Displaying publications 61 - 80 of 618 in total

Abstract:
Sort:
  1. Sabullah MK, Sulaiman MR, Abd Shukor MY, Syed MA, Shamaan NA, Khalid A, et al.
    ScientificWorldJournal, 2014;2014:571094.
    PMID: 25401148 DOI: 10.1155/2014/571094
    Crude extract of ChE from the liver of Puntius javanicus was purified using procainamide-sepharyl 6B. S-Butyrylthiocholine iodide (BTC) was selected as the specific synthetic substrate for this assay with the highest maximal velocity and lowest biomolecular constant at 53.49 µmole/min/mg and 0.23 mM, respectively, with catalytic efficiency ratio of 0.23. The optimum parameter was obtained at pH 7.5 and optimal temperature in the range of 25 to 30°C. The effect of different storage condition was assessed where ChE activity was significantly decreased after 9 days of storage at room temperature. However, ChE activity showed no significant difference when stored at 4.0, 0, and -25°C for 15 days. Screening of heavy metals shows that chromium, copper, and mercury strongly inhibited P. javanicus ChE by lowering the activity below 50%, while several pairwise combination of metal ions exhibited synergistic inhibiting effects on the enzyme which is greater than single exposure especially chromium, copper, and mercury. The results showed that P. javanicus ChE has the potential to be used as a biosensor for the detection of metal ions.
  2. Doreddula SK, Bonam SR, Gaddam DP, Desu BS, Ramarao N, Pandy V
    ScientificWorldJournal, 2014;2014:519848.
    PMID: 25401145 DOI: 10.1155/2014/519848
    Abelmoschus esculentus L. (ladies finger, okra) is a well-known tropical vegetable, widely planted from Africa to Asia and from South Europe to America. In the present study, we investigated the in vitro antioxidant capacity and in vivo protective effect of the aqueous and methanolic seed extracts of Abelmoschus esculentus against scopolamine-induced cognitive impairment using passive avoidance task and acute restraining stress-induced behavioural and biochemical changes using elevated plus maze (EPM) and forced swimming test (FST) in mice. Our results demonstrated that the pretreatment of mice with aqueous and methanolic seed extracts of Abelmoschus esculentus (200 mg/kg, p.o.) for seven days significantly (P < 0.01) attenuated scopolamine-induced cognitive impairment in the passive avoidance test. In addition, these extracts significantly reduced the blood glucose, corticosterone, cholesterol, and triglyceride levels elevated by acute restraint stress and also significantly increased the time spent in open arm in EPM and decreased the immobility time in FST. It has also been revealed that these extracts showed a significant antioxidant activity and no signs of toxicity or death up to a dose of 2000 mg/kg, p.o. These results suggest that the seed extracts of Abelmoschus esculentus L. possess antioxidant, antistress, and nootropic activities which promisingly support the medicinal values of ladies finger as a vegetable.
  3. Hindia MN, Reza AW, Noordin KA
    ScientificWorldJournal, 2014;2014:246206.
    PMID: 25379524 DOI: 10.1155/2014/246206
    Nowadays, one of the most important challenges in heterogeneous networks is the connection consistency between the mobile station and the base stations. Furthermore, along the roaming process between the mobile station and the base station, the system performance degrades significantly due to the interferences from neighboring base stations, handovers to inaccurate base station and inappropriate technology selection. In this paper, several algorithms are proposed to improve mobile station performance and seamless mobility across the long-term evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) technologies, along with a minimum number of redundant handovers. Firstly, the enhanced global positioning system (GPS) and the novel received signal strength (RSS) prediction approaches are suggested to predict the target base station accurately. Then, the multiple criteria with two thresholds algorithm is proposed to prioritize the selection between LTE and WiMAX as the target technology. In addition, this study also covers the intercell and cochannel interference reduction by adjusting the frequency reuse ratio 3 (FRR3) to work with LTE and WiMAX. The obtained results demonstrate high next base station prediction efficiency and high accuracy for both horizontal and vertical handovers. Moreover, the received signal strength is kept at levels higher than the threshold, while maintaining low connection cost and delay within acceptable levels. In order to highlight the combination of the proposed algorithms' performance, it is compared with the existing RSS and multiple criteria handover decision algorithms.
  4. Khosravi Y, Vellasamy KM, Mariappan V, Ng SL, Vadivelu J
    ScientificWorldJournal, 2014;2014:132971.
    PMID: 25379514 DOI: 10.1155/2014/132971
    Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many antibiotics. Ceftazidime (CAZ), the synthetic β-lactam, is normally used as the first-line antibiotic therapy for treatment of melioidosis. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, leading to mortality if therapy is not switched to a different antibiotic(s) in a timely manner. In this study, susceptibilities of 81 B. pseudomallei isolates to nine different antimicrobial agents were determined using the disk diffusion method, broth microdilution test and Etest. Highest percentage of susceptibility was demonstrated to CAZ, amoxicillin/clavulanic acid, meropenem, imipenem, and trimethoprim/sulfamethoxazole. Although these drugs demonstrated the highest percentage of susceptibility in B. pseudomallei, the overall results underline the importance of the emergence of resistance in this organism. PCR results showed that, of the 81 B. pseudomallei, six multidrug resistant (MDR) isolates carried bpeB, amrB, and BPSS1119 and penA genes. Genotyping of the isolates using random amplified polymorphic DNA analysis showed six different PCR fingerprinting patterns generated from the six MDR isolates clusters (A) and eight PCR fingerprinting patterns generated for the remaining 75 non-MDR isolates clusters (B).
  5. Oshkour AA, Talebi H, Shirazi SF, Bayat M, Yau YH, Tarlochan F, et al.
    ScientificWorldJournal, 2014;2014:807621.
    PMID: 25302331 DOI: 10.1155/2014/807621
    This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM) comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different methods of anchoring the prosthesis to the spongy bone and two cases of applied loading. The results revealed that the FG prostheses provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement. Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding, developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG prosthesis by managing volume fraction gradient exponent.
  6. Yanagihara M, Tsuji T, Yusop MZ, Tanemura M, Ono S, Nagami T, et al.
    ScientificWorldJournal, 2014;2014:309091.
    PMID: 25302320 DOI: 10.1155/2014/309091
    A vacuum ultraviolet (VUV) field emission lamp was developed by using a neodymium ion doped lutetium fluoride (Nd(3+) : LuF3) thin film as solid-state phosphor and carbon nanofiber field electron emitters. The thin film was synthesized by pulsed laser deposition and incorporated into the lamp. The cathodoluminescence spectra of the lamp showed multiple emission peaks at 180, 225, and 255 nm. These emission spectra were in good agreement with the spectra reported for the Nd(3+) : LuF3 crystal. Moreover, application of an acceleration voltage effectively increased the emission intensity. These results contribute to the performance enhancement of the lamp operating in the VUV region.
  7. Tisa F, Raman AA, Daud WM
    ScientificWorldJournal, 2014;2014:348974.
    PMID: 25309949 DOI: 10.1155/2014/348974
    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe(3+) and Fe(2+) mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40-90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment.
  8. Dorraj M, Zakaria A, Abdollahi Y, Hashim M, Moosavi S
    ScientificWorldJournal, 2014;2014:741034.
    PMID: 25243225 DOI: 10.1155/2014/741034
    In ZnO-based low voltage varistor, the two essential features of microstructure determining its nonlinear response are the formation Bi-enriched active grain boundaries as well as a controlled ZnO grain size by secondary spinel-type phases. Besides, the microstructure and phase composition are strongly affected by the dopant concentration during sintering process. In this study, the optimal dopant levels of Bi2O3, TiO2, and Sb2O3 to achieve maximized nonlinear electrical property (alpha) were quantified by the response surface methodology (RSM). RSM was also used to understand the significance and interaction of the factors affecting the response. Variables were determined as the molar ratio of Bi2O3, TiO2, and Sb2O3. The alpha was chosen as response in the study. The 5-level-3-factor central composite design, with 20 runs, was used to conduct the experiments by ball milling method. A quadratic model was established as a functional relationship between three independent variables and alpha. According to the results, the optimum values of Bi2O3, TiO2, and Sb2O3 were obtained 0.52, 0.50, and 0.30, respectively. Under optimal conditions the predicted alpha (9.47) was calculated using optimal coded values from the model and the theoretical value is in good agreement with the value (9.43) obtained by confirmation experiment.
  9. Kamruzzaman M, Jumaat MZ, Sulong NH, Islam AB
    ScientificWorldJournal, 2014;2014:702537.
    PMID: 25243221 DOI: 10.1155/2014/702537
    In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems.
  10. Adam A, Shapiai MI, Tumari MZ, Mohamad MS, Mubin M
    ScientificWorldJournal, 2014;2014:973063.
    PMID: 25243236 DOI: 10.1155/2014/973063
    Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that provides the importance of every peak feature in contributing to a good and generalized model. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO) are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study: (1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the best combination of all the available features that offers good peak detection and a high classification rate from the results in the conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and 98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces low variance model.
  11. Hussin H, Soin N, Bukhori MF, Hatta SW, Wahab YA
    ScientificWorldJournal, 2014;2014:490829.
    PMID: 25221784 DOI: 10.1155/2014/490829
    We present a simulation study on negative bias temperature instability (NBTI) induced hole trapping in E' center defects, which leads to depassivation of interface trap precursor in different geometrical structures of high-k PMOSFET gate stacks using the two-stage NBTI model. The resulting degradation is characterized based on the time evolution of the interface and hole trap densities, as well as the resulting threshold voltage shift. By varying the physical thicknesses of the interface silicon dioxide (SiO2) and hafnium oxide (HfO2) layers, we investigate how the variation in thickness affects hole trapping/detrapping at different stress temperatures. The results suggest that the degradations are highly dependent on the physical gate stack parameters for a given stress voltage and temperature. The degradation is more pronounced by 5% when the thicknesses of HfO2 are increased but is reduced by 11% when the SiO2 interface layer thickness is increased during lower stress voltage. However, at higher stress voltage, greater degradation is observed for a thicker SiO2 interface layer. In addition, the existence of different stress temperatures at which the degradation behavior differs implies that the hole trapping/detrapping event is thermally activated.
  12. Hossain MA, Roslan HA
    ScientificWorldJournal, 2014;2014:186029.
    PMID: 25165734 DOI: 10.1155/2014/186029
    beta-D-N-Acetylhexosaminidase, a family 20 glycosyl hydrolase, catalyzes the removal of β-1,4-linked N-acetylhexosamine residues from oligosaccharides and their conjugates. We constructed phylogenetic tree of β-hexosaminidases to analyze the evolutionary history and predicted functions of plant hexosaminidases. Phylogenetic analysis reveals the complex history of evolution of plant β-hexosaminidase that can be described by gene duplication events. The 3D structure of tomato β-hexosaminidase (β-Hex-Sl) was predicted by homology modeling using 1now as a template. Structural conformity studies of the best fit model showed that more than 98% of the residues lie inside the favoured and allowed regions where only 0.9% lie in the unfavourable region. Predicted 3D structure contains 531 amino acids residues with glycosyl hydrolase20b domain-I and glycosyl hydrolase20 superfamily domain-II including the (β/α)8 barrel in the central part. The α and β contents of the modeled structure were found to be 33.3% and 12.2%, respectively. Eleven amino acids were found to be involved in ligand-binding site; Asp(330) and Glu(331) could play important roles in enzyme-catalyzed reactions. The predicted model provides a structural framework that can act as a guide to develop a hypothesis for β-Hex-Sl mutagenesis experiments for exploring the functions of this class of enzymes in plant kingdom.
  13. Ahsan MR, Islam MT, Habib Ullah M, Mahadi WN, Latef TA
    ScientificWorldJournal, 2014;2014:909854.
    PMID: 25165750 DOI: 10.1155/2014/909854
    This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show -10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications.
  14. Abdulameer MH, Sheikh Abdullah SN, Othman ZA
    ScientificWorldJournal, 2014;2014:879031.
    PMID: 25165748 DOI: 10.1155/2014/879031
    Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition.
  15. Megat Hasnan MM, Mohd Sabri MF, Mohd Said S, Nik Ghazali NN
    ScientificWorldJournal, 2014;2014:912683.
    PMID: 25165751 DOI: 10.1155/2014/912683
    This paper presents the design and evaluation of a high force density fishbone shaped electrostatic comb drive actuator. This comb drive actuator has a branched structure similar to a fishbone, which is intended to increase the capacitance of the electrodes and hence increase the electrostatic actuation force. Two-dimensional finite element analysis was used to simulate the motion of the fishbone shaped electrostatic comb drive actuator and compared against the performance of a straight sided electrostatic comb drive actuator. Performances of both designs are evaluated by comparison of displacement and electrostatic force. For both cases, the active area and the minimum gap distance between the two electrodes were constant. An active area of 800 × 300 μm, which contained 16 fingers of fishbone shaped actuators and 40 fingers of straight sided actuators, respectively, was used. Through simulation, improvement of drive force of the fishbone shaped electrostatic comb driver is approximately 485% higher than conventional electrostatic comb driver. These results indicate that the fishbone actuator design provides good potential for applications as high force density electrostatic microactuator in MEMS systems.
  16. Siswanto WA, Anggono AD, Omar B, Jusoff K
    ScientificWorldJournal, 2014;2014:301271.
    PMID: 25165738 DOI: 10.1155/2014/301271
    The aim of this work is to improve the accuracy of cold stamping product by accommodating springback. This is a numerical approach to improve the accuracy of springback analysis and die compensation process combining the displacement adjustment (DA) method and the spring forward (SF) algorithm. This alternate hybrid method (HM) is conducted by firstly employing DA method followed by the SF method instead of either DA or SF method individually. The springback shape and the target part are used to optimize the die surfaces compensating springback. The hybrid method (HM) algorithm has been coded in Fortran and tested in two- and three-dimensional models. By implementing the HM, the springback error can be decreased and the dimensional deviation falls in the predefined tolerance range.
  17. Ngan CL, Basri M, Tripathy M, Abedi Karjiban R, Abdul-Malek E
    ScientificWorldJournal, 2014;2014:219035.
    PMID: 25165736 DOI: 10.1155/2014/219035
    Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W) nanoemulsions with particle sizes in the range of 70-160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2-1.0%, w/w) and beeswax (1-3%, w/w) in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions.
  18. Khalaj N, Abu Osman NA, Mokhtar AH, George J, Abas WA
    ScientificWorldJournal, 2014;2014:815184.
    PMID: 25136689 DOI: 10.1155/2014/815184
    Knee osteoarthritis is a common cause of disability which influences the quality of life. It is associated with impaired knee joint proprioception, which affects postural stability. Postural stability is critical for mobility and physical activities. Different types of treatment including nonsurgical and surgical are used for knee osteoarthritis. Hyaluronic acid injection is a nonsurgical popular treatment used worldwide. The aim of this study was to demonstrate the effect of hyaluronic acid injections on postural stability in individuals with bilateral knee osteoarthritis. Fifty patients aged between 50 and 70 years with mild and moderate bilateral knee osteoarthritis participated in our study. They were categorized into treatment (n = 25) and control (n = 25) groups. The treatment group received five weekly hyaluronic acid injections for both knees, whereas the control group did not receive any treatment. Postural stability and fall risk were assessed using the Biodex Stability System and clinical "Timed Up and Go" test. All the participants completed the study. The treatment group showed significant decrease in postural stability and fall risk scores after five hyaluronic acid injections. In contrast, the control group showed significant increase. This study illustrated that five intra-articular hyaluronic acid injections could significantly improve postural stability and fall risk in bilateral knee osteoarthritis patients. This trial is registered with: NCT02063373.
  19. Yew MC, Ramli Sulong NH, Yew MK, Amalina MA, Johan MR
    ScientificWorldJournal, 2014;2014:805094.
    PMID: 25136687 DOI: 10.1155/2014/805094
    This paper aims to synthesize and characterize an effective intumescent fire protective coating that incorporates eggshell powder as a novel biofiller. The performances of thermal stability, char formation, fire propagation, water resistance, and adhesion strength of coatings have been evaluated. A few intumescent flame-retardant coatings based on these three ecofriendly fire retardant additives ammonium polyphosphate phase II, pentaerythritol and melamine mixed together with flame-retardant fillers, and acrylic binder have been prepared and designed for steel. The fire performance of the coatings has conducted employing BS 476: Part 6-Fire propagation test. The foam structures of the intumescent coatings have been observed using field emission scanning electron microscopy. On exposure, the coated specimens' B, C, and D had been certified to be Class 0 due to the fact that their fire propagation indexes were less than 12. Incorporation of ecofriendly eggshell, biofiller into formulation D led to excellent performance in fire stopping (index value, (I) = 4.3) and antioxidation of intumescent coating. The coating is also found to be quite effective in water repellency, uniform foam structure, and adhesion strength.
  20. Low WS, Kadri NA, Abas WA
    ScientificWorldJournal, 2014;2014:961301.
    PMID: 25136701 DOI: 10.1155/2014/961301
    We propose a strategy for optimizing distribution of flow in a typical benchtop microfluidic chamber for dielectrophoretic application. It is aimed at encouraging uniform flow velocity along the whole analysis chamber in order to ensure DEP force is evenly applied to biological particle. Via the study, we have come up with a constructive strategy in improving the design of microfluidic channel which will greatly facilitate the use of DEP system in laboratory and primarily focus on the relationship between architecture and cell distribution, by resorting to the tubular structure of blood vessels. The design was validated by hydrodynamic flow simulation using COMSOL Multiphysics v4.2a software. Simulations show that the presence of 2-level bifurcation has developed portioning of volumetric flow which produced uniform flow across the channel. However, further bifurcation will reduce the volumetric flow rate, thus causing undesirable deposition of cell suspension around the chamber. Finally, an improvement of microfluidic design with rounded corner is proposed to encourage a uniform cell adhesion within the channel.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links