Displaying publications 61 - 80 of 523 in total

Abstract:
Sort:
  1. Yung-Hung RL, Ismail A, Lim TS, Choong YS
    Biochem Biophys Res Commun, 2011 Nov 18;415(2):229-34.
    PMID: 21982766 DOI: 10.1016/j.bbrc.2011.09.116
    Shigella flexneri serotype 2a is a major public health concern in the developing and under-developed countries which contributes to shigellosis endemic and mortality. Thus, there is an urgent need for a rapid diagnostic test for effective therapy and disease management. Previous study showed that a ∼35 kDa antigenic protein from S. flexneri is a potential biomarker. We therefore modelled the three-dimensional structure of the antigen to probe its functionality which could aid in the development of an antigen-based diagnostic. Results showed that the antigen is a transmembrane protein consists of OmpA and OmpA-like domains. The OmpA domain is a beta-barrel embedded in the outer membrane with four surface-exposed extracellular loops. The OmpA-like domain is linked to the OmpA domain with a 17 amino acids linker and located in the periplasmic. Docking of peptidoglycan into the groove of OmpA-like domain might help in catalyzing the bacterial cell wall formation. Both domains are expected to be involved in the virulence, structural stability, pathogenesis and survival of Shigella thus made the 35 kDa protein a suitable shigellosis diagnostic biomarker. This structural elucidation will also enable a better identification of the epitope regions for the development of specific binders to the 35 kDa antigen.
    Matched MeSH terms: Amino Acid Sequence
  2. Najafian L, Babji AS
    Peptides, 2012 Jan;33(1):178-85.
    PMID: 22138166 DOI: 10.1016/j.peptides.2011.11.013
    Fishes are rich sources of structurally diverse bioactive compounds. In recent years, much attention has been paid to the existence of peptides with biological activities and proteins derived from foods that might have beneficial effects for humans. Antioxidant and antimicrobial peptides isolated from fish sources may be used as functional ingredients in food formulations to promote consumer health and improve the shelf life of food products. This paper presents an overview of the antioxidant and antimicrobial peptides derived from various fishes. In addition, we discuss the extraction of fish proteins, enzymatic production, and the techniques used to isolate and characterize these compounds. Furthermore, we review the methods used to assay the bioactivities and their applications in food and nutraceuticals.
    Matched MeSH terms: Amino Acid Sequence
  3. Rahman RN, Kamarudin NH, Yunus J, Salleh AB, Basri M
    Int J Mol Sci, 2010;11(9):3195-208.
    PMID: 20957088 DOI: 10.3390/ijms11093195
    An organic solvent tolerant lipase gene from Staphylococcus epidermidis AT2 was successfully cloned and expressed with pTrcHis2 in E. coli TOP10. Sequence analysis revealed an open reading frame (ORF) of 1,933 bp in length which coded for a polypeptide of 643 amino acid residues. The polypeptide comprised of a signal peptide (37 amino acids), pro-peptide and a mature protein of 390 amino acids. Expression of AT2 lipase resulted in an 18-fold increase in activity, upon the induction of 0.6 mM IPTG after a 10 h incubation period. Interestingly, this lipase was stable in various organic solvents (25% (v/v), mainly toluene, octanol, p-xylene and n-hexane). Literature shows that most of the organic solvent stable bacterial lipases were produced by Pseudomonas sp. and Bacillus sp., but very few from Staphylococcus sp. This lipase demonstrates great potential to be employed in various industrial applications.
    Matched MeSH terms: Amino Acid Sequence
  4. Dehzangi A, Phon-Amnuaisuk S
    Protein Pept Lett, 2011 Feb;18(2):174-85.
    PMID: 21054271
    One of the most important goals in bioinformatics is the ability to predict tertiary structure of a protein from its amino acid sequence. In this paper, new feature groups based on the physical and physicochemical properties of amino acids (size of the amino acids' side chains, predicted secondary structure based on normalized frequency of β-Strands, Turns, and Reverse Turns) are proposed to tackle this task. The proposed features are extracted using a modified feature extraction method adapted from Dubchak et al. To study the effectiveness of the proposed features and the modified feature extraction method, AdaBoost.M1, Multi Layer Perceptron (MLP), and Support Vector Machine (SVM) that have been commonly and successfully applied to the protein folding problem are employed. Our experimental results show that the new feature groups altogether with the modified feature extraction method are capable of enhancing the protein fold prediction accuracy better than the previous works found in the literature.
    Matched MeSH terms: Amino Acid Sequence
  5. Mohd-Padil H, Tajul-Arifin K, Mohd-Adnan A
    PLoS One, 2010;5(10):e13159.
    PMID: 20949082 DOI: 10.1371/journal.pone.0013159
    β2-Microglobulin (β(2)M) is the light chain of major histocompatibility class I (MHC I) that binds non-covalently with the α heavy chain. Both proteins attach to the antigen peptide, presenting a complex to the T cell to be destroyed via the immune mechanism.
    Matched MeSH terms: Amino Acid Sequence
  6. Mohammed MA, Galbraith SE, Radford AD, Dove W, Takasaki T, Kurane I, et al.
    Infect Genet Evol, 2011 Jul;11(5):855-62.
    PMID: 21352956 DOI: 10.1016/j.meegid.2011.01.020
    Japanese encephalitis virus (JEV) is the most important cause of epidemic encephalitis worldwide but its origin is unknown. Epidemics of encephalitis suggestive of Japanese encephalitis (JE) were described in Japan from the 1870s onwards. Four genotypes of JEV have been characterised and representatives of each genotype have been fully sequenced. Based on limited information, a single isolate from Malaysia is thought to represent a putative fifth genotype. We have determined the complete nucleotide and amino acid sequence of Muar strain and compared it with other fully sequenced JEV genomes. Muar was the least similar, with nucleotide divergence ranging from 20.2 to 21.2% and amino acid divergence ranging from 8.5 to 9.9%. Phylogenetic analysis of Muar strain revealed that it does represent a distinct fifth genotype of JEV. We elucidated Muar signature amino acids in the envelope (E) protein, including E327 Glu on the exposed lateral surface of the putative receptor binding domain which distinguishes Muar strain from the other four genotypes. Evolutionary analysis of full-length JEV genomes revealed that the mean evolutionary rate is 4.35 × 10(-4) (3.4906 × 10(-4) to 5.303 × 10(-4)) nucleotides substitutions per site per year and suggests JEV originated from its ancestral virus in the mid 1500s in the Indonesia-Malaysia region and evolved there into different genotypes, which then spread across Asia. No strong evidence for positive selection was found between JEV strains of the five genotypes and the E gene has generally been subjected to strong purifying selection.
    Matched MeSH terms: Amino Acid Sequence
  7. See Too WC, Few LL
    World J Microbiol Biotechnol, 2010 Jul;26(7):1251-9.
    PMID: 24026930 DOI: 10.1007/s11274-009-0295-9
    Psychrophiles are organisms that thrive in cold environments. One of the strategies for their cold adaptation is the ability to synthesize cold-adapted enzymes. These enzymes usually display higher catalytic efficiency and thermolability at lower temperatures compared to their mesophilic and thermophilic counterparts. In this work, a psychrophilic bacterial isolate codenamed π9 was selected for the cloning of the gene encoding triose phosphate isomerase (TIM), an enzyme in the glycolytic pathway. Based on 16S rRNA gene sequence analysis, this isolate was identified as a species of the genus Pseudomonas under the P. fluorescens group. The cloning of a 816 bp fragment of TIM gene which covers the 756 bp open reading frame was achieved by a combination of degenerate and splinkerette PCRs. The partial sequence of this gene was first PCR amplified by using degenerate primers and the flanking sequences were subsequently amplified by splinkerette PCR technique. Amino acid sequence of the cloned TIM was 97% identical to TIM from Pseudomonas fluorescens and shared 51% identity with the TIM from psychrophilic Vibrio sp. This work demonstrated the use of multiple PCR techniques to clone a gene without prior knowledge of its sequence. The cloning of the TIM gene by PCR was more rapid and cost effective compared to the traditional genomic library construction and screening method. Homology model of the TIM protein in this study was generated based on Escherichia coli TIM crystal structure. The model could serve as a hypothetical TIM structure from a psychrophilic microorganism for further investigation into areas that showed deviations from the known mesophilic TIM structures.
    Matched MeSH terms: Amino Acid Sequence
  8. Karsani SA, Othman I
    Biochem Biophys Res Commun, 2009 Nov 13;389(2):343-8.
    PMID: 19728988 DOI: 10.1016/j.bbrc.2009.08.145
    The Malayan krait (Bungarus candidus) is one of the medically most important snake species in Southeast Asia. The venom from this snake has been shown to posses both presynaptic and post-synaptic neurotoxins. We have isolated a previously uncharacterized post-synaptic neurotoxin - alphaN3 from the venom of B. candidus. Isolation of the toxin was achieved in three successive chromatography steps - gel filtration on a Sephadex G75 column, followed by ion exchange chromatography (Mono-S strong cationic exchanger) and a final reverse-phase chromatography step (PRO-RPC C18 column). Purified toxin alphaN3 was shown to have an apparent molecular weight of approximately 7 to 8 kDa on SDS-PAGE. The complete amino acid sequence of toxin alphaN3 was determined by Edman degradation and was found to share a high degree of homology with known post-synaptic neurotoxins (93% with alpha-bungarotoxin from Bungarus multicinctus, 50% with alpha cobratoxin from Naja kaouthia). The intravenous LD(50) of toxin alphaN3 was determined to be 0.16+/-0.09 microg/g in mice which is comparable to alpha-bungarotoxin from B. multicinctus. Experiments with isolated nerve-muscle preparations suggested that toxin alphaN3 was a post-synaptic neurotoxin that produced complete blockade of neuromuscular transmission by binding to nicotinic acetylcholine receptors.
    Matched MeSH terms: Amino Acid Sequence
  9. Lim BS, Chong CE, Zamrod Z, Nathan S, Mohamed R
    In Silico Biol. (Gedrukt), 2007;7(4-5):389-97.
    PMID: 18391231
    Many members of the AraC/XylS family transcription regulator have been proven to play a critical role in regulating bacterial virulence factors in response to environmental stress. By using the Hidden Markov Model (HMM) profile built from the alignment of a 99 amino acid conserved domain sequence of 273 AraC/XylS family transcription regulators, we detected a total of 45 AraC/XylS family transcription regulators in the genome of the Gram-negative pathogen, Burkholderia pseudomallei. Further in silico analysis of each detected AraC/XylS family transcription regulatory protein and its neighboring genes allowed us to make a first-order guess on the role of some of these transcription regulators in regulating important virulence factors such as those involved in three type III secretion systems and biosynthesis of pyochelin, exopolysaccharide (EPS) and phospholipase C. This paper has demonstrated an efficient and systematic genome-wide scale prediction of the AraC/XylS family that can be applied to other protein families.
    Matched MeSH terms: Amino Acid Sequence
  10. Tan SL, Mohd-Adnan A, Mohd-Yusof NY, Forstner MR, Wan KL
    Gene, 2008 Mar 31;411(1-2):77-86.
    PMID: 18280674 DOI: 10.1016/j.gene.2008.01.008
    Using a novel library of 5637 expressed sequence tags (ESTs) from the brain tissue of the Asian seabass (Lates calcarifer), we first characterized the brain transcriptome for this economically important species. The ESTs generated from the brain of L. calcarifer yielded 2410 unique transcripts (UTs) which comprise of 982 consensi and 1428 singletons. Based on database similarity, 1005 UTs (41.7%) can be assigned putative functions and were grouped into 12 functional categories related to the brain function. Amongst others, we have identified genes that are putatively involved in energy metabolism, ion pumps and channels, synapse related genes, neurotransmitter and its receptors, stress induced genes and hormone related genes. Subsequently we selected a putative preprocGnRH-II precursor for further characterization. The complete cDNA sequence of the gene obtained was found to code for an 85-amino acid polypeptide that significantly matched preprocGnRH-II precursor sequences from other vertebrates, and possesses structural characteristics that are similar to that of other species, consisting of a signal peptide (23 residues), a GnRH decapeptide (10 residues), an amidation/proteolytic-processing signal (glycine-lysine-argine) and a GnRH associated peptide (GAP) (49 residues). Phylogenetic analysis showed that this putative L. calcarifer preprocGnRH-II sequence is a member of the subcohort Euteleostei and divergent from the sequences of the subcohort Otocephalan. These findings provide compelling evidence that the putative L. calcarifer preprocGnRH-II precursor obtained in this study is orthologous to that of other vertebrates. The functional prediction of this preprocGnRH-II precursor sequence through in silico analyses emphasizes the effectiveness of the EST approach in gene identification in L. calcarifer.
    Matched MeSH terms: Amino Acid Sequence
  11. Ong ST, Yusoff K, Kho CL, Abdullah JO, Tan WS
    J Gen Virol, 2009 Feb;90(Pt 2):392-397.
    PMID: 19141448 DOI: 10.1099/vir.0.005710-0
    The nucleocapsid protein of Nipah virus produced in Escherichia coli assembled into herringbone-like particles. The amino- and carboxy-termini of the N protein were shortened progressively to define the minimum contiguous sequence involved in capsid assembly. The first 29 aa residues of the N protein are dispensable for capsid formation. The 128 carboxy-terminal residues do not play a role in the assembly of the herringbone-like particles. A region with amino acid residues 30-32 plays a crucial role in the formation of the capsid particle. Deletion of any of the four conserved hydrophobic regions in the N protein impaired capsid formation. Replacement of the central conserved regions with the respective sequences from the Newcastle disease virus restored capsid formation.
    Matched MeSH terms: Amino Acid Sequence
  12. Aliza D, Ismail IS, Kuah MK, Shu-Chien AC, Tengku Muhammad TS
    Fish Physiol Biochem, 2008 Jun;34(2):129-38.
    PMID: 18649030 DOI: 10.1007/s10695-007-9153-6
    Copper is one of the major heavy metal pollutants found in the aquatic environment. Therefore, it is important for determining the genes that play a key role in copper metabolism in aquatic organisms. This study, thus, aimed to identify a new copper-inducible gene in swordtail fish, Xiphophorus helleri. Using ACP-based RT-PCR coupled with RLM-RACE, we cloned Wap65, a mammalian homologue of hemopexin gene. The gene exhibits high identity at amino acid levels with the Wap65 gene of other fish species (42-68%) and mammalian hemopexin gene (35-37%). In addition, ten cysteine and two histidine residues are conserved in the swordtail fish Wap65 gene. These cysteine residues are vital for structural integrity, and histidine residues provide high binding affinity towards heme. As revealed by RT-PCR, the gene was upregulated in swordtail fish that were exposed to copper in a dose- and time-dependent manner. Therefore, the identification of Wap65, a mammalian homologue of hemopexin, as a new copper-inducible gene will provide greater insight into the role of this gene in copper metabolism.
    Matched MeSH terms: Amino Acid Sequence
  13. Leow TC, Rahman RN, Basri M, Salleh AB
    Extremophiles, 2007 May;11(3):527-35.
    PMID: 17426920
    A thermoalkaliphilic T1 lipase gene of Geobacillus sp. strain T1 was overexpressed in pGEX vector in the prokaryotic system. Removal of the signal peptide improved protein solubility and promoted the binding of GST moiety to the glutathione-Sepharose column. High-yield purification of T1 lipase was achieved through two-step affinity chromatography with a final specific activity and yield of 958.2 U/mg and 51.5%, respectively. The molecular mass of T1 lipase was determined to be approximately 43 kDa by gel filtration chromatography. T1 lipase had an optimum temperature and pH of 70 degrees C and pH 9, respectively. It was stable up to 65 degrees C with a half-life of 5 h 15 min at pH 9. It was stable in the presence of 1 mM metal ions Na(+), Ca(2+), Mn(2+), K(+) and Mg(2+ ), but inhibited by Cu(2+), Fe(3+) and Zn(2+). Tween 80 significantly enhanced T1 lipase activity. T1 lipase was active towards medium to long chain triacylglycerols (C10-C14) and various natural oils with a marked preference for trilaurin (C12) (triacylglycerol) and sunflower oil (natural oil). Serine and aspartate residues were involved in catalysis, as its activity was strongly inhibited by 5 mM PMSF and 1 mM Pepstatin. The T(m) for T1 lipase was around 72.2 degrees C, as revealed by denatured protein analysis of CD spectra.
    Matched MeSH terms: Amino Acid Sequence
  14. Tang KF, Abdullah MP, Yusoff K, Tan WS
    J Med Chem, 2007 Nov 15;50(23):5620-6.
    PMID: 17918821
    The core protein (HBcAg) of hepatitis B virus (HBV) has been shown to interact with the large surface antigen during HBV morphogenesis, and these interactions can be blocked by small peptides selected from either linear or constrained phage display peptide libraries. The association of HBcAg with peptide inhibitors was quantitatively evaluated by isothermal titration calorimetry. The thermodynamic data show that the interaction between HBcAg and peptide MHRSLLGRMKGA is enthalpy-driven and occurs at a 3:1 stoichiometry and dissociation constant (Kd) value of 79.4 muM. However, peptide WSFFSNI displays a higher binding affinity for HBcAg with a Kd value of 18.5 muM when compared to peptide MHRSLLGRMKGA. A combinatorial approach using chemical cross-linking and surface-enhanced laser desorption/ionization-time-of-flight-mass spectrometry shows that the Lys of peptide MHRSLLGRMKGA interacted either with D64, E77, or D78 of HBcAg.
    Matched MeSH terms: Amino Acid Sequence
  15. Lou Z, Xu Y, Xiang K, Su N, Qin L, Li X, et al.
    FEBS J, 2006 Oct;273(19):4538-47.
    PMID: 16972940
    The Nipah and Hendra viruses are highly pathogenic paramyxoviruses that recently emerged from flying foxes to cause serious disease outbreaks in humans and livestock in Australia, Malaysia, Singapore and Bangladesh. Their unique genetic constitution, high virulence and wide host range set them apart from other paramyxoviruses. These characteristics have led to their classification into the new genus Henpavirus within the family Paramyxoviridae and to their designation as Biosafety Level 4 pathogens. The fusion protein, an enveloped glycoprotein essential for viral entry, belongs to the family of class I fusion proteins and is characterized by the presence of two heptad repeat (HR) regions, HR1 and HR2. These two regions associate to form a fusion-active hairpin conformation that juxtaposes the viral and cellular membranes to facilitate membrane fusion and enable subsequent viral entry. The Hendra and Nipah virus fusion core proteins were crystallized and their structures determined to 2.2 A resolution. The Nipah and Hendra fusion core structures are six-helix bundles with three HR2 helices packed against the hydrophobic grooves on the surface of a central coiled coil formed by three parallel HR1 helices in an oblique antiparallel manner. Because of the high level of conservation in core regions, it is proposed that the Nipah and Hendra virus fusion cores can provide a model for membrane fusion in all paramyxoviruses. The relatively deep grooves on the surface of the central coiled coil represent a good target site for drug discovery strategies aimed at inhibiting viral entry by blocking hairpin formation.
    Matched MeSH terms: Amino Acid Sequence
  16. Liu X, Lai X, Zhang S, Huang X, Lan Q, Li Y, et al.
    J Agric Food Chem, 2012 Dec 26;60(51):12477-81.
    PMID: 23214475 DOI: 10.1021/jf303533p
    Edible bird's nest (EBN) is made of the swiftlets' saliva, which has attracted rather more attention owing to its nutritious and medical properties. Although protein constitutes the main composition and plays an important role in EBN, few studies have focused on the proteomic profile of EBN. The purpose of this study was to produce a proteomic map and clarify common EBN proteins. Liquid-phase isoelectric focusing (LIEF) was combined with two-dimensional electrophoresis (2-DE) for comprehensive analysis of EBN proteins. From 20 to 100 protein spots were detected on 2-DE maps of EBN samples from 15 different sources. The proteins were mainly distributed in four taxa (A, B, C, and D) according to their molecular mass. Taxa A and D both contained common proteins and proteins that may be considered another characteristic of EBN. Taxon A was identified using MALDI-TOF-TOF/MS and found to be homologous to acidic mammalian chitinase-like ( Meleagris gallopavo ), which is in glycosyl hydrolase family 18.
    Matched MeSH terms: Amino Acid Sequence
  17. Balasubramaniam S, Lee HC, Lazan H, Othman R, Ali ZM
    Phytochemistry, 2005 Jan;66(2):153-63.
    PMID: 15652572
    beta-Galactosidase (EC. 3.2.1.23) from ripe carambola (Averrhoa carambola L. cv. B10) fruit was fractionated through a combination of ion exchange and gel filtration chromatography into four isoforms, viz. beta-galactosidase I, II, III and IV. This beta-galactosidases had apparent native molecular masses of 84, 77, 58 and 130 kDa, respectively. beta-Galactosidase I, the predominant isoform, was purified to electrophoretic homogeneity; analysis of the protein by SDS-PAGE revealed two subunits with molecular masses of 48 and 36 kDa. N-terminal amino acid sequence of the respective polypeptides shared high similarities albeit at different domains, with the deduced amino acid sequence of certain plant beta-galactosidases, thus, explaining the observed low similarity between the two subunits. beta-Galactosidase I was probably a heterodimer that have glycoprotein properties and a pI value of 7.2, with one of the potential glycosylation sites appeared to reside within the 48-kDa-polypeptide. The purified beta-galactosidase I was substantially active in hydrolyzing (1-->4)beta-linked spruce and a mixture of (1-->3)beta- and (1-->6)beta-linked gum arabic galactans. This isoform also had the capability to solubilize and depolymerize structurally intact pectins as well as to modify alkaline-soluble hemicelluloses, reflecting in part changes that occur during ripening.
    Matched MeSH terms: Amino Acid Sequence
  18. Kusumaningtyas E, Tan WS, Zamrod Z, Eshaghi M, Yusoff K
    Arch Virol, 2004 Sep;149(9):1859-65.
    PMID: 15593426
    Nucleotide sequence comparison of the L gene of the Malaysian neurotropic-viscerotropic velogenic NDV strain AF2240 with other NDV strains revealed a single nucleotide insertion at position 3870. This mutation is compensated by a nucleotide deletion downstream at position 3958 which results in two forms of the L proteins containing a 30-amino acid substitution in Domain V. This compensatory mutation does not correlate with the pathogenicity of the viral strains but it may affect the viral replication as Domain V is believed to play an important role in the replication of paramyxoviruses.
    Matched MeSH terms: Amino Acid Sequence
  19. Tan CH, Tan KY, Fung SY, Tan NH
    BMC Genomics, 2015;16:687.
    PMID: 26358635 DOI: 10.1186/s12864-015-1828-2
    The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS.
    Matched MeSH terms: Amino Acid Sequence
  20. Shakiba MH, Ali MS, Rahman RN, Salleh AB, Leow TC
    Extremophiles, 2016 Jan;20(1):44-55.
    PMID: 26475626 DOI: 10.1007/s00792-015-0796-4
    The gene encoding for a novel cold-adapted enzyme from family II of bacterial classification (GDSL family) was cloned from the genomic DNA of Photobacterium sp. strain J15 in an Escherichia coli system, yielding a recombinant 36 kDa J15 GDSL esterase which was purified in two steps with a final yield and purification of 38.6 and 15.3 respectively. Characterization of the biochemical properties showed the J15 GDSL esterase had maximum activity at 20 °C and pH 8.0, was stable at 10 °C for 3 h and retained 50 % of its activity after a 6 h incubation at 10 °C. The enzyme was activated by Tween-20, -60 and Triton-X100 and inhibited by 1 mM Sodium dodecyl sulphate (SDS), while β-mercaptoethanol and Dithiothreitol (DTT) enhanced activity by 4.3 and 5.4 fold respectively. These results showed the J15 GDSL esterase was a novel cold-adapted enzyme from family II of lipolytic enzymes. A structural model constructed using autotransporter EstA from Pseudomonas aeruginosa as a template revealed the presence of a typical catalytic triad consisting of a serine, aspartate, and histidine which was verified with site directed mutagenesis on active serine.
    Matched MeSH terms: Amino Acid Sequence
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links