Displaying publications 61 - 80 of 569 in total

Abstract:
Sort:
  1. Venkateskumar K, Parasuraman S, Chuen LY, Ravichandran V, Balamurgan S
    Curr Drug Discov Technol, 2020;17(4):507-514.
    PMID: 31424372 DOI: 10.2174/1570163816666190819141344
    About 95% of earth living space lies deep below the ocean's surface and it harbors extraordinary diversity of marine organisms. Marine biodiversity is an exceptional reservoir of natural products, bioactive compounds, nutraceuticals and other potential compounds of commercial value. Timeline for the development of the drug from a plant, synthetic and other alternative sources is too lengthy. Exploration of the marine environment for potential bioactive compounds has gained focus and huge opportunity lies ahead for the exploration of such vast resources in the ocean. Further, the evolution of superbugs with increasing resistance to the currently available drugs is alarming and it needs coordinated efforts to resolve them. World Health Organization recommends the need and necessity to develop effective bioactive compounds to combat problems associated with antimicrobial resistance. Based on these factors, it is imperative to shift the focus towards the marine environment for potential bioactive compounds that could be utilized to tackle antimicrobial resistance. Current research trends also indicate the huge strides in research involving marine environment for drug discovery. The objective of this review article is to provide an overview of marine resources, recently reported research from marine resources, challenges, future research prospects in the marine environment.
    Matched MeSH terms: Anti-Infective Agents/isolation & purification; Anti-Infective Agents/pharmacology*; Anti-Infective Agents/therapeutic use
  2. AlMatar M, Eldeeb M, Makky EA, Köksal F, Var I, Kayar B
    Curr Microbiol, 2017 Jan;74(1):132-144.
    PMID: 27785553 DOI: 10.1007/s00284-016-1152-3
    Microbial-derived natural products have functional and structural diversity and complexity. For several decades, they have provided the basic foundation for most drugs available to modern medicine. Microbial-derived natural products have wide-ranging applications, especially as chemotherapeutics for various diseases and disorders. By exploring distinct microorganisms in different environments, small novel bioactive molecules with unique functionalities and biological or biomedical significance can be identified. Aquatic environments, such as oceans or seas, are considered to be sources of abundant novel bioactive compounds. Studies on marine microorganisms have revealed that several bioactive compounds extracted from marine algae and invertebrates are eventually generated by their associated bacteria. These findings have prompted intense research interest in discovering novel compounds from marine microorganisms. Natural products derived from Dermacoccus exhibit antibacterial, antitumor, antifungal, antioxidant, antiviral, antiparasitic, and eventually immunosuppressive bioactivities. In this review, we discussed the diversity of secondary metabolites generated by genus Dermacoccus with respect to their chemical structure, biological activity, and origin. This brief review highlights and showcases the pivotal importance of Dermacoccus-derived natural products and sheds light on the potential venues of discovery of new bioactive compounds from marine microorganisms.
    Matched MeSH terms: Anti-Infective Agents/metabolism; Anti-Infective Agents/pharmacology; Anti-Infective Agents/chemistry
  3. Poh-Hwa, T., Yoke-Kqueen, C., Indu Bala, J., Son, R.
    MyJurnal
    The aim of this work was to investigate the antioxidant and antimicrobial of Phyllanthus amarus, Phyllanthus niruri and Phyllanthus urinaria. P. niruri was found to possess the highest antioxidant activity, the activity decreased in the order P. niruri > P. amarus > P. urinaria for water extract. However, the activity decreased in the order P. niruri > P. urinaria > P. amarus for methanol extract. The result correlation between the antioxidant activity and total phenolic content revealed a positive correlation of 0.954 < r 2 < 1.000 for both water and methanol extract. Methanol extract showed higher total phenolic content and antioxidant activity as compared with water extract. Lowest Minimum Inhibitory Concentration (MIC) value for water extract against the selected microorganism was >2.5 mg/mL meanwhile, for methanol extract was 2.5 mg/mL and >0.625 mg/mL were the value for water and methanol extract. Methanol extract showed better inhibition potential than water extract
    Matched MeSH terms: Anti-Infective Agents
  4. Jindal MH, Le CF, Mohd Yusof MY, Sekaran SD
    JUMMEC, 2014;17(1):1-7.
    MyJurnal
    Antimicrobial peptides (AMPs) have gained increasing attention as a potential candidate in the development of novel antimicrobial agent. Designing AMPs with enhanced antimicrobial activity while reducing the cell toxicity level is desired especially against the antibiotic-resistant microbes. Various approaches towards the design of AMPs have been described and physicochemical properties of AMPs represent the primary factors determining the antimicrobial potency of AMPs. The most common parameters include net charge and hydrophobicity, which greatly influence the antimicrobial activity of AMPs. Moreover, certain amino acids would have critical importance in affecting the antimicrobial activity as well as cell cytotoxicity of AMPS. In this review, net charge, hydrophobicity, and specific amino acid residues were discussed as factors contributing to the antimicrobial activity of AMPs.
    Matched MeSH terms: Anti-Infective Agents
  5. Himratul-Aznita, W.H.
    Ann Dent, 2001;8(1):-.
    MyJurnal
    Until today there are still a high percentage of oral microorganisms have not been identified due to inability to isolate using the cultural method. However, identification of uncultivable microorganisms associated with disease will permits clinicians for a more accurate diagnosis, treatment and preventive measures. Unculturable microorganisms are also involved in disease and may account for treatment failure since their susceptibility to antimicrobial agents would be unknown. Thus, the opportunity for a rational approach to the treatment of disease relies on the state of knowledge concerning its aetiology and pathogenesis. Recently developed molecular methods have made it possible to characterise mixed microflora in their entirety, including the substantial numbers of unculturable bacteria. The development of rapid molecular methods like PCR provides a reliable identification of unculturable microorganisms. This paper will review the current literature regarding the PCR techniques used to identify uncultivable oral microflora.
    Matched MeSH terms: Anti-Infective Agents
  6. Hussain Z, Thu HE, Amjad MW, Hussain F, Ahmed TA, Khan S
    Mater Sci Eng C Mater Biol Appl, 2017 Aug 01;77:1316-1326.
    PMID: 28532009 DOI: 10.1016/j.msec.2017.03.226
    Curcumin derivatives have been well-documented due to their natural antioxidant, antimicrobial and anti-inflammatory activities. Curcuminoids have also gained widespread recognition due to their wide range of other activities which include anti-infective, anti-mutagenic, anticancer, anti-coagulant, antiarthrititc, and wound healing potential. Despite of having a wide range of activities, the inherent physicochemical characteristics (poor water solubility, low bioavailability, chemical instability, photodegradation, rapid metabolism and short half-life) of curcumin derivatives limit their pharmaceutical significance. Aiming to overcome these pharmaceutical issues and improving therapeutic efficacy of curcuminoids, newer strategies have been attempted in recent years. These advanced techniques include polymeric nanoparticles, nanocomposite hydrogels, nanovesicles, nanofibers, nanohybrid scaffolds, nanoconjugates, nanostructured lipid carriers (NLCs), nanoemulsion, polymeric micelles and polymeric blend films. Incorporation of curcumin in these delivery systems has shown improved solubility, transmembrane permeability, long-term stability, improved bioavailability, longer plasma half-life, target-specific delivery, and upgraded therapeutic efficacy. In this review, a range of in vitro and in vivo studies have been critically discussed to explore the pharmaceutical significance and therapeutic viability of the advanced delivery systems to improve antioxidant, anti-inflammatory and antimicrobial efficacies of curcumin and its derivatives.
    Matched MeSH terms: Anti-Infective Agents
  7. Rabiatul Basria S.M.N. Mydin, Izzah Nadhirah Muhamad Zahidi, Nurul Nadiah Ishak, Nik Shaida Shamim Nik Ghazali, Said Moshawih, Shafiquzzaman Siddiquee
    MyJurnal
    The application of nanoparticles (NPs) has attracted considerable attention as targeted delivery systems. CaCO3 has become the focus due to its advantages including affordability, low toxicity, biocompatibility, cytocompatibility, pH sensitivity and sedate biodegradability and environment friendly materials. In this article, we will discuss the po- tential roles of CaCO3-NPs in three major therapeutic applications; as antimicrobial, for drug delivery, and as gene delivery nanocarrier.
    Matched MeSH terms: Anti-Infective Agents
  8. Hossain MS, Sharfaraz A, Dutta A, Ahsan A, Masud MA, Ahmed IA, et al.
    Biomed Pharmacother, 2021 Nov;143:112182.
    PMID: 34649338 DOI: 10.1016/j.biopha.2021.112182
    Nigella sativa L. is one of the most extensively used traditional medicinal plants. This widely studied plant is known to display diverse pharmacological actions, including antimicrobial activities. Current literature has documented its multi-target mode of antimicrobial actions. N. sativa or its bioactive compounds, such as thymoquinone, can induce oxidative stress, cell apoptosis (by producing reactive oxygen species), increase membrane permeability, inhibit efflux pumps, and impose strong biocidal actions. Despite its well-documented antimicrobial efficacy in the experimental model, to the best of our knowledge its antimicrobial mechanisms highlighting the multi-targeting properties have yet to be well discussed. Is N. sativa or thymoquinone a valuable lead compound for therapeutic development for infectious diseases? Are N. sativa's bioactive compounds potential antimicrobial agents or able to overcome antimicrobial resistance? This review aims to discuss the antimicrobial pharmacology of N. sativa-based treatments. Additionally, it provides a holistic overview of the ethnobotany, ethnopharmacology, and phytochemistry of N. sativa.
    Matched MeSH terms: Anti-Infective Agents/isolation & purification; Anti-Infective Agents/pharmacology*; Anti-Infective Agents/toxicity
  9. Kow RY, Low CL, Ruben JK, Zaharul-Azri MZ, Ng MS
    Malays Orthop J, 2017 Jul;11(2):72-74.
    PMID: 29021884 MyJurnal DOI: 10.5704/MOJ.1707.008
    Chlorhexidine is a common antiseptic and disinfectant used in the medical field. Allergy to chlorhexidine has been reported in the literature but life-threatening anaphylactic shock is rare. We present a case of severe anaphylactic shock due to chlorhexidine occurring during surgery. Literatures suggest that profound anaphylactic shock to chlorhexidine is commonly preceded by milder, non-specific reactions. These mild symptoms are often dismissed by both the patient and physicians alike. Direct questioning of these symptoms is necessary as a part of the pre-operative assessment and the patient should be referred for further immunology testing if indicated.
    Matched MeSH terms: Anti-Infective Agents, Local
  10. Ma DSL, Tan LT, Chan KG, Yap WH, Pusparajah P, Chuah LH, et al.
    Front Pharmacol, 2018;9:102.
    PMID: 29515440 DOI: 10.3389/fphar.2018.00102
    Bacterial foodborne pathogens are a significant health burden and the recent emergence of pathogenic resistant strains due to the excessive use of antibiotics makes it more difficult to effectively treat infections as a result of contaminated food. Awareness of this impending health crisis has spurred the search for alternative antimicrobials with natural plant antimicrobials being among the more promising candidates as these substances have good acceptability and likely low toxicity levels as they have long been used in traditional medicines. Resveratrol (3,5,4'-trihydroxystilbene) is a naturally occurring stilbenoid which has been gaining considerable attention in medical field due to its diverse biological activities - it has been reported to exhibit antioxidant, cardioprotective, anti-diabetic, anticancer, and antiaging properties. Given that resveratrol is phytoalexin, with increased synthesis in response to infection by phytopathogens, there has been interest in exploring its antimicrobial activity. This review aims to provide an overview of the published data on the antibacterial activity of resveratrol against foodborne pathogens, its mechanisms of action as well as its possible applications in food packing and processing; in addition we also summarize the current data on its potential synergism with known antibacterials and future research and applications.
    Matched MeSH terms: Anti-Infective Agents
  11. Kumar CS, Then LY, Chia TS, Chandraju S, Win YF, Sulaiman SF, et al.
    Molecules, 2015 Sep 11;20(9):16566-81.
    PMID: 26378514 DOI: 10.3390/molecules200916566
    A series of five new 2-(1-benzofuran-2-yl)-2-oxoethyl 4-(un/substituted)benzoates 4(a-e), with the general formula of C₈H₅O(C=O)CH₂O(C=O)C₆H₄X, X = H, Cl, CH₃, OCH₃ or NO₂, was synthesized in high purity and good yield under mild conditions. The synthesized products 4(a-e) were characterized by FTIR, ¹H-, (13)C- and ¹H-(13)C HMQC NMR spectroscopic analysis and their 3D structures were confirmed by single-crystal X-ray diffraction studies. These compounds were screened for their antimicrobial and antioxidant activities. The tested compounds showed antimicrobial ability in the order of 4b < 4a < 4c < 4d < 4e and the highest potency with minimum inhibition concentration (MIC) value of 125 µg/mL was observed for 4e. The results of antioxidant activities revealed the highest activity for compound 4e (32.62% ± 1.34%) in diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, 4d (31.01% ± 4.35%) in ferric reducing antioxidant power (FRAP) assay and 4a (27.11% ± 1.06%) in metal chelating (MC) activity.
    Matched MeSH terms: Anti-Infective Agents/chemical synthesis; Anti-Infective Agents/pharmacology; Anti-Infective Agents/chemistry
  12. Hashim R, Ahmad N, Mohamed Zahidi J, Tay BY, Mohd Noor A, Zainal S, et al.
    Int J Microbiol, 2014;2014:596245.
    PMID: 25120569 DOI: 10.1155/2014/596245
    Brucellosis is a world-wide zoonotic disease with a major impact on the public health. Due to the high risk of laboratory acquired infection, limited laboratory investigations were performed on this organism, including detailed identification and susceptibility study. Brucella melitensis is the commonest aetiological agent for human brucellosis in this region. The in vitro susceptibility pattern against selected antimicrobial agents was assessed using E-test. All isolates were noted to be sensitive to all the antimicrobial agents tested except for rifampicin where elevated MIC > 1 μg/mL was noted in 30 out of 41 isolates tested.
    Matched MeSH terms: Anti-Infective Agents
  13. Mat Ludin CM, Md Radzi J
    Malays J Med Sci, 2001 Jul;8(2):14-8.
    PMID: 22893755 MyJurnal
    Seven different brands of mouthwashes were assessed for the inhibition of growth of oral micro-organisms. The results showed wide variations in their effectiveness: Those containing cationic surfactants and complex organic nitrogenous compounds were more active than the older formulations based on phenols. A list was compiled ranking the mouthwashes according to their antimicrobial activity, which did not always agree with the manufacturer's claims or indication for use.
    Matched MeSH terms: Anti-Infective Agents
  14. Lee LH, Zainal N, Azman AS, Eng SK, Goh BH, Yin WF, et al.
    ScientificWorldJournal, 2014;2014:698178.
    PMID: 25162061 DOI: 10.1155/2014/698178
    The aim of this study was to isolate and identify Actinobacteria from Malaysia mangrove forest and screen them for production of antimicrobial secondary metabolites. Eighty-seven isolates were isolated from soil samples collected at 4 different sites. This is the first report to describe the isolation of Streptomyces, Mycobacterium, Leifsonia, Microbacterium, Sinomonas, Nocardia, Terrabacter, Streptacidiphilus, Micromonospora, Gordonia, and Nocardioides from mangrove in east coast of Malaysia. Of 87 isolates, at least 5 isolates are considered as putative novel taxa. Nine Streptomyces sp. isolates were producing potent antimicrobial secondary metabolites, indicating that Streptomyces isolates are providing high quality metabolites for drug discovery purposes. The discovery of a novel species, Streptomyces pluripotens sp. nov. MUSC 135(T) that produced potent secondary metabolites inhibiting the growth of MRSA, had provided promising metabolites for drug discovery research. The biosynthetic potential of 87 isolates was investigated by the detection of polyketide synthetase (PKS) and nonribosomal polyketide synthetase (NRPS) genes, the hallmarks of secondary metabolites production. Results showed that many isolates were positive for PKS-I (19.5%), PKS-II (42.5%), and NRPS (5.7%) genes, indicating that mangrove Actinobacteria have significant biosynthetic potential. Our results highlighted that mangrove environment represented a rich reservoir for isolation of Actinobacteria, which are potential sources for discovery of antimicrobial secondary metabolites.
    Matched MeSH terms: Anti-Infective Agents/isolation & purification; Anti-Infective Agents/pharmacology*
  15. Pathak M, Turner M, Palmer C, Coombes AG
    J Biomater Appl, 2014 Sep;29(3):354-63.
    PMID: 24682036 DOI: 10.1177/0885328214528256
    Microporous, poly (ɛ-caprolactone) (PCL) matrices loaded with the antibacterial, metronidazole were produced by rapidly cooling suspensions of drug powder in PCL solutions in acetone. Drug incorporation in the matrices increased from 2.0% to 10.6% w/w on raising the drug loading of the PCL solution from 5% to 20% w/w measured with respect to the PCL content. Drug loading efficiencies of 40-53% were obtained. Rapid 'burst release' of 35-55% of the metronidazole content was recorded over 24 h when matrices were immersed in simulated vaginal fluid (SVF), due to the presence of large amounts of drug on matrix surface as revealed by Raman microscopy. Gradual release of around 80% of the drug content occurred over the following 12 days. Metronidazole released from PCL matrices in SVF retained antimicrobial activity against Gardnerella vaginalis in vitro at levels up to 97% compared to the free drug. Basic modelling predicted that the concentrations of metronidazole released into vaginal fluid in vivo from a PCL matrix in the form of an intravaginal ring would exceed the minimum inhibitory concentration of metronidazole against G. vaginalis. These findings recommend further investigation of PCL matrices as intravaginal devices for controlled delivery of metronidazole in the treatment and prevention of bacterial vaginosis.
    Matched MeSH terms: Anti-Infective Agents/administration & dosage*; Anti-Infective Agents/therapeutic use
  16. Saad S, Taher M, Susanti D, Qaralleh H, Awang AF
    Asian Pac J Trop Biomed, 2012 Jun;2(6):427-9.
    PMID: 23569943 DOI: 10.1016/S2221-1691(12)60069-0
    To investigate the antimicrobial property of mangrove plant Sonneratia alba (S. alba).
    Matched MeSH terms: Anti-Infective Agents/isolation & purification; Anti-Infective Agents/pharmacology*
  17. Wiart C, Hannah A, Yassim M, Hamimah H, Sulaiman M
    J Ethnopharmacol, 2004 Dec;95(2-3):285-6.
    PMID: 15507350
    The hexane, dichloromethane, ethyl acetate and methanol fractions of leaves of Acalypha siamensis Oliv. ex Gage were evaluated for antibacterial and antifungal activity. The antibacterial activity was more pronounced in the ethyl acetate and methanol extracts. No activity was shown against tested moulds.
    Matched MeSH terms: Anti-Infective Agents/isolation & purification; Anti-Infective Agents/pharmacology*
  18. Ismail NM, Mustapha MS, Megat R
    Ann Acad Med Singap, 1997 Nov;26(6):754-7.
    PMID: 9522974
    The aim of this study was to investigate if colloidal bismuth subcitrate (CBS) can penetrate the gastric mucus barrier to reach the different sites of the antral mucosa and to estimate the time course for CBS to reach and remain in the mucosa. A single dose of CBS was administered orally to rats that were sacrificed at different time intervals post treatment. The control group received gum acacia without CBS. Colloidal bismuth subcitrate, visualised as electron dense precipitate (EDP), was seen in the gastric mucus layer, intercellular spaces and intracellularly after 30 minutes and disappeared after 6 hours. Scant amounts of EDP were observed in the gastric crypts, confined only to the upper parts of these structures. We concluded that CBS can penetrate the mucus and has a wide but uneven distribution in the gastric mucosa. Colloidal bismuth subcitrate, in the concentration given only penetrated the upper two-thirds of gastric pits and not the lower one-third. We also concluded that CBS has to be given 6 hourly to ensure its continuous presence in the gastric mucosa.
    Matched MeSH terms: Anti-Infective Agents/administration & dosage; Anti-Infective Agents/pharmacokinetics*
  19. Rozman NAS, Tong WY, Leong CR, Tan WN, Hasanolbasori MA, Abdullah SZ
    J Microbiol Biotechnol, 2019 Jul 28;29(7):1009-1013.
    PMID: 31288302 DOI: 10.4014/jmb.1904.04065
    Polymeric nanoparticles are widely used for drug delivery due to their biodegradability property. Among the wide array of polymers, chitosan has received growing interest among researchers. It was widely used as a vehicle in polymeric nanoparticles for drug targeting. This review explored the current research on the antimicrobial activity of chitosan nanoparticles (ChNP) and the impact on the clinical applications. The antimicrobial activities of ChNP were widely reported against bacteria, fungi, yeasts and algae, in both in vivo and in vitro studies. For pharmaceutical applications, ChNP were used as antimicrobial coating for promoting wound healing, preventing infections and combating the rise of infectious disease. Besides, ChNP also exhibited significant inhibitory on foodborne microorganisms, particularly on fruits and vegetables. It is noteworthy that ChNP can be also applied to deliver antimicrobial drugs, which further enhance the efficiency and stability of the antimicrobial agent. The present review addresses the potential antimicrobial applications of ChNP from these few aspects.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*; Anti-Infective Agents/chemistry*
  20. Mahizan NA, Yang SK, Moo CL, Song AA, Chong CM, Chong CW, et al.
    Molecules, 2019 Jul 19;24(14).
    PMID: 31330955 DOI: 10.3390/molecules24142631
    The evolution of antimicrobial resistance (AMR) in pathogens has prompted extensive research to find alternative therapeutics. Plants rich with natural secondary metabolites are one of the go-to reservoirs for discovery of potential resources to alleviate this problem. Terpenes and their derivatives comprising of hydrocarbons, are usually found in essential oils (EOs). They have been reported to have potent antimicrobial activity, exhibiting bacteriostatic and bactericidal effects against tested pathogens. This brief review discusses the activity of terpenes and derivatives against pathogenic bacteria, describing the potential of the activity against AMR followed by the possible mechanism exerted by each terpene class. Finally, ongoing research and possible improvisation to the usage of terpenes and terpenoids in therapeutic practice against AMR are discussed.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*; Anti-Infective Agents/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links