layer. In the drying shrinkage test, PKSA-GPC 60:40 and RHA-GPC 60:40 shared an equal drying shrinkage performance (5.040%) compared to the OPCC (8.996%). It was observed that microcrack formation could significantly contribute to the high shrinkage in the PKSA-GPC 50:50 and RHA-GPC 70:30 specimens. The findings of this study show that PKSA could be incorporated into GPC as a fire-retardant material due to its capability of prolonging the spread of fire upon ignition and acting as an alternative to the conventional OPCC.
  12. Azma RZ, Othman A, Azman N, Alauddin H, Ithnin A, Yusof N, et al.
    Malays J Pathol, 2012 Jun;34(1):57-62.
    PMID: 22870600
    Haemoglobin Constant Spring (Hb CS) mutation and single gene deletions are common underlying genetic abnormalities for alpha thalassaemias. Co-inheritance of deletional and non-deletional alpha (alpha) thalassaemias may result in various thalassaemia syndromes. Concomitant co-inheritance with beta (beta) and delta (delta) gene abnormalities would result in improved clinical phenotype. We report here a 33-year-old male patient who was admitted with dengue haemorrhagic fever, with a background history of Grave's disease, incidentally noted to have mild hypochromic microcytic red cell indices. Physical examination revealed no thalassaemic features or hepatosplenomegaly. His full blood picture showed hypochromic microcytic red cells with normal haemoglobin (Hb) level. Quantitation of Hb using high performance liquid chromatography (HPLC) and capillary electrophoresis (CE) revealed raised Hb F, normal Hb A2 and Hb A levels. There was also small peak of Hb CS noted in CE. H inclusions was negative. Kleihauer test was positive with heterocellular distribution of Hb F among the red cells. DNA analysis for alpha globin gene mutations showed a single -alpha(-3.7) deletion and Hb CS mutation. These findings were suggestive of compound heterozygosity of Hb CS and a single -alpha(-3.7) deletion with a concomitant heterozygous deltabeta thalassaemia. Co-inheritance of Hb CS and a single -alpha(-3.7) deletion is expected to result at the very least in a clinical phenotype similar to that of two alpha genes deletion. However we demonstrate here a phenotypic modification of alpha thalassemia presumptively as a result of co-inheritance with deltabeta chain abnormality as suggested by the high Hb F level.
  13. Yusof N, Hassan MA, Yee PL, Tabatabaei M, Othman MR, Mori M, et al.
    Waste Manag Res, 2011 Jun;29(6):602-11.
    PMID: 21447612 DOI: 10.1177/0734242X10397581
    Nitrification of mature sanitary landfill leachate with high-strength of N-NH(4) + (1080-2350 mg L(-1)) was performed in a 10 L continuous nitrification activated sludge reactor. The nitrification system was acclimatized with synthetic leachate during feed batch operation to avoid substrate inhibition before being fed with actual mature leachate. Successful nitrification was achieved with an approximately complete ammonium removal (99%) and 96% of N-NH(4) + conversion to N-NO(-) (3) . The maximum volumetric and specific nitrification rates obtained were 2.56 kg N-NH(4) (+) m(-3) day(-1) and 0.23 g N-NH(4) ( +) g(-1) volatile suspended solid (VSS) day(-1), respectively, at hydraulic retention time (HRT) of 12.7 h and solid retention time of 50 days. Incomplete nitrification was encountered when operating at a higher nitrogen loading rate of 3.14 kg N-NH(4) (+) m(-3) day(-1). The substrate overloading and nitrifiers competition with heterotrophs were believed to trigger the incomplete nitrification. Fluorescence in situ hybridization (FISH) results supported the syntrophic association between the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria. FISH results also revealed the heterotrophs as the dominant and disintegration of some AOB cell aggregates into single cells which further supported the incomplete nitrification phenomenon.
  14. Sastu UR, Abdullah NR, Norahmad NA, Saat MN, Muniandy PK, Jelip J, et al.
    Malar J, 2016;15:63.
    PMID: 26850038 DOI: 10.1186/s12936-016-1109-9
    Malaria cases persist in some remote areas in Sabah and Sarawak despite the ongoing and largely successful malaria control programme conducted by the Vector Borne Disease Control Programme, Ministry Of Health, Malaysia. Point mutations in the genes that encode the two enzymes involved in the folate biosynthesis pathway, dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) enzymes confer resistance to pyrimethamine and sulfadoxine respectively, in both Plasmodium falciparum and P. vivax. The aim of the current study was to determine the mutation on both pvdhfr at codon 13, 33, 57, 58, 61, 117, and 173 and pvdhps genes at codon 383 and 553, which are potentially associated with resistance to pyrimethamine and sulfadoxine in P. vivax samples in Sabah.
  15. Che Othman FE, Yusof N, Yub Harun N, Bilad MR, Jaafar J, Aziz F, et al.
    Polymers (Basel), 2020 Sep 10;12(9).
    PMID: 32927881 DOI: 10.3390/polym12092064
    Various types of activated carbon nanofibers' (ACNFs) composites have been extensively studied and reported recently due to their extraordinary properties and applications. This study reports the fabrication and assessments of ACNFs incorporated with graphene-based materials, known as gACNFs, via simple electrospinning and subsequent physical activation process. TGA analysis proved graphene-derived rice husk ashes (GRHA)/ACNFs possess twice the carbon yield and thermally stable properties compared to other samples. Raman spectra, XRD, and FTIR analyses explained the chemical structures in all resultant gACNFs samples. The SEM and EDX results revealed the average fiber diameters of the gACNFs, ranging from 250 to 400 nm, and the successful incorporation of both GRHA and reduced graphene oxide (rGO) into the ACNFs' structures. The results revealed that ACNFs incorporated with GRHA possesses the highest specific surface area (SSA), of 384 m2/g, with high micropore volume, of 0.1580 cm3/g, which is up to 88% of the total pore volume. The GRHA/ACNF was found to be a better adsorbent for CH4 compared to pristine ACNFs and reduced graphene oxide (rGO/ACNF) as it showed sorption up to 66.40 mmol/g at 25 °C and 12 bar. The sorption capacity of the GRHA/ACNF was impressively higher than earlier reported studies on ACNFs and ACNF composites. Interestingly, the CH4 adsorption of all ACNF samples obeyed the pseudo-second-order kinetic model at low pressure (4 bar), indicating the chemisorption behaviors. However, it obeyed the pseudo-first order at higher pressures (8 and 12 bar), indicating the physisorption behaviors. These results correspond to the textural properties that describe that the high adsorption capacity of CH4 at high pressure is mainly dependent upon the specific surface area (SSA), pore size distribution, and the suitable range of pore size.
  16. Ma ZF, Yusof N, Hamid N, Lawenko RM, Mohammad WMZW, Liong MT, et al.
    Benef Microbes, 2019 Mar 13;10(2):111-120.
    PMID: 30525951 DOI: 10.3920/BM2018.0008
    Individuals in a community who developed irritable bowel syndrome (IBS) after major floods have significant mental health impairment. We aimed to determine if Bifidobacterium infantis M-63 was effective in improving symptoms, psychology and quality of life measures in flood-affected individuals with IBS and if the improvement was mediated by gut microbiota changes. Design was non-randomised, open-label, controlled before-and-after. Of 53 participants, 20 with IBS were given B. infantis M-63 (1×109 cfu/sachet/day) for three months and 33 were controls. IBS symptom severity scale, hospital anxiety and depression scale, SF-36 Questionnaire, hydrogen breath testing for small intestinal bacterial overgrowth and stools for 16S rRNA metagenomic analysis were performed before and after intervention. 11 of 20 who were given probiotics (M-63) and 20 of 33 controls completed study as per-protocol. Mental well-being was improved with M-63 vs controls for full analysis (P=0.03) and per-protocol (P=0.01) populations. Within-group differences were observed for anxiety and bodily pain (both P=0.04) in the M-63 per-protocol population. Lower ratio of Firmicutes/Bacteroidetes was observed with M-63 vs controls (P=0.01) and the lower ratio was correlated with higher post-intervention mental score (P=0.04). B. infantis M-63 is probably effective in improving mental health of victims who developed IBS after floods and this is maybe due to restoration of microbial balance and the gut-brain axis. However, our conclusion must be interpreted within the context of limited sample size. The study was retrospectively registered on 12 October 2017 and the Trial Registration Number (TRN) was NCT03318614.
  17. Riyadi FA, Tahir AA, Yusof N, Sabri NSA, Noor MJMM, Akhir FNMD, et al.
    Sci Rep, 2020 05 08;10(1):7813.
    PMID: 32385385 DOI: 10.1038/s41598-020-64817-4
    The conversion of lignocellulosic biomass into bioethanol or biochemical products requires a crucial pretreatment process to breakdown the recalcitrant lignin structure. This research focuses on the isolation and characterization of a lignin-degrading bacterial strain from a decaying oil palm empty fruit bunch (OPEFB). The isolated strain, identified as Streptomyces sp. S6, grew in a minimal medium with Kraft lignin (KL) as the sole carbon source. Several known ligninolytic enzyme assays were performed, and lignin peroxidase (LiP), laccase (Lac), dye-decolorizing peroxidase (DyP) and aryl-alcohol oxidase (AAO) activities were detected. A 55.3% reduction in the molecular weight (Mw) of KL was observed after 7 days of incubation with Streptomyces sp. S6 based on gel-permeation chromatography (GPC). Gas chromatography-mass spectrometry (GC-MS) also successfully highlighted the production of lignin-derived aromatic compounds, such as 3-methyl-butanoic acid, guaiacol derivatives, and 4,6-dimethyl-dodecane, after treatment of KL with strain S6. Finally, draft genome analysis of Streptomyces sp. S6 also revealed the presence of strong lignin degradation machinery and identified various candidate genes responsible for lignin depolymerization, as well as for the mineralization of the lower molecular weight compounds, confirming the lignin degradation capability of the bacterial strain.
  18. Faisal UH, Sabri NSA, Yusof N, Tahir AA, Said NNM, Riyadi FA, et al.
    Microbiol Resour Announc, 2021 May 13;10(19).
    PMID: 33986086 DOI: 10.1128/MRA.00259-21
    We report the draft genome sequence of Agrobacterium sp. strain S2, isolated from a decaying oil palm empty fruit bunch (OPEFB) in Negeri Sembilan, Malaysia, which yields potential genes encoding lignin degradation enzymes. This genome of 9,722,071 bp exhibited 58.9% GC content, 10,416 coding genes, and 12 RNAs.
  19. Rahman SF, Yusof NA, Hashim U, Hushiarian R, M N MN, Hamidon MN, et al.
    Anal Chim Acta, 2016 Oct 26;942:74-85.
    PMID: 27720124 DOI: 10.1016/j.aca.2016.09.009
    Dengue Virus (DENV) has become one of the most serious arthropod-borne viral diseases, causing death globally. The existing methods for DENV detection suffer from the late stage treatment due to antibodies-based detection which is feasible only after five days following the onset of the illness. Here, we demonstrated the highly effective molecular electronic based detection utilizing silicon nanowire (SiNW) integrated with standard complementary metal-oxide-semiconductor (CMOS) process as a sensing device for detecting deoxyribonucleic acid (DNA) related to DENV in an early stage diagnosis. To transform the fabricated devices as a functional sensing element, three-step procedure consist of SiNW surface modification, DNA immobilization and DNA hybridization were employed. The detection principle works by detecting the changes in current of SiNW which bridge the source and drain terminal to sense the immobilization of probe DNA and their hybridization with target DNA. The oxygen (O2) plasma was proposed as an effective strategy for increasing the binding amounts of target DNA by modified the SiNW surface. It was found that the detection limit of the optimized O2 plasma treated-SiNW device could be reduced to 1.985 × 10-14 M with a linear detection range of the sequence-specific DNA from 1.0 × 10-9 M to 1.0 × 10-13 M. In addition, the developed biosensor device was able to discriminate between complementary, single mismatch and non-complementary DNA sequences. This highly sensitive assay was then applied to the detection of reverse transcription-polymerase chain reaction (RT-PCR) product of DENV-DNA, making it as a potential method for disease diagnosis through electrical biosensor.
  20. Maluin FN, Hussein MZ, Azah Yusof N, Fakurazi S, Idris AS, Zainol Hilmi NH, et al.
    J Agric Food Chem, 2020 Apr 15;68(15):4305-4314.
    PMID: 32227887 DOI: 10.1021/acs.jafc.9b08060
    The rise of environmental and health concerns due to the excessive use of the conventional fungicide urges the search for sustainable alternatives of agronanofungicides where the latter is aimed to enhance plant uptake and minimize the volatilization, leaching, and runoff of fungicides. With this in mind, fungicides of hexaconazole and/or dazomet were encapsulated into chitosan nanoparticles for the formulation of chitosan-based agronanofungicides. In the present study, chitosan nanoparticles (2 nm), chitosan-hexaconazole nanoparticles (18 and 168 nm), chitosan-dazomet nanoparticles (7 and 32 nm), and chitosan-hexaconazole-dazomet nanoparticles (5 and 58 nm) were synthesized and used as potent antifungal agents in combating the basal stem rot (BSR) disease caused by Ganoderma boninense in which they were evaluated via an artificial inoculation of oil palm seedlings with the rubber woodblock, which was fully colonized with the fungal Ganoderma boninense mycelium. The results revealed that chitosan nanoparticles could act as dual modes of action, which are themselves as a biocide or as a nanocarrier for the existing fungicides. In addition, the particle size of the chitosan-based agronanofungicides plays a crucial role in suppressing and controlling the disease. The synergistic effect of the double-fungicide system of 5 nm chitosan-hexaconazole-dazomet nanoparticles can be observed as the system showed the highest disease reduction with 74.5%, compared to the untreated infected seedlings.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links