Displaying publications 61 - 80 of 198 in total

  1. Nayak CD, Nayak DM, Raja A, Rao A
    Indian J Med Sci, 2007 Jul;61(7):381-9.
    PMID: 17611343
    BACKGROUND: Reactive oxygen species are indicated to play a prime role in the pathophysiology of brain damage following a severe head injury (SHI).

    AIM: The current study was designed to understand the time-relative changes and relationship between erythrocyte antioxidant enzyme activities and Glasgow Coma Scale (GCS) scores of SHI patients in the 21-day posttraumatic study period.

    SETTINGS AND DESIGN: The study included 24 SHI patients and 25 age- and sex-matched normal controls (NC). Activities of superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GSH-Px) were assayed in these patients and controls. The GCS scores of these patients were also recorded for the comparative study.

    MATERIALS AND METHODS: Venous blood samples were collected on day 7 (D7) and D21 from SHI patients and NC for the assay of SOD, GR and GSH-Px activities. These changes were correlated with age and changes in GCS scores of patients.

    STATISTICAL ANALYSIS: A one-way analysis of variance (ANOVA) was used to compare mean values of each parameter between group 1 (NC), group 2 (D7 changes in SHI patients) and group 3 (D21 changes in SHI patients). ANOVA was followed by Bonferroni post hoc tests. The Pearson correlation was applied to correlate between the antioxidant parameters and age and GCS scores of these patients.

    RESULTS: A significant increase in erythrocyte SOD and GSH-Px activities was observed in group 3 as compared to groups 1 and 2. The increase in GSH-Px activity was significant in group 2 as compared to group 1. Although not significant, there was an increase in mean GR activity in groups 2 and 3 as compared to group 1.

    CONCLUSION: These findings indicate that SHI patients have shown significantly enhanced erythrocyte SOD and GSH-Px activities during the 21-day posttraumatic study period.

    Matched MeSH terms: Antioxidants/metabolism*
  2. Kuppusamy UR, Indran M, Ahmad T, Wong SW, Tan SY, Mahmood AA
    Clin. Chim. Acta, 2005 Jan;351(1-2):197-201.
    PMID: 15563890 DOI: 10.1016/j.cccn.2004.09.014
    BACKGROUND: Comparisons of oxidative indices and total antioxidant status between end-stage renal disease (ESRD) patients with or without diabetes is scant, especially in the Asian population.
    METHOD: The assays were carried out according to known established protocols.
    RESULT: The present study showed that ESRD patients with or without non-insulin-dependent diabetes mellitus (NIDDM) did not have any significant differences in antioxidant enzyme activities, advanced glycated end products (AGE), advanced oxidized protein products (AOPP) and ferric reducing ability of plasma (FRAP), indicating that hyperglycemia does not exacerbate oxidative damage in ESRD. The regulation of catalase and glutathione peroxidase is also altered in ESRD. Elevated FRAP was observed in both ESRD groups (with and without NIDDM). The dialysis process did not alter the antioxidant enzyme activities but decreased AGEs and FRAP and increased AOPP levels.
    CONCLUSION: Oxidative stress is present in ESRD but this is not significantly exacerbated by hyperglycemia. The contribution of components in the pathology of renal failure towards oxidative stress exceeds that of hyperglycemia.
    Matched MeSH terms: Antioxidants/metabolism
  3. Kuppusamy UR, Dharmani M, Kanthimathi MS, Indran M
    Biol Trace Elem Res, 2005 Jul;106(1):29-40.
    PMID: 16037608
    The trace elements copper, zinc, and selenium are important immune modulators and essential cofactors of the antioxidant enzymes. In the present study, the proliferative effect of human peripheral mononuclear cells (PBMCs) that have been exposed to copper, zinc, and selenium and the corresponding activities of antioxidant enzymes, namely superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase, were determined. Zinc and copper stimulated the PBMC proliferation in a dose-dependent manner within the dose range 25-200 micromol/L. SOD and GPx activities in PBMCs exposed to zinc were inhibited, whereas catalase activity was unaffected. All the three antioxidant enzymes in the cells exposed to copper were inhibited. Selenium exerted more potent inhibition of the cell proliferation while causing stimulation of the antioxidant enzymes at the lowest dose (25 micromol/L) than at the highest dose (200 micromol/L) tested. A significant negative correlation was observed between proliferation and antioxidant enzyme (SOD and GPx) activities in trace-element-exposed PBMC. The present findings substantiate the importance of trace elements as immune modulators and the involvement of enzymatic antioxidant system in the immune cell regulation.
    Matched MeSH terms: Antioxidants/metabolism
  4. Adeyemi KD, Shittu RM, Sabow AB, Ebrahimi M, Sazili AQ
    PLoS One, 2016;11(5):e0154603.
    PMID: 27138001 DOI: 10.1371/journal.pone.0154603
    This study appraised the effects of dietary blend of 80% canola oil and 20% palm oil and postmortem ageing on oxidative stability, fatty acids and quality attributes of gluteus medius (GM) muscle in goats. Twenty-four Boer bucks were randomly allotted to diet supplemented with 0, 4 and 8% oil blend, fed for 100 days and slaughtered, and the GM muscle was subjected to a 7 d chill storage (4±1°C). Diet had no effect (P> 0.05) on the colour, drip loss, thiobarbituric acid-reactive substances (TBARS) value, free thiol, carbonyl, myoglobin and metmyoglobin contents, metmyoglobin reducing activity (MRA), antioxidant enzyme activities and abundance of myosin heavy chain (MHC) and actin in the GM muscle in goats. The meat from goats fed 4 and 8% oil blend had higher (P< 0.05) concentration of α and γ-tocopherol and abundance of troponin T compared with that from the control goats. The GM muscle from the oil-supplemented goats had lower (P< 0.05) concentration of C16:0 and greater (P< 0.05) concentration of C18:1n-9, C18:3n-3 and C20:5n-3 compared with that from the control goats. Nonetheless, diet did not affect (P< 0.05) the total fatty acid in the GM muscle in goats. Regardless of the diet, the free thiol and myoglobin contents, concentration of tocopherol and total carotenoids, MHC and MRA in the GM muscle decreased (P< 0.05) while carbonyl content, TBARS, drip loss and metmyoglobin content increased over storage. Dietary blend of 80% canola oil and 20% palm oil beneficially altered tissue lipids without hampering the oxidative stability of chevon.
    Matched MeSH terms: Antioxidants/metabolism
  5. Ismail N, Ismail M, Azmi NH, Abu Bakar MF, Basri H, Abdullah MA
    Oxid Med Cell Longev, 2016;2016:2528935.
    PMID: 26823946 DOI: 10.1155/2016/2528935
    Nigella sativa Linn. (N. sativa) and its bioactive constituent Thymoquinone (TQ) have demonstrated numerous pharmacological attributes. In the present study, the neuroprotective properties of Thymoquinone-rich fraction (TQRF) and TQ against hydrogen peroxide- (H2O2-) induced neurotoxicity in differentiated human SH-SY5Y cells were investigated. TQRF was extracted using supercritical fluid extraction while TQ was acquired commercially, and their effects on H2O2 were evaluated using cell viability assay, reactive oxygen species (ROS) assay, morphological observation, and multiplex gene expression. Both TQRF and TQ protected the cells against H2O2 by preserving the mitochondrial metabolic enzymes, reducing intracellular ROS levels, preserving morphological architecture, and modulating the expression of genes related to antioxidants (SOD1, SOD2, and catalase) and signaling genes (p53, AKT1, ERK1/2, p38 MAPK, JNK, and NF-κβ). In conclusion, the enhanced efficacy of TQRF over TQ was likely due to the synergism of multiple constituents in TQRF. The efficacy of TQRF was better than that of TQ alone when equal concentrations of TQ in TQRF were compared. In addition, TQRF also showed comparable effects to TQ when the same concentrations were tested. These findings provide further support for the use of TQRF as an alternative to combat oxidative stress insults in neurodegenerative diseases.
    Matched MeSH terms: Antioxidants/metabolism*
  6. Shah MD, Gnanaraj C, Khan MS, Iqbal M
    PMID: 26081032
    Dillenia suffruticosa L. (Dilleniaceae) is used in traditional medicine for protection against various diseases. The current study was designed to investigate the bioactive compounds and hepatoprotective potential of methanol leaves extract of D. suffruticosa against carbon tetrachloride (CCl4)-induced hepatic oxidative injury. Sprague Dawley rats were pretreated with methanol extract of D. suffruticosa leaves (200, 300, and 400 mg/kg body weight [bwt]) once daily for 14 days followed by two doses of CCl4 (1.0 mL/kg bwt). After 2 weeks the rats were sacrificed and hepatoprotective analysis was performed. The identified bioactive compounds include phenol (1.39%); benzyl alcohol (2.04%); 2H-pyran-2-one, 4,6-dimethyl (1.19%); phenol, 2,4-bis(1,1-dimethylethyl) (0.83%); dodecanoic acid (0.84%); hexadecanoic acid, methyl ester (2.66%); n-hexadecanoic acid (0.96%); and phytol (2.13%). The administration of D. suffruticosa significantly depleted the elevation of enzymatic levels of alanine transaminase and aspartate transaminase (4% to 59% recovery), reduced the extent of malondialdehyde production (13% to 79% recovery), elevated the level of reduced glutathione (5% to 21% recovery), and increased the activities of antioxidant enzymes (0.43% to 35% recovery). Histopathological analyses by light and electron microscopy revealed that the plant extract protects the liver from the toxic effects of CCl4 and cured lesions such as necrosis and fatty degeneration. It also decreased hepatocyte injuries such as irregular lamellar organization and dilations in endoplasmic reticulum. Immunohistochemical studies indicate the formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 4-hydroxyl-2-nonenal (HNE)-modified protein adducts. In addition, the overexpression of the inflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and prostaglandin E2 (PGE2) are reduced. Hence, we find D. suffruticosa to be a good source of bioactive compounds with hepatoprotective effects against CCl4-induced oxidative damage.
    Matched MeSH terms: Antioxidants/metabolism*
  7. Mikail MA, Ahmed IA, Ibrahim M, Hazali N, Abdul Rasad MS, Abdul Ghani R, et al.
    Eur J Nutr, 2016 Jun;55(4):1435-44.
    PMID: 26091909 DOI: 10.1007/s00394-015-0961-7
    PURPOSE: The consequence of the increased demand due to the population expansion has put tremendous pressure on the natural supply of fruits. Hence, there is an unprecedented growing interest in the exploration of the potentials of underutilized fruits as alternatives to the commercially available fruits. Baccaurea angulata is an underutilized fruit widely distributed in Borneo Island of Malaysia. The present study was conducted to investigate the effects of B. angulata whole fruit (WF), skin (SK) and pulp (PL) juices on malondialdehyde (MDA) levels and antioxidant enzymes in rabbits fed high-cholesterol diet.

    METHODS: Thirty-six male rabbits of New Zealand strain were randomly assigned to six groups. Rabbits were fed either a standard pellet (group NC) or a high-cholesterol diet (groups HC, PC, WF, SK and PL). Groups WF, SK and PL were also given 1 ml/kg/day B. angulata WF, SK and PL juices, respectively.

    RESULTS: Baccaurea angulata had high antioxidant activities. The administration of the various juices significantly reduced (p 

    Matched MeSH terms: Antioxidants/metabolism*
  8. Murugaiyah V, Mattson MP
    Neurochem Int, 2015 Oct;89:271-80.
    PMID: 25861940 DOI: 10.1016/j.neuint.2015.03.009
    The impact of dietary factors on brain health and vulnerability to disease is increasingly appreciated. The results of epidemiological studies, and intervention trials in animal models suggest that diets rich in phytochemicals can enhance neuroplasticity and resistance to neurodegeneration. Here we describe how interactions of plants and animals during their co-evolution, and resulting reciprocal adaptations, have shaped the remarkable characteristics of phytochemicals and their effects on the physiology of animal cells in general, and neurons in particular. Survival advantages were conferred upon plants capable of producing noxious bitter-tasting chemicals, and on animals able to tolerate the phytochemicals and consume the plants as an energy source. The remarkably diverse array of phytochemicals present in modern fruits, vegetables spices, tea and coffee may have arisen, in part, from the acquisition of adaptive cellular stress responses and detoxification enzymes in animals that enabled them to consume plants containing potentially toxic chemicals. Interestingly, some of the same adaptive stress response mechanisms that protect neurons against noxious phytochemicals are also activated by dietary energy restriction and vigorous physical exertion, two environmental challenges that shaped brain evolution. In this perspective article, we describe some of the signaling pathways relevant to cellular energy metabolism that are modulated by 'neurohormetic phytochemicals' (potentially toxic chemicals produced by plants that have beneficial effects on animals when consumed in moderate amounts). We highlight the cellular bioenergetics-related sirtuin, adenosine monophosphate activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and insulin-like growth factor 1 (IGF-1) pathways. The inclusion of dietary neurohormetic phytochemicals in an overall program for brain health that also includes exercise and energy restriction may find applications in the prevention and treatment of a range of neurological disorders.
    Matched MeSH terms: Antioxidants/metabolism*
  9. Zaiton Z, Merican Z, Khalid BA, Mohamed JB, Baharom S
    Gen. Pharmacol., 1993 Jan;24(1):195-9.
    PMID: 8482496
    1. The mean levels of lipid peroxidation products, namely conjugated diene and malonaldehyde, were increased in the soleus muscles of hyperthyroid cats, while the mean glutathione peroxidase activity was decreased. No corresponding similar changes were noted in the fast extensor digitorum longus muscles and serum. 2. Propranolol administration prevented the increase in conjugated diene level in the soleus muscles of hyperthyroid cat but not the malonaldehyde level. It also prevented the reduction in glutathione peroxidase activity in the slow oxidative soleus muscles of hyperthyroid cats. 3. Maximal twitch tension, subtetanic tension and maximum tetanic tension of soleus and EDL muscles were reduced in hyperthyroid cats. Propranolol administration for 5 weeks to hyperthyroid cats did not prevent the reduction in tension of contractions of these muscles. 4. It is suggested that lipid peroxidation might not be responsible for the myopathy in hyperthyroidism and propranolol administration does not improve skeletal muscle function in hyperthyroid animals.
    Matched MeSH terms: Antioxidants/metabolism*
  10. Alam MA, Zaidul IS, Ghafoor K, Sahena F, Hakim MA, Rafii MY, et al.
    BMC Complement Altern Med, 2017 Mar 31;17(1):181.
    PMID: 28359331 DOI: 10.1186/s12906-017-1684-5
    BACKGROUND: This study was aimed to evaluate antioxidant and α-glucosidase inhibitory activity, with a subsequent analysis of total phenolic and total flavonoid content of methanol extract and its derived fractions from Clinacanthus nutans accompanied by comprehensive phytochemical profiling.

    METHODS: Liquid-liquid partition chromatography was used to separate methanolic extract to get hexane, ethyl acetate, butanol and residual aqueous fractions. The total antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging and ferric reducing antioxidant power assay (FRAP). The antidiabetic activity of methanol extract and its consequent fractions were examined by α-glucosidase inhibitory bioassay. The chemical profiling was carried out by gas chromatography coupled with quadrupole time-of-flight mass spectrometry (GC Q-TOF MS).

    RESULTS: The total yield for methanol extraction was (12.63 ± 0.98) % (w/w) and highest fractionated value found for residual aqueous (52.25 ± 1.01) % (w/w) as compared to the other fractions. Significant DPPH free radical scavenging activity was found for methanolic extract (63.07 ± 0.11) % and (79.98 ± 0.31) % for ethyl acetate fraction among all the fractions evaluated. Methanol extract was the most prominent in case of FRAP (141.89 ± 0.87 μg AAE/g) whereas most effective reducing power observed in ethyl acetate fraction (133.6 ± 0.2987 μg AAE/g). The results also indicated a substantial α-glucosidase inhibitory activity for butanol fraction (72.16 ± 1.0) % and ethyl acetate fraction (70.76 ± 0.49) %. The statistical analysis revealed that total phenolic and total flavonoid content of the samples had the significant (p 

    Matched MeSH terms: Antioxidants/metabolism
  11. Mirshekari A, Madani B, Golding JB
    J Sci Food Agric, 2017 Aug;97(11):3706-3711.
    PMID: 28111769 DOI: 10.1002/jsfa.8231
    BACKGROUND: The marketability of fresh-cut banana slices is limited by the rapid rate of fruit softening and browning. However, there is no scientific literature available about the role of postharvest calcium propionate and chitosan treatment on the quality attributes of fresh-cut banana. Therefore, the aim of the present study was to investigate these effects.

    RESULTS: The application of calcium propionate plus chitosan (CaP+Chit) retained higher firmness, higher ascorbic acid content, higher total antioxidant activity and higher total phenolic compounds, along with lower browning, lower polyphenol oxidase, lower peroxidase, lower polygalacturonase and lower pectin methyl esterase activities and microbial growth, compared to control banana slices after 5 days of cold storage.

    CONCLUSION: The results of the present study show that CaP+Chit could be used to slow the loss of quality at the same time as maintaining quality and inhibiting microbial loads. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Antioxidants/metabolism
  12. Abubakar B, Yakasai HM, Zawawi N, Ismail M
    J Food Drug Anal, 2018 04;26(2):706-715.
    PMID: 29567241 DOI: 10.1016/j.jfda.2017.06.010
    Diet-related metabolic diseases, and especially obesity, are metabolic disorders with multifactorial aetiologies. Diet has been a cornerstone in both the aetiology and management of this metabolic disorders. Rice, a staple food for over half of the world's population, could be exploited as part of the solution to check this menace which has been skyrocketing in the last decade. The present study investigated nine forms of rice from three widely grown Malaysian rice cultivars for in vitro and in vivo (glycaemic index and load) properties that could translate clinically into a lower predisposition to diet-related diseases. The germinated brown forms of MRQ 74 and MR 84 rice cultivars had high amylose content percentages (25.7% and 25.0%), high relative percentage antioxidant scavenging abilities of 85.0% and 91.7%, relatively low glycaemic indices (67.6 and 64.3) and glycaemic load (32.3 and 30.1) values, and modest glucose uptake capabilities of 33.69% and 31.25%, respectively. The results show that all things being equal, rice cultivars that are germinated and high in amylose content when compared to their white and low amylose counterparts could translate into a lower predisposition to diet-related diseases from the dietary point of view in individuals who consume this cereal as a staple food.
    Matched MeSH terms: Antioxidants/metabolism
  13. Othman FB, Mohamed HJBJ, Sirajudeen KNS, Noh MFBM, Rajab NF
    J Trace Elem Med Biol, 2017 Sep;43:106-112.
    PMID: 28065595 DOI: 10.1016/j.jtemb.2016.12.009
    Selenium is involved in the complex system of defense against oxidative stress in diabetes through its biological function of selenoproteins and the antioxidant enzyme. A case-control study was carried out to determine the association of plasma selenium with oxidative stress and body composition status presented in Type 2 Diabetes Mellitus (T2DM) patient and healthy control. This study involved 82 newly diagnosed T2DM patients and 82 healthy controls. Plasma selenium status was determined with Graphite Furnace Atomic Absorption Spectrometry. Body Mass Index, total body fat and visceral fat was assessed for body composition using Body Composition Analyzer (TANITA). Oxidative DNA damage and total antioxidant capacity were determined for oxidative stress biomarker status. In age, gender and BMI adjustment, no significant difference of plasma selenium level between T2DM and healthy controls was observed. There was as a significant difference of Oxidative DNA damage and total antioxidant capacity between T2DM patients and healthy controls with tail DNA% 20.62 [95% CI: 19.71,21.49] (T2DM), 17.67 [95% CI: 16.87,18.56] (control); log tail moment 0.41[95% CI: 0.30,0.52] (T2DM), 0.41[95% CI: 0.30,0.52] (control); total antioxidant capacity 0.56 [95% CI: 0.54,0.58] (T2DM), 0.60 [95% CI: 0.57,0.62] (control). Waist circumference, BMI, visceral fat, body fat and oxidative DNA damage in the T2DM group were significantly lower in the first plasma selenium tertile (38.65-80.90μg/L) compared to the second (80.91-98.20μg/L) and the third selenium tertiles (98.21-158.20μg/L). A similar trend, but not statistically significant, was observed in the control group.
    Matched MeSH terms: Antioxidants/metabolism*
  14. Nurdiana S, Goh YM, Ahmad H, Dom SM, Syimal'ain Azmi N, Noor Mohamad Zin NS, et al.
    BMC Complement Altern Med, 2017 Jun 02;17(1):290.
    PMID: 28576138 DOI: 10.1186/s12906-017-1762-8
    BACKGROUND: The potential application of Ficus deltoidea and vitexin for the management of symptomatologies associated with diabetes mellitus (DM) has gained much attention. However, less firm evidence comes from data to augment our understanding of the role of F. deltoidea and vitexin in protecting pancreatic β-cells. The aim of this study was to assess histological and oxidative stress changes in the pancreas of streptozotocin (STZ)-induced diabetic rats following F. deltoidea extract and vitexin treatment.

    METHODS: F. deltoidea and vitexin was administrated orally to six-weeks STZ-induced diabetic rats over 8 weeks period. The glucose and insulin tolerances were assessed by intraperitoneal glucose (2 g/kg) tolerance test (IPGTT) and intraperitoneal insulin (0.65 U/kg) tolerance test (IPITT), respectively. Subsequently, insulin resistance was assessed by homeostasis assessment model of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI) and the insulin/triglyceride-derived McAuley index. The histological changes in the pancreas were then observed by hematoxylin-eosin (H&E) staining. Further, the pattern of fatty acid composition and infrared (IR) spectra of the serum and pancreas were monitored by gas chromatography (GC) method and Fourier Transform Infrared (FT-IR) spectroscopy.

    RESULTS: F. deltoidea and vitexin increased pancreatic antioxidant enzymes and promoted islet regeneration. However, a significant increase in insulin secretion was observed only in rats treated with F. deltoidea. More importantly, reduction of fasting blood glucose is consistent with reduced FT-IR peaks at 1200-1000 cm-1.

    CONCLUSIONS: These results accentuate that F. deltoidea and vitexin could be a potential agent to attenuate pancreatic oxidative damage and advocate their therapeutic potential for treating DM.

    Matched MeSH terms: Antioxidants/metabolism
  15. Hoseinifar SH, Khodadadian Zou H, Kolangi Miandare H, Van Doan H, Romano N, Dadar M
    Fish Shellfish Immunol, 2017 Aug;67:346-352.
    PMID: 28602735 DOI: 10.1016/j.fsi.2017.06.023
    A feeding trial was performed to assess the effects of dietary Medlar (Mespilus germanica) leaf extract (MLE) on the growth performance, skin mucus non-specific immune parameters as well as mRNA levels of immune and antioxidant related genes in the skin of common carp (Cyprinus carpio) fingerlings. Fish were fed diets supplemented with graded levels (0, 0.25, 0.50, and 1.00%) of MLE for 49 days. The results revealed an improvement to the growth performance and feed conversion ratio in MLE fed carps (P  0.05) in case protease activity in the skin mucous or tumor necrosis factor alpha and interleukin 1 beta gene expression in the skin of carps (P > 0.05). The expression of genes encoding glutathione reductase and glutathione S-transferase alpha were remarkably increased in MLE fed carps compared to the control group (P 
    Matched MeSH terms: Antioxidants/metabolism
  16. Loganathan R, Vethakkan SR, Radhakrishnan AK, Razak GA, Kim-Tiu T
    Eur J Clin Nutr, 2019 04;73(4):609-616.
    PMID: 29946115 DOI: 10.1038/s41430-018-0236-5
    BACKGROUND/OBJECTIVES: The consumption of antioxidant-rich cooking oil such as red palm olein may be cardioprotective from the perspective of subclinical inflammation and endothelial function.

    SUBJECTS/METHODS: Using a crossover design, we conducted a randomised controlled trial in 53 free-living high-risk abdominally overweight subjects, comparing the effects of incorporating red palm olein (with palm olein as control) in a supervised isocaloric 2100 kcal diet of 30% en fat, two-thirds (45 g/day) of which were derived from the test oil for a period of 6 weeks each.

    RESULTS: We did not observe a significant change in interleukin-6 (IL-6), in parallel with other pro-inflammatory (tumour necrosis factor-β, interleukin-1β, IL-1β, high sensitivity C-reactive protein, hsCRP) and endothelial function (soluble intercellular adhesion molecules, sICAM, soluble intravascular adhesion molecules, sVCAM) parameters. Interestingly, we observed a significant reduction in oxidised LDL levels (P 

    Matched MeSH terms: Antioxidants/metabolism
  17. Osman WNW, Mohamed S
    Phytother Res, 2018 Oct;32(10):2078-2085.
    PMID: 29993148 DOI: 10.1002/ptr.6151
    The antifatigue properties of Morinda elliptica (ME) leaf were compared with Morinda citrifolia (MC) leaf extracts. Sixty Balb/C mice were administered (N = 10): control water, standardized green tea extract (positive control 200 mg/kg body weight [BW]), either 200 or 400 mg MC/kg BW, or either 200 or 400 mg ME/kg BW). The mice performances, biochemical, and mRNA expressions were evaluated. After 6 weeks, the weight-loaded swimming time to exhaustion in the mice consuming 400 mg MC/kg, were almost five times longer than the control mice. The gene expressions analysis suggested the extracts enhanced performance by improving lipid catabolism, carbohydrate metabolism, electron transport, antioxidant responses, energy production, and tissue glycogen stores. The MC and ME extracts enhanced stamina by reducing blood lactate and blood urea nitrogen levels, increasing liver and muscle glycogen reserve through augmenting the glucose metabolism (glucose transporter type 4 and pyruvate dehydrogenase kinase 4), lipid catabolism (acyl-Coenzyme A dehydrogenases and fatty acid translocase), antioxidant (superoxide dismutase 2) defence responses, electron transport (COX4I2), and energy production (PGC1α, NRF1, NRF2, cytochrome C electron transport, mitochondrial transcription factor A, UCP1, and UCP3) biomarkers. The MC (containing scopoletin and epicatechin) was better than ME (containing only scopoletin) or green tea (containing epicatechin and GT catechins) for alleviating fatigue.
    Matched MeSH terms: Antioxidants/metabolism
  18. Dalia AM, Loh TC, Sazili AQ, Jahromi MF, Samsudin AA
    BMC Vet Res, 2018 Aug 24;14(1):249.
    PMID: 30143038 DOI: 10.1186/s12917-018-1578-x
    BACKGROUND: Selenium (Se) and vitamin E (Vit E) can act synergistically and affect biological processes, mainly antioxidant and immunity. The use of excess dietary Vit E and Se in animals' feed could enhance immune response and induce disease resistance. Moreover, different Se sources may provide different alterations in the immune system. Accordingly, the aim of the current study was to assess the impact of dietary supplementation of Vit E, inorganic Se (sodium selenite, SS), bacterial organic Se of ADS18, and their different combinations on the plasma immunoglobulins, ceacum microbial population, and splenic cytokines gene expression in broiler chickens.

    RESULTS: Present results showed that, Se and Vit E synergistic effect was clear in plasma IgM level at day 42 and in splenic cytokines expression (TNF-α, IFN-γ, IL-2, IL-10). The combination of 0.3 mg/kg ADS18-Se with 100 mg/kg Vit E showed the highest IgM level compared to Vit E- SS complex. The combination of either SS or ADS18-Se with Vit E had no significant effect on IFN- γ and IL-10 compared to Vit E alone, while Vit E alone showed the significantly lowest TNF-α compared to the Se combinations. Supplementation of 100 mg/kg Vit E had no effect on microbial population except a slight reduction in Salmonella spp. The main effect of Se sources was that both sources increased the day 42 IgA and IgG level compared to NS group. ADS18-Se modulate the caecum microbial population via enhancing beneficial bacteria and suppressing the E-coli and Salmonella spp. while both Se and Vit E factors had no effect on lymphoid organ weights.

    CONCLUSIONS: The inclusion of 100 mg/kg Vit E with 0.3 mg/kg ADS18-Se, effectively could support the immune system through regulation of some cytokines expression and immunoglobulin levels more than using ADS18-Se alone, while no difference was observed between using SS alone or combined with Vit E.

    Matched MeSH terms: Antioxidants/metabolism
  19. Guerriero G, D'Errico G, Di Giaimo R, Rabbito D, Olanrewaju OS, Ciarcia G
    Environ Sci Pollut Res Int, 2018 Jul;25(19):18286-18296.
    PMID: 28936697 DOI: 10.1007/s11356-017-0098-8
    Important toxicological achievements have been made during the last decades using reptiles. We focus our investigation on gonadal reproductive health of the soil biosentinel Podarcis sicula which is very sensitive to endocrine-disrupting chemicals. The aim of this study is to quantitatively detect, by sensitive microassays, reactive oxygen species and the glutathione antioxidants in the testis and investigate if they are differentially expressed before and after remediation of a site of the "Land of Fires" (Campania, Italy) subject to illicit dumping of unknown material. The oxidative stress level was evaluated by electron spin resonance spectroscopy applying a spin-trapping procedure able to detect products of lipid peroxidation, DNA damage and repair by relative mobility shift, and poly(ADP-ribose) polymerase enzymatic activity, respectively, the expression of glutathione peroxidase 4 transcript by real-time quantitative PCR analysis, the antioxidant glutathione S-transferase, a well-assessed pollution index, by enzymatic assay and the total soluble antioxidant capacity. Experimental evidences from the different techniques qualitatively agree, thus confirming the robustness of the combined experimental approach. Collected data, compared to those from a reference unpolluted site constitute evidence that the reproductive health of this lizard is impacted by pollution exposure. Remediation caused significant reduction of reactive oxygen species and downregulation of glutathione peroxidase 4 mRNAs in correspondence of reduced levels of glutathione S-transferase, increase of antioxidant capacity, and repair of DNA integrity. Taken together, our results indicate directions to define new screening approaches in remediation assessment.
    Matched MeSH terms: Antioxidants/metabolism*
  20. Dalia AM, Loh TC, Sazili AQ, Jahromi MF, Samsudin AA
    BMC Vet Res, 2017 Aug 18;13(1):254.
    PMID: 28821244 DOI: 10.1186/s12917-017-1159-4
    BACKGROUND: Selenium (Se) is an essential trace mineral in broilers, which has several important roles in biological processes. Organic forms of Se are more efficient than inorganic forms and can be produced biologically via Se microbial reduction. Hence, the possibility of using Se-enriched bacteria as feed supplement may provide an interesting source of organic Se, and benefit broiler antioxidant system and other biological processes. The objective of this study was to examine the impacts of inorganic Se and different bacterial organic Se sources on the performance, serum and tissues Se status, antioxidant capacity, and liver mRNA expression of selenoproteins in broilers.

    RESULTS: Results indicated that different Se sources did not significantly (P ≤ 0.05) affect broiler growth performance. However, bacterial organic Se of T5 (basal diet +0.3 mg /kg feed ADS18 Se), T4 (basal diet +0.3 mg /kg feed ADS2 Se), and T3 (basal diet +0.3 mg /kg feed ADS1 Se) exhibited significantly (P ≤ 0.05) highest Se concentration in serum, liver, and kidney respectively. Dietary inorganic Se and bacterial organic Se were observed to significantly affect broiler serum ALT, AST, LDH activities and serum creatinine level. ADS18 supplemented Se of (Stenotrophomonas maltophilia) bacterial strain showed the highest GSH-Px activity with the lowest MDA content in serum, and the highest GSH-Px and catalase activity in the kidney, while bacterial Se of ADS2 (Klebsiella pneumoniae) resulted in a higher level of GSH-Px1 and catalase in liver. Moreover, our study showed that in comparison with sodium selenite, only ADS18 bacterial Se showed a significantly higher mRNA level in GSH-Px1, GSH-Px4, DIO1, and TXNDR1, while both ADS18 and ADS2 showed high level of mRNA of DIO2 compared to sodium selenite.

    CONCLUSIONS: The supplementation of bacterial organic Se in broiler chicken, improved tissue Se deposition, antioxidant status, and selenoproteins gene expression, and can be considered as an effective alternative source of Se in broiler chickens.

    Matched MeSH terms: Antioxidants/metabolism*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links