Displaying publications 61 - 80 of 654 in total

Abstract:
Sort:
  1. El Hachlafi N, Benkhaira N, Al-Mijalli SH, Mrabti HN, Abdnim R, Abdallah EM, et al.
    Biomed Pharmacother, 2023 Aug;164:114937.
    PMID: 37267633 DOI: 10.1016/j.biopha.2023.114937
    Mentha suaveolens, Lavandula stoechas, and Ammi visnaga are widely used in Moroccan folk medicine against several pathological disorders, including diabetes and infectious diseases. This work was designed to determine the chemical profile of M. suaveolens (MSEO), L. stoechas (LSEO), and A. visnaga (AVEO) essential oils and assess their antimicrobial, antioxidant, and antidiabetic effects. The volatile components of LSEO, AVEO, and MSEO were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The in vitro antidiabetic activity was assessed using α-amylase and α-glucosidase enzymes, while DPPH, FRAP, and β-carotene/linoleic acid methods were used to determine the antioxidant capacity. The antimicrobial activities were investigated using disc diffusion and broth-microdilution assays. GC-MS investigation revealed that the main components were fenchone (29.77 %) and camphor (24.9 %) for LSEO, and linalool (38.29 %) for AVEO, while MSEO was mainly represented by piperitenone oxide (74.55 %). The results of the antimicrobial evaluation showed that all examined essential oils (EOs) had noticeable antimicrobial activity against both bacteria and yeast, especially Micrococcus luteus and Bacillus subtilis. The MIC, MBC, and MFC values were ranged from 0.015 % to 0.5 %. The MBC/MIC and MFC/MIC ratios were less than or equal to 4.0 % (v/v), indicating their noticeable bactericidal and candidacidal efficacy. Moreover, the three EOs showed significant inhibitory effects on α-amylase and α-glucosidase (p 
    Matched MeSH terms: Antioxidants/pharmacology
  2. Ekeuku SO, Chin KY, Mohd Ramli ES
    PMID: 36453484 DOI: 10.2174/1871530323666221130152737
    BACKGROUND: Piper sarmentosum (PS) is a traditional herb used by Southeast Asian communities to treat various illnesses. Recent pharmacological studies have discovered that PS possesses antioxidant and anti-inflammatory activities. Since oxidative stress and inflammation are two important processes driving the pathogenesis of bone loss, PS may have potential therapeutic effects against osteoporosis.

    OBJECTIVE: This review systematically summarised the therapeutic effects of PS on preventing osteoporosis and promoting fracture healing.

    METHODS: A systematic literature search was performed in November 2021 using 4 electronic databases and the search string "Piper sarmentosum" AND (bone OR osteoporosis OR osteoblasts OR osteoclasts OR osteocytes).

    RESULTS: Nine unique articles were identified from the literature. The efficacy of PS has been studied in animal models of osteoporosis induced by ovariectomy and glucocorticoids, as well as bone fracture models. PS prevented deterioration of bone histomorphometric indices, improved fracture healing and restored the biomechanical properties of healed bone in ovariectomised rats. PS also prevented osteoblast/osteocyte apoptosis, increased bone formation and mineralisation and subsequently improved trabecular bone microstructures and strength of rats with osteoporosis induced by glucocorticoids. Apart from its antioxidant and anti-inflammatory activity, PS also suppressed circulating and skeletal expression of corticosterone and skeletal expression of 11β hydroxysteroid dehydrogenase type 1 but increased the enzyme activity in the glucocorticoid osteoporosis model. This review also identified several research gaps about the skeletal effects of PS and suggested future studies to bridge these gaps.

    CONCLUSION: PS may be of therapeutic benefit to bone health. However, further research is required to validate this claim.

    Matched MeSH terms: Antioxidants/pharmacology
  3. Al-Awaida W, Goh KW, Al-Ameer HJ, Gushchina YS, Torshin VI, Severin AE, et al.
    Molecules, 2023 Nov 09;28(22).
    PMID: 38005223 DOI: 10.3390/molecules28227502
    Exposure to water-pipe smoking, whether flavored or unflavored, has been shown to instigate inflammation and oxidative stress in BALB/c mice. This consequently results in alterations in the expression of inflammatory markers and antioxidant genes. This study aimed to scrutinize the impact of Epigallocatechin gallate (EGCG)-a key active component of green tea-on inflammation and oxidative stress in BALB/c mice exposed to water-pipe smoke. The experimental setup included a control group, a flavored water-pipe smoke (FWP) group, an unflavored water-pipe smoke (UFWP) group, and EGCG-treated flavored and unflavored groups (FWP + EGCG and UFWP + EGCG). Expression levels of IL-6, IL1B, TNF-α, CAT, GPXI, MT-I, MT-II, SOD-I, SOD-II, and SOD-III were evaluated in lung, liver, and kidney tissues. Histopathological changes were also assessed. The findings revealed that the EGCG-treated groups manifested a significant decline in the expression of inflammatory markers and antioxidant genes compared to the FWP and UFWP groups. This insinuates that EGCG holds the capacity to alleviate the damaging effects of water-pipe smoke-induced inflammation and oxidative stress. Moreover, enhancements in histopathological features were observed in the EGCG-treated groups, signifying a protective effect against tissue damage induced by water-pipe smoking. These results underscore the potential of EGCG as a protective agent against the adverse effects of water-pipe smoking. By curbing inflammation and oxidative stress, EGCG may aid in the prevention or mitigation of smoking-associated diseases.
    Matched MeSH terms: Antioxidants/pharmacology
  4. Abdullah DA, Aishah EA
    Trop Biomed, 2023 Dec 01;40(4):453-461.
    PMID: 38308833 DOI: 10.47665/tb.40.4.011
    The present study was conducted to investigate the immunomodulatory and anti-inflammatory effects of Elettaria cardamomum essential oil (ECEO) for the control of acute Toxoplasma gondii infection. The effect of ECEO on T. gondii tachyzoites was measured by the tetrazolium bromide method. Mice received ECEO orally at doses of 1-4 mg/kg/day for 14 days. Once acute toxoplasmosis was induced in mice, their mortality rate and parasite load were recorded. The level of liver antioxidant/oxidant enzymes and the level of mRNA expression of interleukin-1 beta and interferongamma were also investigated. ECEO particularly at a concentration of 150 µg/ml has promising in vitro anti-Toxoplasma effects (p<0.001). After treatment with ECEO, the mortality rate (9th day) and parasite load decreased (p<0.001) in the infected mice. ECEO markedly (p < 0.05) restored hepatic oxidant and antioxidant enzyme levels, as well as increased cytokines. These results report a significant inhibitory effect of ECEO mainly at a dose of 4 mg/mL, against the T. gondii Rh strain through strengthening the immune system and reducing inflammation and oxidative stress; however, further research is needed to verify these results.
    Matched MeSH terms: Antioxidants/pharmacology
  5. Khan KM, Nadeem MF, Mannan A, Chohan TA, Islam M, Ansari SA, et al.
    Chem Biodivers, 2024 Jan;21(1):e202301375.
    PMID: 38031244 DOI: 10.1002/cbdv.202301375
    Trillium govanianum is a high-value medicinal herb, having multifunctional traditional and culinary uses. The present investigation was carried out to evaluate the phytochemical, biological and toxicological parameters of the T. govanianum Wall. ex D. Don (Family: Trilliaceae) roots collected from Azad Kashmir, Pakistan. Phytochemical profiling was achieved by determining total bioactive contents (total phenolic and flavonoid contents) and UHPLC-MS analysis. For biological evaluation, antioxidant activities (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, and metal chelation assays) and enzyme inhibition activities (against AChE, BChE, glucosidase, amylase, and tyrosinase) were performed. Moreover, cytotoxicity was assessed against three human carcinoma cell lines (MDA-MB-231, CaSki, and DU-145). The tested extract was found to contain higher total phenolics (7.56 mg GAE/g dry extract) as compared to flavonoid contents (0.45 mg RE/g dry extract). Likewise, for the antioxidant activity, higher CUPRAC activity was noted with 39.84 mg TE/g dry extract values. In the case of enzyme assays, higher activity was pointed out against the cholinesterase, glucosidase and tyrosinase enzymes. The plant extract displayed significant cytotoxicity against the cell lines examined. Moreover, the in-silico studies highlighted the interaction between the important phytochemicals and tested enzymes. To conclude, the assessed biological activity and the existence of bioactive phytochemicals in the studied plant extract may pave the way for the development of novel pharmaceuticals.
    Matched MeSH terms: Antioxidants/pharmacology
  6. Ali JS, Saleem H, Mannan A, Zengin G, Mahomoodally MF, Locatelli M, et al.
    BMC Complement Med Ther, 2020 Oct 16;20(1):313.
    PMID: 33066787 DOI: 10.1186/s12906-020-03093-1
    BACKGROUND: Ethnobotanical and plant-based products allow for the isolation of active constituents against a number of maladies. Monotheca buxifolia is used by local communities due to its digestive and laxative properties, as well as its ability to cure liver, kidney, and urinary diseases. There is a need to explore the biological activities and chemical constituents of this medicinal plant.

    METHODS: In this work, the biochemical potential of M. buxifolia (Falc.) A. DC was explored and linked with its biological activities. Methanol and chloroform extracts from leaves and stems were investigated for total phenolic and flavonoid contents. Ultrahigh-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) was used to determine secondary-metabolite composition, while high-performance liquid chromatography coupled with photodiode array detection (HPLC-PDA) was used for polyphenolic quantification. In addition, we carried out in vitro assays to determine antioxidant potential and the enzyme-inhibitory response of M. buxifolia extracts.

    RESULTS: Phenolics (91 mg gallic-acid equivalent (GAE)/g) and flavonoids (48.86 mg quercetin equivalent (QE)/g) exhibited their highest concentration in the methanol extract of stems and the chloroform extract of leaves, respectively. UHPLC-MS analysis identified a number of important phytochemicals, belonging to the flavonoid, phenolic, alkaloid, and terpenoid classes of secondary metabolites. The methanol extract of leaves contained a diosgenin derivative and polygalacin D, while kaempferol and robinin were most abundant in the chloroform extract. The methanol extract of stems contained a greater peak area for diosgenin and kaempferol, whereas this was true for lucidumol A and 3-O-cis-coumaroyl maslinic acid in the chloroform extract. Rutin, epicatechin, and catechin were the main phenolics identified by HPLC-PDA analysis. The methanol extract of stems exhibited significant 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activities (145.18 and 279.04 mmol Trolox equivalent (TE)/g, respectively). The maximum cupric reducing antioxidant capacity (CUPRAC) (361.4 mg TE/g), ferric-reducing antioxidant power (FRAP) (247.19 mg TE/g), and total antioxidant potential (2.75 mmol TE/g) were depicted by the methanol extract of stems. The methanol extract of leaves exhibited stronger inhibition against acetylcholinesterase (AChE) and glucosidase, while the chloroform extract of stems was most active against butyrylcholinesterase (BChE) (4.27 mg galantamine equivalent (GALAE)/g). Similarly, the highest tyrosinase (140 mg kojic-acid equivalent (KAE)/g) and amylase (0.67 mmol acarbose equivalent (ACAE)/g) inhibition was observed for the methanol extract of stems.

    CONCLUSIONS: UHPLC-MS analysis and HPLC-PDA quantification identified a number of bioactive secondary metabolites of M. buxifolia, which may be responsible for its antioxidant potential and enzyme-inhibitory response. M. buxifolia can be further explored for the isolation of its active components to be used as a drug.

    Matched MeSH terms: Antioxidants/pharmacology*
  7. Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, et al.
    Exp Gerontol, 2024 Apr;188:112389.
    PMID: 38432575 DOI: 10.1016/j.exger.2024.112389
    Aging-related diseases (ARDs) are a major global health concern, and the development of effective therapies is urgently needed. Kaempferol, a flavonoid found in several plants, has emerged as a promising candidate for ameliorating ARDs. This comprehensive review examines Kaempferol's chemical properties, safety profile, and pharmacokinetics, and highlights its potential therapeutic utility against ARDs. Kaempferol's therapeutic potential is underpinned by its distinctive chemical structure, which confers antioxidative and anti-inflammatory properties. Kaempferol counteracts reactive oxygen species (ROS) and modulates crucial cellular pathways, thereby combating oxidative stress and inflammation, hallmarks of ARDs. Kaempferol's low toxicity and wide safety margins, as demonstrated by preclinical and clinical studies, further substantiate its therapeutic potential. Compelling evidence supports Kaempferol's substantial potential in addressing ARDs through several mechanisms, notably anti-inflammatory, antioxidant, and anti-apoptotic actions. Kaempferol exhibits a versatile neuroprotective effect by modulating various proinflammatory signaling pathways, including NF-kB, p38MAPK, AKT, and the β-catenin cascade. Additionally, it hinders the formation and aggregation of beta-amyloid protein and regulates brain-derived neurotrophic factors. In terms of its anticancer potential, kaempferol acts through diverse pathways, inducing apoptosis, arresting the cell cycle at the G2/M phase, suppressing epithelial-mesenchymal transition (EMT)-related markers, and affecting the phosphoinositide 3-kinase/protein kinase B signaling pathways. Subsequent studies should focus on refining dosage regimens, exploring innovative delivery systems, and conducting comprehensive clinical trials to translate these findings into effective therapeutic applications.
    Matched MeSH terms: Antioxidants/pharmacology
  8. Erejuwa OO, Sulaiman SA, Ab Wahab MS
    Molecules, 2012 Apr 12;17(4):4400-23.
    PMID: 22499188 DOI: 10.3390/molecules17044400
    The global prevalence of chronic diseases such as diabetes mellitus, hypertension, atherosclerosis, cancer and Alzheimer's disease is on the rise. These diseases, which constitute the major causes of death globally, are associated with oxidative stress. Oxidative stress is defined as an "imbalance between oxidants and antioxidants in favor of the oxidants, potentially leading to damage". Individuals with chronic diseases are more susceptible to oxidative stress and damage because they have elevated levels of oxidants and/or reduced antioxidants. This, therefore, necessitates supplementation with antioxidants so as to delay, prevent or remove oxidative damage. Honey is a natural substance with many medicinal effects such as antibacterial, hepatoprotective, hypoglycemic, reproductive, antihypertensive and antioxidant effects. This review presents findings that indicate honey may ameliorate oxidative stress in the gastrointestinal tract (GIT), liver, pancreas, kidney, reproductive organs and plasma/serum. Besides, the review highlights data that demonstrate the synergistic antioxidant effect of honey and antidiabetic drugs in the pancreas, kidney and serum of diabetic rats. These data suggest that honey, administered alone or in combination with conventional therapy, might be a novel antioxidant in the management of chronic diseases commonly associated with oxidative stress. In view of the fact that the majority of these data emanate from animal studies, there is an urgent need to investigate this antioxidant effect of honey in human subjects with chronic or degenerative diseases.
    Matched MeSH terms: Antioxidants/pharmacology*
  9. Abdul Rahim R, Jayusman PA, Muhammad N, Mohamed N, Lim V, Ahmad NH, et al.
    PMID: 33805420 DOI: 10.3390/ijerph18073532
    Oxidative stress and inflammation are two common risk factors of various life-threatening disease pathogenesis. In recent years, medicinal plants that possess antioxidant and anti-inflammatory activities were extensively studied for their potential role in treating and preventing diseases. Spilanthes acmella (S. acmella), which has been traditionally used to treat toothache in Malaysia, contains various active metabolites responsible for its anti-inflammatory, antiseptic, and anesthetic bioactivities. These bioactivities were attributed to bioactive compounds, such as phenolic, flavonoids, and alkamides. The review focused on the summarization of in vitro and in vivo experimental reports on the antioxidant and anti-inflammatory actions of S. acmella, as well as how they contributed to potential health benefits in lowering the risk of diseases that were related to oxidative stress. The molecular mechanism of S. acmella in reducing oxidative stress and inflammatory targets, such as inducible nitric oxide synthase (iNOS), transcription factors of the nuclear factor-κB family (NF-κB), cyclooxygenase-2 (COX-2), and mitogen-activated protein kinase (MAPK) signaling pathways were discussed. Besides, the antioxidant potential of S. acmella was measured by total phenolic content (TPC), total flavonid content (TFC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and superoxide anion radical scavenging (SOD) and thiobarbituric acid reactive substance (TBARS) assays. This review revealed that S. acmella might have a potential role as a reservoir of bioactive agents contributing to the observed antioxidant, anti-inflammatory, and health beneficial effects.
    Matched MeSH terms: Antioxidants/pharmacology
  10. Hassan SA, Aziz DM, Abdullah MN, Bhat AR, Dongre RS, Hadda TB, et al.
    J Biomol Struct Dyn, 2024 Apr;42(7):3747-3763.
    PMID: 37402503 DOI: 10.1080/07391102.2023.2226713
    In this work, Schiff bases and Thiazolidin-4-ones, were synthesized using Sonication and Microwave techniques, respectively. The Schiff base derivatives (3a-b) were synthesized via the reaction of Sulfathiazole (1) with benzaldehyde derivatives (2a-b), followed by the synthesis of 4-thiazoledinone (4a-b) derivatives by cyclizing the synthesized Schiff bases through thioglycholic acid. All the synthesized compounds were characterized by spectroscopic techniques such as FT IR, NMR and HRMS. The synthesized compounds were tested for their in vitro antimicrobial and antioxidant and in vivo cytotoxicity and hemolysis ability. The synthesized compounds displayed better antimicrobial and antioxidant activity and low toxicity in comparison to reference drugs and negative controls, respectively. The hemolysis test revealed the compounds exhibit lower hemolytic effects and hemolytic values are comparatively low and the safety of compounds is in comparison with standard drugs. Theoretical calculations were carried out by using the molecular operating environment (MOE) and Gaussian computing software and observations were in good agreement with the in vitro and in vivo biological activities. Petra/Osiris/Molinspiration (POM) results indicate the presence of three combined antibacterial, antiviral and antitumor pharmacophore sites. The molecular docking revealed the significant binding affinities and non-bonding interactions between the compounds and Erwinia Chrysanthemi (PDB ID: 1SHK). The molecular dynamics simulation under in silico physiological conditions revealed a stable conformation and binding pattern in a stimulating environment. HighlightsNew series of Thaiazolidin-4-one derivatives have been synthesized.Sonication and microwave techniques are used.Antimicrobial, Antioxidant, cytotoxicity, and hemolysis activities were observed for all synthesized compounds.Molecular Docking and DFT/POM analyses have been predicted.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Antioxidants/pharmacology
  11. Ghasemzadeh A, Jaafar HZ, Rahmat A
    Molecules, 2016 Jun 17;21(6).
    PMID: 27322227 DOI: 10.3390/molecules21060780
    The effects of different drying methods (freeze drying, vacuum oven drying, and shade drying) on the phytochemical constituents associated with the antioxidant activities of Z. officinale var. rubrum Theilade were evaluated to determine the optimal drying process for these rhizomes. Total flavonoid content (TFC), total phenolic content (TPC), and polyphenol oxidase (PPO) activity were measured using the spectrophotometric method. Individual phenolic acids and flavonoids, 6- and 8-gingerol and shogaol were identified by ultra-high performance liquid chromatography method. Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used for the evaluation of antioxidant activities. The highest reduction in moisture content was observed after freeze drying (82.97%), followed by vacuum oven drying (80.43%) and shade drying (72.65%). The highest TPC, TFC, and 6- and 8-shogaol contents were observed in samples dried by the vacuum oven drying method compared to other drying methods. The highest content of 6- and 8-gingerol was observed after freeze drying, followed by vacuum oven drying and shade drying methods. Fresh samples had the highest PPO activity and lowest content of flavonoid and phenolic acid compounds compared to dried samples. Rhizomes dried by the vacuum oven drying method represent the highest DPPH (52.9%) and FRAP activities (566.5 μM of Fe (II)/g DM), followed by freeze drying (48.3% and 527.1 μM of Fe (II)/g DM, respectively) and shade drying methods (37.64% and 471.8 μM of Fe (II)/g DM, respectively) with IC50 values of 27.2, 29.1, and 34.8 μg/mL, respectively. Negative and significant correlations were observed between PPO and antioxidant activity of rhizomes. Vacuum oven dried rhizomes can be utilized as an ingredient for the development of value-added food products as they contain high contents of phytochemicals with valuable antioxidant potential.
    Matched MeSH terms: Antioxidants/pharmacology
  12. Hashim SE, Sirat HM, Yen KH, Ismail IS, Matsuki SN
    Nat Prod Commun, 2015 Sep;10(9):1561-3.
    PMID: 26594759
    Seven compounds were isolated from the n-hexane and chloroform extracts of the flowers and leaves of four Hornstedtia species and their structures were identified using spectroscopic techniques as 3,7,4'-trimethylkaempferol (1), 3,7-dimethylkaempferol (2), 7,4'-dimethylkaempferol (3), 3,5-dimethylkaempferol (4), 3-methylkaempferol (5), stigmast-4-en-3-one (6), and 6-hydroxy-stigmast-4-en-3-one (7). Compounds 1 to 7 were isolated from these species for the first time. They were assayed for free radical scavenging and α-glucosidase inhibition activities. The DPPH assay showed that 3-methylkaempferol (5) was the most potent antioxidant agent with an IC50 value 78.6 µM, followed by 7,4'-dimethylkaempferol (3) (IC50 = 86.1 µM). For α-glucosidase inhibition activity, 3-methylkaempferol (5) exhibited significant inhibitory activity with an IC50 value 21.0 µM. The present study revealed that Hornstedtia species have potential activities as antioxidant and α-glucosidase inhibitors.
    Matched MeSH terms: Antioxidants/pharmacology*
  13. Ahmed IA, Mikail MA, Bin Ibrahim M, Bin Hazali N, Rasad MS, Ghani RA, et al.
    Food Chem, 2015 Apr 1;172:778-87.
    PMID: 25442620 DOI: 10.1016/j.foodchem.2014.09.122
    Baccaurea angulata is an underutilised tropical fruit of Borneo Island of Malaysia. The effect of solvents was examined on yield, total phenolic (TPC), total flavonoids (TFC), total carotene content (TCC), free radical scavenging activities and lipid peroxidation inhibition activities. The results indicated that the pulp (edible portion) had the highest yield, while methanol extracts were significantly (p < 0.01) found to contain higher TPC, TFC and TCC than phosphate buffered saline (PBS) extracts for all the fruits parts. The methanol extracts also showed remarkable antiradical activity and significant lipid peroxidation inhibition activities, with their IC50 results highly comparable to that of commercial blueberry. The variations in the results among the extracts suggest different interactions, such as negative or antagonistic (interference), additive and synergistic effect interactions. The study indicated that B. angulata like other underutilised tropical fruits contained remarkable primary antioxidants. Thus, the fruit has the potential to be sources of antioxidant components.
    Matched MeSH terms: Antioxidants/pharmacology*
  14. Tan JB, Lim YY
    Food Chem, 2015 Apr 1;172:814-22.
    PMID: 25442625 DOI: 10.1016/j.foodchem.2014.09.141
    Natural product research is an active branch of science, driven by the increased value placed on individual health and well-being. Many naturally-occurring phytochemicals in plants, fruits and vegetables have been reported to exhibit antioxidant and antibacterial activity; often touted as being beneficial for human health. In vitro screening is a common practice in many research laboratories as a means of rapidly assessing these properties. However, the methods used by many are not necessarily optimal; a result of poor standardization, redundant assays and/or outdated methodology. This review primarily aims to give a better understanding in the selection of in vitro assays, with emphasis placed on some common assays such as the total phenolic content assay, free radical scavenging activity, disc-diffusion and broth microdilution. This includes a discussion on the reasons for choosing a particular assay, its strengths and weaknesses, ways to improve the accuracy of results and alternative assays.
    Matched MeSH terms: Antioxidants/pharmacology*
  15. Chidan Kumar CS, Loh WS, Chandraju S, Win YF, Tan WK, Quah CK, et al.
    PLoS One, 2015;10(3):e0119440.
    PMID: 25742494 DOI: 10.1371/journal.pone.0119440
    A series of N-ethyl phthalimide esters 4(a-n) were synthesized and characterized by spectroscopic studies. Further, the molecular structure of majority of compounds were analysed by single crystal X-ray diffraction studies. The X-ray analysis revealed the importance of substituents on the crystal stability and molecular packing. All the synthesized compounds were tested for in vitro antioxidant activity by DPPH radical scavenging, FRAP and CUPRAC methods. Few of them have shown good antioxidant activity.
    Matched MeSH terms: Antioxidants/pharmacology
  16. Ariffin A, Rahman NA, Yehye WA, Alhadi AA, Kadir FA
    Eur J Med Chem, 2014 Nov 24;87:564-77.
    PMID: 25299680 DOI: 10.1016/j.ejmech.2014.10.001
    New multipotent antioxidants (MPAOs), namely 1,3,4-thiadiazoles and 1,2,4-triazoles bearing the well-known free radical scavenger butylated hydroxytoluene (BHT), were designed and synthesized using an acid-(base-) catalyzed intramolecular dehydrative cyclization reaction of the corresponding 1-acylthiosemicarbazides. The structure-activity relationship (SAR) of the designed antioxidants was performed along with the prediction of activity spectra for substances (PASS) training set. Experimental studies based on antioxidant activity using DPPH and lipid peroxidation assays verified the predictions obtained by the PASS-assisted design strategy. Compounds 4a-b, 5a-b and 6a-b showed an inhibition of stable DPPH free radicals at a 10(-4) M more than the well-known standard antioxidant BHT. Compounds with p-methoxy substituents (4b, 5b and 6b) were more active than o-methoxy substituents (4a, 5a and 6a). With an IC50 of 2.85 ± 1.09 μM, compound 6b exhibited the most promising in vitro inhibition of lipid peroxidation, inhibiting Fe(2+)-induced lipid peroxidation of essential oils derived from the egg yolk-based lipid-rich medium by 86.4%. The parameters for the drug-likeness of these BHT derivatives were also evaluated according to Lipinski's 'rule-of-five'. All of the BHT derivatives were found to violate one of Lipinski's parameters (Log P ≥ 5) even though they have been found to be soluble in protic solvents. The predictive TPSA and %ABS data allow for the conclusion that these compounds could have a good capacity for penetrating cell membranes. Therefore, these novel MPAOs containing lipophilic and hydrophilic groups can be proposed as potential antioxidants for tackling oxidative stress and lipid peroxidation processes.
    Matched MeSH terms: Antioxidants/pharmacology*
  17. Devaraj S, Ismail S, Ramanathan S, Yam MF
    ScientificWorldJournal, 2014;2014:353128.
    PMID: 25133223 DOI: 10.1155/2014/353128
    Curcuma xanthorrhiza (CX) has been used for centuries in traditional system of medicine to treat several diseases such as hepatitis, liver complaints, and diabetes. It has been consumed as food supplement and "jamu" as a remedy for hepatitis. Hence, CX was further explored for its potential as a functional food for liver related diseases. As such, initiative was taken to evaluate the antioxidant and hepatoprotective potential of CX rhizome. Antioxidant activity of the standardized CX fractions was determined using in vitro assays. Hepatoprotective assay was conducted against carbon tetrachloride- (CCl4-) induced hepatic damage in rats at doses of 125, 250, and 500 mg/kg of hexane fraction. Highest antioxidant activity was found in hexane fraction. In the case of hepatoprotective activity, CX hexane fraction showed significant improvement in terms of a biochemical liver function, antioxidative liver enzymes, and lipid peroxidation activity. Good recovery was observed in the treated hepatic tissues histologically. Hence, the results concluded that CX hexane fraction possessed prominent hepatoprotective activities which might be due to its in vitro antioxidant activity. These findings also support the use of CX as a functional food for hepatitis remedy in traditional medicinal system.
    Matched MeSH terms: Antioxidants/pharmacology*
  18. Hajiaghaalipour F, Kanthimathi MS, Sanusi J, Rajarajeswaran J
    Food Chem, 2015 Feb 15;169:401-10.
    PMID: 25236244 DOI: 10.1016/j.foodchem.2014.07.005
    Tea (Camellia sinensis) is one of the most consumed beverages in the world. White tea is made from the buds and young leaves of the tea plant which are steamed and dried, whilst undergoing minimal oxidation. The MTT assay was used to test the extract on the effect of the proliferation of the colorectal cancer cell line, HT-29. The extract inhibited the proliferation of HT-29 cells with an IC50 of 87μg/ml. The extract increased the levels of caspase-3, -8, and -9 activity in the cells. DNA damage in 3T3-L1 normal cells was detected by using the comet assay. The extract protected 3T3-L1 cells against H2O2-induced DNA damage. The results from this study show that white tea has antioxidant and antiproliferative effects against cancer cells, but protect normal cells against DNA damage. Regular intake of white tea can help to maintain good health and protect the body against disease.
    Matched MeSH terms: Antioxidants/pharmacology*
  19. Jaganathan SK, Balaji A, Vellayappan MV, Asokan MK, Subramanian AP, John AA, et al.
    Anticancer Agents Med Chem, 2015;15(1):48-56.
    PMID: 25052987
    Recent statistics revealed that cancer is one among the main reasons for death throughout the world. Several treatments are available but still there is no cure when it is detected at late stages. One of the treatment modes for cancer is chemotherapy which utilizes anticancer drugs in order to eradicate the cancer cells by apoptosis. Apoptosis is a programmed cell death through which body maintains homeostasis or kills cancer cells by utilizing its cell machinery. Recent researches have concluded that dietary agents have a putative role in instituting apoptosis of cancer cells. Honey, one of the victuals rich in antioxidants, has a long-standing exposure to humans and its role in cancer prevention and treatment is a topic of current interest. Various researchers have been experimenting honey against different cancers and provided valuable insights about the apoptosis induced by the honey. This review will highlight the recent findings of apoptotic mechanism involved in different cancer cells. Further it also reports antitumor activity of honey in some animal models. Hence it is high-time to initiate more preclinical trials as well as clinical experiments which would further add to the knowledge of anticancer nature of honey and also endorse honey as a potential candidate in the war against cancer.
    Matched MeSH terms: Antioxidants/pharmacology
  20. Ramaiya SD, Bujang JS, Zakaria MH
    ScientificWorldJournal, 2014;2014:167309.
    PMID: 25028673 DOI: 10.1155/2014/167309
    This study focused on total phenolic content (TPC) and antioxidant and antibacterial activities of the leaves and stems of Passiflora quadrangularis, P. maliformis, and P. edulis extracted using three solvents: petroleum ether, acetone, and methanol. The maximum extraction yields of antioxidant components from the leaves and stems were isolated using methanol extracts of P. edulis (24.28%) and P. quadrangularis (9.76%), respectively. Among the leaf extracts, the methanol extract of P. maliformis had the significantly highest TPC and the strongest antioxidant activity, whereas among the stem extracts, the methanol extract of P. quadrangularis showed the highest phenolic amount and possessed the strongest antioxidant activity. The antibacterial properties of the Passiflora species were tested using the disc diffusion method against 10 human pathogenic bacteria. The largest inhibition zone was observed for the methanol extract of P. maliformis against B. subtilis. Generally, extracts from the Passiflora species exhibit distinct inhibition against Gram-positive but not Gram-negative bacteria. Based on the generated biplot, three clusters of bacteria were designated according to their performance towards the tested extracts. The present study revealed that methanol extracts of the Passiflora contain constituents with significant phenolic, antioxidant, and antibacterial properties for pharmaceutical and nutraceutical uses.
    Matched MeSH terms: Antioxidants/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links