Displaying publications 61 - 80 of 265 in total

Abstract:
Sort:
  1. Adebayo IA, Arsad H, Samian MR
    PMID: 28573245 DOI: 10.21010/ajtcam.v14i2.30
    BACKGROUND: Moringa oleifera belongs to plant family, Moringaceae and popularly called "wonderful tree", for it is used traditionally to cure many diseases including cancer in Africa and Asia, however, there is limited knowledge on cytotoxic activity of Moringa oleifera seeds on MCF7 breast cancer cell. The present study evaluated antiproliferative effect on MCF7 of the seed.
    MATERIALS AND METHODS: Seeds of Moringa oleifera were grinded to powder and its phytochemicals were extracted using water and 80% ethanol solvents, part of the ethanolic extract were sequentially partitioned to fractions with four solvents (hexane, dichloromethane, chloroform, and n-butanol). Antiproliferative effects on MCF7 of the samples were determined. Finally, potent samples that significantly inhibited MCF7 growth were tested on MCF 10A.
    RESULTS: Crude water extract, hexane and dichloromethane fractions of the seeds inhibited the proliferation of MCF7 with the following IC50 values 280 μg/ml, 130 μg/ml and 26 μg/ml respectively, however, of the 3 samples, only hexane fraction had minimal cytotoxic effect on MCF 10A (IC50 > 400μg/ml).
    CONCLUSION: Moringa oleifera seed has antiproliferative effect on MCF7.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  2. Zakaria ZA, Mohamed AM, Jamil NS, Rofiee MS, Hussain MK, Sulaiman MR, et al.
    Am J Chin Med, 2011;39(1):183-200.
    PMID: 21213408
    The in vitro antiproliferative and antioxidant activities of the aqueous, chloroform and methanol extracts of Muntingia calabura leaves were determined in the present study. Assessed using the 3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay, the aqueous and methanol extracts of M. calabura inhibited the proliferation of MCF-7, HeLa, HT-29, HL-60 and K-562 cancer cells while the chloroform extract only inhibited the proliferation of MCF-7, HeLa, HL-60 and K-562 cancer cells. Interestingly, all extracts of M. calabura, which failed to inhibit the MDA-MB-231 cells proliferation, did not inhibit the proliferation of 3T3 (normal) cells, indicating its safety. All extracts (20, 100 and 500 μg/ml) were found to possess antioxidant activity when tested using the DPPH radical scavenging and superoxide scavenging assays with the methanol, followed by the aqueous and chloroform, extract exhibiting the highest antioxidant activity in both assays. The total phenolic content for the aqueous, methanol and chloroform extracts were 2970.4 ± 6.6, 1279.9 ± 6.1 and 2978.1 ± 4.3 mg/100 g gallic acid, respectively. In conclusion, the M. calabura leaves possess potential antiproliferative and antioxidant activities that could be attributed to its high content of phenolic compounds, and thus, needs to be further explored.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  3. Al Muqarrabun LM, Ahmat N, Aris SR, Norizan N, Shamsulrijal N, Yusof FZ, et al.
    Nat Prod Res, 2014;28(13):1003-9.
    PMID: 24697194 DOI: 10.1080/14786419.2014.903396
    A new triterpene, malaytaraxerate (1), and four known compounds, taraxerol (2), taraxerone (3), docosyl isoferulate (4) and docosanoic acid 2',3'-dihydroxypropyl ester (5), were isolated from the acetone extract of Sapium baccatum stem bark. The structures of the isolated compounds were determined using several spectroscopic methods, including UV-Vis, FT-IR, 1D and 2D NMR, and mass spectrometry. Major isolated compounds were assayed for cytotoxicity. The chemotaxonomic significance of this plant was also studied.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  4. Bagheri E, Hajiaghaalipour F, Nyamathulla S, Salehen N
    Drug Des Devel Ther, 2018;12:657-671.
    PMID: 29636600 DOI: 10.2147/DDDT.S155115
    Background: Brucea javanica (L.) Merr. is a plant from the genus Brucea, which is used in local traditional medicine to treat various diseases. Recent studies revealed an impressive anticancer efficiency of B. javanica extract in different types of cancer cells.

    Purpose: In this study, we have investigated the cytotoxic effects of the B. javanica hexane, ethanolic extracts against colon cancer cells. HT29 colon cells were selected as an in vitro cancer model to evaluate the anticancer activity of B. javanica ethanolic extract (BJEE) and the possible mechanisms of action that induced apoptosis.

    Methods: 3-(4,5-dimethylthiazol-2-yl)-2, 5,-diphenyltetrazolium bromide (MTT), lactate dehydrogenase, acridine orange/propidium iodide, and annexin-V-fluorescein isothiocyanate assays were performed to determine the antiproliferative and apoptosis validation of BJEE on cancer cells. Measurement of reactive oxygen species (ROS) production, caspase activities, nucleus factor-κB activity, and gene expression experiments was done to investigate the potential mechanisms of action in the apoptotic process.

    Results: The results obtained from this study illustrated the significant antiproliferative effect of BJEE on colorectal cancer cells, with a concentration value that inhibits 50% of the cell growth of 25±3.1 µg/mL after 72 h of treatment. MTT assay demonstrated that the BJEE is selectively toxic to cancer cells, and BJEE induced cell apoptosis via activation of caspase-8 along with modulation of apoptosis-related proteins such as Fas, CD40, tumor necrosis factor-related apoptosis-inducing ligands, and tumor necrosis factor receptors, which confirmed the contribution of extrinsic pathway. Meanwhile, increased ROS production in treated cells subsequently activated caspase-9 production, which triggered the intrinsic pathways. In addition, overexpression of cytochrome-c, Bax, and Bad proteins along with suppression of Bcl-2 illustrated that mitochondrial-dependent pathway also contributed to BJEE-induced cell death. Consistent with the findings from this study, BJEE-induced cancer cell death proceeds via extrinsic and intrinsic mitochondrial-dependent and -independent events.

    Conclusion: From the evidence obtained from this study, it is concluded that the BJEE is a promising natural extract to combat colorectal cancer cells (HT29 cells) via induction of apoptosis through activation of extrinsic and intrinsic pathways.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  5. Tan BL, Norhaizan ME, Yeap SK, Roselina K
    Eur Rev Med Pharmacol Sci, 2015;19(6):1022-9.
    PMID: 25855928
    Brewers' rice, a mixture of broken rice, rice bran, and rice germ, is a rice by-product in the rice industry. The present study was designed to investigate the in vitro cytotoxicity of the water extract of brewers' rice (WBR) against colorectal cancer (HT-29) cells.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  6. Majid MZ, Zaini ZM, Razak FA
    ScientificWorldJournal, 2014;2014:125353.
    PMID: 25147833 DOI: 10.1155/2014/125353
    Brucea javanica, Azadirachta indica, and Typhonium flagelliforme are medicinal plants commonly used to treat conditions associated with tumour formation. This study aimed to determine the antiproliferative activity of these plants extracts on KB and ORL-48 oral cancer cell lines and to suggest their mode of cell death. The concentration producing 50% cell inhibition (IC50) was determined and the activity was examined under an inverted microscope. Immunohistochemistry fluorescent staining method (TUNEL) was performed to indicate the mechanism of cell death and the fragmented DNA band pattern produced was obtained for verification. Compared to Azadirachta sp. and Typhonium sp., the antiproliferative activity of Brucea sp. extract was the most potent on both KB and ORL-48 cells with IC50 of 24.37 ± 1.75 and 6.67 ± 1.15 µg/mL, respectively. Signs of cell attrition were observed 24 hr after treatment. Green fluorescent spots indicating cell death by apoptosis were observed in images of both cells following treatment with all the three extracts. DNA fragments harvested from Brucea-treated cells produced bands in a ladder pattern suggesting the apoptotic effect of the extract. It is thus concluded that Brucea sp. extract exhibited cytotoxic activity on ORL-48 cells and their action mechanism is via apoptosis.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  7. Nasiri R, Dabagh S, Meamar R, Idris A, Muhammad I, Irfan M, et al.
    Nanotechnology, 2020 May 08;31(19):195603.
    PMID: 31978907 DOI: 10.1088/1361-6528/ab6fd4
    The present study aims at engineering, fabrication, characterization, and qualifications of papain (PPN) conjugated SiO2-coated iron oxide nanoparticles 'IONPs@SiO2-PPN'. Initially fabricated iron oxide nanoparticles (IONPs) were coated with silica (SiO2) using sol-gel method to hinder the aggregation and to enhance biocompatibility. Next, PPN was loaded as an anticancer agent into the silica coated IONPs (IONPs@SiO2) for the delivery of papain to the HeLa cancer cells. This fabricated silica-coated based magnetic nanoparticle is introduced as a new physiologically-compatible and stable drug delivery vehicle for delivering of PPN to the HeLa cancer cell line. The IONPs@SiO2-PPN were characterized using FT-IR, AAS, FESEM, XRD, DLS, and VSM equipment. Silica was amended on the surface of iron oxide nanoparticles (IONPs, γ-Fe2O3) to modify its biocompatibility and stability. The solvent evaporation method was used to activate PPN vectorization. The following tests were performed to highlight the compatibility of our proposed delivery vehicle: in vitro toxicity assay, in vivo acute systemic toxicity test, and the histology examination. The results demonstrated that IONPs@SiO2-PPN successfully reduced the IC50 values compared with the native PPN. Also, the structural alternations of HeLa cells exposed to IONPs@SiO2-PPN exhibited higher typical hallmarks of apoptosis compared to the cells treated with the native PPN. The in vivo acute toxicity test indicated no clinical signs of distress/discomfort or weight loss in Balb/C mice a week after the intravenous injection of IONPs@SiO2 (10 mg kg-1). Besides, the tissues architectures were not affected and the pathological inflammatory alternations detection failed. In conclusion, IONPs@SiO2-PPN can be chosen as a potent candidate for further medical applications in the future, for instance as a drug delivery vehicle or hyperthermia agent.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  8. Abas F, Lajis NH, Shaari K, Israf DA, Stanslas J, Yusuf UK, et al.
    J Nat Prod, 2005 Jul;68(7):1090-3.
    PMID: 16038556
    A new labdane diterpene glucoside, curcumanggoside (1), together with nine known compounds, including labda-8(17),12-diene-15,16-dial (2), calcaratarin A (3), zerumin B (4), scopoletin, demethoxycurcumin, bisdemethoxycurcumin, 1,7-bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one, curcumin, and p-hydroxycinnamic acid, have been isolated from the rhizomes of Curcuma mangga. Their structures were determined using a combination of 1D (1H NMR, 13C NMR, DEPT) and 2D (COSY, HSQC, HMBC) NMR techniques. All diarylheptanoids and scopoletin showed significant antioxidant activity. Zerumin B, demethoxycurcumin, bisdemethoxycurcumin, and curcumin also exhibited cytotoxic activity against a panel of five human tumor cell lines.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  9. Sawai S, Mohktar MS, Safwani WKZW, Ramasamy TS
    Anticancer Agents Med Chem, 2018;18(9):1258-1266.
    PMID: 29521251 DOI: 10.2174/1871520618666180307143229
    BACKGROUND: Konjac Glucomannan (KGM) is a water-soluble dietary fibre extracted from Amorphophallus konjac K. Koch (Araceae). Konjac fibre has been clinically proven as an effective antioxidant agent in weight control but its traditionally known tumour suppression property remains to be explored.

    OBJECTIVE: The main objective of this study is to determine the potential anti-proliferative effect of KGM on cancer and normal human liver cell lines, HepG2 and WRL68, respectively.

    METHOD: HepG2 and WRL68 cells were treated with KGM, D-mannose, KGM-D-mannose and 5-fluorouracil. The morphological changes in those treated cells were observed. Cytotoxic effect of the treatments on cell viability and proliferation, and apoptosis genes expression were assessed by cytotoxicity assay, flow cytometry and RT-PCR analyses.

    RESULTS: The results show that KGM treatment resulted in reduced viability of HepG2 cells significantly, in line with the apoptosis-like morphological changes. Up-regulation of BAX and down-regulation of BCL2 genes as reflected by high Bax to Bcl 2 ratio suggests that the inhibitory effect of KGM on HepG2 cells most likely via Bcl2/Bax protein pathway. Despite the effectiveness of standard drug 5-FU in suppressing the viability and proliferation of HepG2 cells, it however, exhibited no selective inhibition of cancer cells as compared to KGM.

    CONCLUSION: Current findings suggested that KGM is a potential anti-cancer compound/drug entity, which could be an alternative preventive agent against liver cancer.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  10. Hajiaghaalipour F, Kanthimathi MS, Sanusi J, Rajarajeswaran J
    Food Chem, 2015 Feb 15;169:401-10.
    PMID: 25236244 DOI: 10.1016/j.foodchem.2014.07.005
    Tea (Camellia sinensis) is one of the most consumed beverages in the world. White tea is made from the buds and young leaves of the tea plant which are steamed and dried, whilst undergoing minimal oxidation. The MTT assay was used to test the extract on the effect of the proliferation of the colorectal cancer cell line, HT-29. The extract inhibited the proliferation of HT-29 cells with an IC50 of 87μg/ml. The extract increased the levels of caspase-3, -8, and -9 activity in the cells. DNA damage in 3T3-L1 normal cells was detected by using the comet assay. The extract protected 3T3-L1 cells against H2O2-induced DNA damage. The results from this study show that white tea has antioxidant and antiproliferative effects against cancer cells, but protect normal cells against DNA damage. Regular intake of white tea can help to maintain good health and protect the body against disease.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  11. Hosseinzadeh M, Mohamad J, Khalilzadeh MA, Zardoost MR, Haak J, Rajabi M
    J. Photochem. Photobiol. B, Biol., 2013 Nov 5;128:85-91.
    PMID: 24077497 DOI: 10.1016/j.jphotobiol.2013.08.002
    The bark of Litsea costalis affords two new compounds named 4,4'-diallyl-5,5'-dimethoxy-[1,1'-biphennyl]-2,2'-diol, biseugenol A (1) and 2,2'-oxybis (4-allyl-1-methoxybenzene), biseugenol B (2) along with two known compounds (3-4), namely 5-methoxy-2-Hydroxy Benzaldehyde (3), and (E)-4-styrylphenol (4). The structures of 1 and 2 were determined using 1D and 2D NMR data. Also, the IR and NMR data were combined with quantum chemical calculations in the DFT approach using the hybrid B3LYP exchange-correlation function to confirm the structures of the compounds. Compounds showed fairly potent anticancer activity against cell lines and antioxidant (DPPH).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  12. Komala I, Rahmani M, Sukari MA, Mohd Ismail HB, Cheng Lian GE, Rahmat A
    Nat Prod Res, 2006 Apr;20(4):355-60.
    PMID: 16644530
    Investigation on the leaves of Melicope bonwickii (F.Muell.) T.Hartley (Rutaceae) afforded a new 7-(2'-hydroxy-3'-chloroprenyloxy)-4-methoxyfuroquinoline (1) together with the known 7-(2',3'-epoxyprenyloxy)-4-methoxyfuroquinoline (2), evellerine (3) kokusaginine (4) and an amide aurantiamide acetate (5). Compounds 1 and 2 showed significant activity against cervical cell lines (Hela).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  13. Ghasemzadeh A, Jaafar HZ, Rahmat A
    PMID: 26223685 DOI: 10.1186/s12906-015-0718-0
    Analysis and extraction of plant matrices are important processes for the development, modernization, and quality control of herbal formulations. Response surface methodology is a collection of statistical and mathematical techniques that are used to optimize the range of variables in various experimental processes to reduce the number of experimental runs, cost , and time, compared to other methods.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  14. Ee GC, Daud S, Izzaddin SA, Rahmani M
    J Asian Nat Prod Res, 2008 May-Jun;10(5-6):475-9.
    PMID: 18464091 DOI: 10.1080/10286020801948490
    Our current interest in searching for natural anti-cancer lead compounds from plants has led us to the discovery that the stem and roots of Garcinia mangostana can be a source of such compounds. The stem furnished 2,8-dihydroxy-6-methoxy-5-(3-methylbut-2-enyl)-xanthone (1), which is a new xanthone. Meanwhile, the root bark of the plant furnished six xanthones, namely alpha-mangostin (2), beta-mangostin (3), gamma-mangostin (4), garcinone D (5), mangostanol (6), and gartanin (7). The hexane and chloroform extracts of the root bark of G. mangostana as well as the hexane extract of the stem bark were found to be active against the CEM-SS cell line. gamma-Mangostin (4) showed good activity with a very low IC(50) value of 4.7 microg/ml, while alpha-mangostin (2), mangostanol (6), and garcinone D (5) showed significant activities with IC(50) values of 5.5, 9.6, and 3.2 microg/ml, respectively. This is the first report on the cytotoxicity of the extracts of the stem and root bark of G. mangostana and of alpha-mangostin, mangostanol, and garcinone D against the CEM-SS cell line.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  15. Loganathan R, Selvaduray KR, Nesaretnam K, Radhakrishnan AK
    Cell Prolif, 2013 Apr;46(2):203-13.
    PMID: 23510475 DOI: 10.1111/cpr.12014
    OBJECTIVES: Tocotrienols and tocopherols are members of the vitamin E family, with similar structures; however, only tocotrienols have been reported to achieve potent anti-cancer effects. The study described here has evaluated anti-cancer activity of vitamin E to elucidate mechanisms of cell death, using human breast cancer cells.

    MATERIALS AND METHODS: Anti-cancer activity of a tocotrienol-rich fraction (TRF) and a tocotrienol-enriched fraction (TEF) isolated from palm oil, as well as pure vitamin E analogues (α-tocopherol, α-, δ- and γ-tocotrienols) were studied using highly aggressive triple negative MDA-MB-231 cells and oestrogen-dependent MCF-7 cells, both of human breast cancer cell lines. Cell population growth was evaluated using a Coulter particle counter. Cell death mechanism, poly(ADP-ribose) polymerase cleavage and levels of NF-κB were determined using commercial ELISA kits.

    RESULTS: Tocotrienols exerted potent anti-proliferative effects on both types of cell by inducing apoptosis, the underlying mechanism of cell death being ascertained using respective IC50 concentrations of all test compounds. There was marked induction of apoptosis in both cell lines by tocotrienols compared to treatment with Paclitaxel, which was used as positive control. This activity was found to be associated with cleavage of poly(ADP-ribose) polymerase (a DNA repair protein), demonstrating involvement of the apoptotic cell death signalling pathway. Tocotrienols also inhibited expression of nuclear factor kappa-B (NF-κB), which in turn can increase sensitivity of cancer cells to apoptosis.

    CONCLUSION: Tocotrienols induced anti-proliferative and apoptotic effects in association with DNA fragmentation, poly(ADP-ribose) polymerase cleavage and NF-κB inhibition in the two human breast cancer cell lines.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  16. Looi ML, Wong AKH, Gnapragasan SA, Japri AZ, Rajedadram A, Pin KY
    J Zhejiang Univ Sci B, 2020 9 8;21(9):745-748.
    PMID: 32893531 DOI: 10.1631/jzus.B2000278
    Piper betle (PB), also known as "betel" in Malay language, is a tropical Asian vine. PB leaves are commonly chewed by Asians along with betel quid. It contains phenols such as eugenol and hydroxychavicol along with chlorophyll, β-carotene, and vitamin C (Salehi et al., 2019). Extracts from PB leaves have various medicinal properties including anticancer, antioxidant, anti-inflammatory, and antibacterial effects (Salehi et al., 2019). Previous research has shown that PB induces cell cycle arrest at late S or G2/M phase and causes apoptosis at higher doses (Wu et al., 2014; Guha Majumdar and Subramanian, 2019). A combination of PB leaf extract has also been shown to enhance the cytotoxicity of the anticancer drug, 5-fluorouracil (5-FU), in cancer cells (Ng et al., 2014).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  17. Mohamad K, Martin MT, Najdar H, Gaspard C, Sévenet T, Awang K, et al.
    J Nat Prod, 1999 Jun;62(6):868-72.
    PMID: 10395505
    Nine 3,4-secoapotirucallanes, argentinic acids A-I, were isolated from the bark of Aglaia argentea and transformed to their methyl esters 1-9. The structures were determined by spectral and chemical means. Compounds 1-8 showed moderate cytotoxic activity against KB cells (IC50 1.0-3.5 microg/mL).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  18. Alias Y, Awang K, Hadi AH, Thoison O, Sévenet T, Païs M
    J Nat Prod, 1995 Aug;58(8):1160-6.
    PMID: 7595585
    Bioassay-guided fractionation of an ethyl acetate extract of Fissistigma lanuginosum led to the isolation of the known chalcone pedicin [1], which inhibited tubulin assembly into microtubules (IC50 value of 300 microM). From the same EtOAc fraction, two new condensed chalcones, fissistin [2] and isofissistin [3], which showed cytotoxicity against KB cells, were also obtained, together with the inactive dihydropedicin [4] and 6,7-dimethoxy-5,8-dihydroxyflavone [5]. In addition, the aminoquinones 6, 8, and 9 were isolated from the alkaloid extract. These compounds were artifacts, prepared by treatment of 1, 4, and 2, respectively, with NH4OH. The structures of the new compounds were elucidated by spectral methods, especially 2D nmr.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  19. Shafie NH, Esa NM, Ithnin H, Saad N, Pandurangan AK
    Int J Mol Sci, 2013;14(12):23545-58.
    PMID: 24317430 DOI: 10.3390/ijms141223545
    Inositol hexaphosphate (IP6), or phytic acid is a natural dietary ingredient and has been described as a "natural cancer fighter", being an essential component of nutritional diets. The marked anti-cancer effect of IP6 has resulted in our quest for an understanding of its mechanism of action. In particular, our data provided strong evidence for the induction of apoptotic cell death, which may be attributable to the up-regulation of Bax and down-regulation of Bcl-xl in favor of apoptosis. In addition, the up-regulation of caspase-3 and -8 expression and activation of both caspases may also contribute to the apoptotic cell death of human colorectal adenocarcinoma HT-29 cells when exposed to IP6. Collectively, this present study has shown that rice bran IP6 induces apoptosis, by regulating the pro- and anti-apoptotic markers; Bax and Bcl-xl and via the activation of caspase molecules (caspase-3 and -8).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  20. Vairappan CS, Nagappan T, Palaniveloo K
    Nat Prod Commun, 2012 Feb;7(2):239-42.
    PMID: 22474969
    Essential oils obtained by hydrodistillation from the rhizomes of Etlingera pyramidosphaera (K. Schum.) R. M. Sm, E. megalocheilos (Griff.) A.D. Poulsen, comb. nov., E. coccinea (Blume) S. Sakai & Nagam, E. elatior (Jack) R. M. Sm, and E. brevilabrum (Valeton) R. M. Sm were analyzed by GCMS. The highest oil yield was obtained from E. pyramidosphaera (0.45%), followed by E. elatior (0.38%), E. coccinea (0.30%), E. brevilabrum (0.28%) and E. megalocheilos (0.25%). The major constituents of the essential oils were oxygenated monoterpenes, followed by sesquiterpenes, oxygenated sesquiterpenes, oxygenated diterpenes and diterpenes. The essential oils from E. pyramidosphaera and E. brevilabrum exhibited the best cytotoxicity against MCF 7 (LC50: 7.5 +/- 0.5 mg mL(-1)) and HL 60 (LC50: 5.0 mg mL(-1)), respectively. Strong inhibition was also observed for the essential oils of E. coccinea and E. megalocheilos against Staphylococcus aureus (MIC: 8.0 +/- 0.5 mg mL(-1), and 5.0 +/- 0.5 mg mL(-1)) and Streptococcus pyrogenes (MIC: 6.0 +/- 0.5 mg mL(-1) and 8.0 +/- 0.5 mg mL(-1)).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links