Displaying publications 61 - 80 of 1070 in total

Abstract:
Sort:
  1. Shukla MK, Dubey A, Pandey S, Singh SK, Gupta G, Prasher P, et al.
    Curr Pharm Des, 2022;28(39):3202-3211.
    PMID: 35422206 DOI: 10.2174/1381612828666220413103831
    Several factors exist that limit the efficacy of lung cancer treatment. These may be tumor-specific delivery of therapeutics, airway geometry, humidity, clearance mechanisms, presence of lung diseases, and therapy against tumor cell resistance. Advancements in drug delivery using nanotechnology based multifunctional nanocarriers, have emerged as a viable method for treating lung cancer with more efficacy and fewer adverse effects. This review does a thorough and critical examination of effective nano-enabled approaches for lung cancer treatment, such as nano-assisted drug delivery systems. In addition, to therapeutic effectiveness, researchers have been working to determine several strategies to produce nanotherapeutics by adjusting the size, drug loading, transport, and retention. Personalized lung tumor therapies using sophisticated nano modalities have the potential to provide great therapeutic advantages based on individual unique genetic markers and disease profiles. Overall, this review provides comprehensive information on newer nanotechnological prospects for improving the management of apoptosis in lung cancer.
    Matched MeSH terms: Apoptosis
  2. Abdul Ghani MA, Ugusman A, Latip J, Zainalabidin S
    Int J Mol Sci, 2023 Mar 10;24(6).
    PMID: 36982410 DOI: 10.3390/ijms24065339
    One in every three deaths worldwide is caused by cardiovascular diseases (CVDs), estimating a total of 17.9 million deaths annually. By 2030, it is expected that more than 24 million people will die from CVDs related complications. The most common CVDs are coronary heart disease, myocardial infarction, stroke, and hypertension. A plethora of studies has shown inflammation causing both short-term and long-term damage to the tissues in many organ systems, including the cardiovascular system. In parallel to inflammation processes, it has been discovered that apoptosis, a mode of programmed cell death, may also contribute to CVD development due to the loss of cardiomyocytes. Terpenophenolic compounds are comprised of terpenes and natural phenols as secondary metabolites by plants and are commonly found in the genus Humulus and Cannabis. A growing body of evidence has shown that terpenophenolic compounds exhibit protective properties against inflammation and apoptosis within the cardiovascular system. This review highlights the current evidence elucidating the molecular actions of terpenophenolic compounds in protecting the cardiovascular system, i.e., bakuchiol, ferruginol, carnosic acid, carnosol, carvacrol, thymol and hinokitiol. The potential of these compounds is discussed as the new nutraceutical drugs that may help to decrease the burden of cardiovascular disorders.
    Matched MeSH terms: Apoptosis
  3. See WZC, Naidu R, Tang KS
    Curr Neuropharmacol, 2024;22(1):140-151.
    PMID: 36703582 DOI: 10.2174/1570159X21666230126161524
    Parkinson's disease (PD) is a heterogeneous disease involving a complex interaction between genes and the environment that affects various cellular pathways and neural networks. Several studies have suggested that environmental factors such as exposure to herbicides, pesticides, heavy metals, and other organic pollutants are significant risk factors for the development of PD. Among the herbicides, paraquat has been commonly used, although it has been banned in many countries due to its acute toxicity. Although the direct causational relationship between paraquat exposure and PD has not been established, paraquat has been demonstrated to cause the degeneration of dopaminergic neurons in the substantia nigra pars compacta. The underlying mechanisms of the dopaminergic lesion are primarily driven by the generation of reactive oxygen species, decrease in antioxidant enzyme levels, neuroinflammation, mitochondrial dysfunction, and ER stress, leading to a cascade of molecular crosstalks that result in the initiation of apoptosis. This review critically analyses the crucial upstream molecular pathways of the apoptotic cascade involved in paraquat neurotoxicity, including mitogenactivated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT, mammalian target of rapamycin (mTOR), and Wnt/β-catenin signaling pathways.
    Matched MeSH terms: Apoptosis
  4. Law D, Abdulkareem Najm A, Chong JX, K'ng JZY, Amran M, Ching HL, et al.
    PeerJ, 2023;11:e15651.
    PMID: 37483971 DOI: 10.7717/peerj.15651
    A previous study has shown that synthetic antimicrobial peptides (AMPs) derived from Anabas testudineus (ATMP1) could in-vitro inhibit the progression of breast cancer cell lines. In this study, we are interested in studying altered versions of previous synthetic AMPs to gain some insight into the peptides functions. The AMPs were altered and subjected to bioinformatics prediction using four databases (ADP3, CAMP-R3, AMPfun, and ANTICP) to select the highest anticancer activity. The bioinformatics in silico analysis led to the selection of two AMPs, which are ATMP5 (THPPTTTTTTTTTTTYTAAPATTT) and ATMP6 (THPPTTTTTTTTTTTTTAAPARTT). The in silico analysis predicted that ATMP5 and ATMP6 have anticancer activity and lead to cell death. The ATMP5 and ATMP6 were submitted to deep learning databases (ToxIBTL and ToxinPred2) to predict the toxicity of the peptides and to (AllerTOP & AllergenFP) check the allergenicity. The results of databases indicated that AMPs are non-toxic to normal human cells and allergic to human immunoglobulin. The bioinformatics findings led to select the highest active peptide ATMP5, which was synthesised and applied for in-vitro experiments using cytotoxicity assay MTT Assay, apoptosis detection using the Annexin V FTIC-A assay, and gene expression using Apoptosis PCR Array to evaluate the AMP's anticancer activity. The antimicrobial activity is approved by the disc diffusion method. The in-vitro experiments analysis showed that ATMP5 had the activity to inhibit the growth of the breast cancer cell line (MDA-MB-231) after 48 h and managed to arrest the cell cycle of the MDA-MB-231, apoptosis induction, and overexpression of the p53 by interaction with the related apoptotic genes. This research opened up new opportunities for developing potential and selective anticancer agents relying on antimicrobial peptide properties.
    Matched MeSH terms: Apoptosis
  5. Al-Shami SA, Al-Kaabi MM, Mahdi AK, Al-Attar Z
    Malays J Pathol, 2023 Aug;45(2):229-236.
    PMID: 37658532
    INTRODUCTION: Ovarian cancer is one of leading causes of cancer related death in gynecology. CD117 is a tyrosine kinase receptor that plays an important role in regulation of apoptosis, cell proliferation and adhesion by binding to its ligand-stem cell factor. Recent studies demonstrated its aberrant overexpression in various malignancies and concluded that it may play a pivotal role in carcinogenesis.

    AIM: To evaluate CD117 expression in ovarian surface epithelial tumours.

    MATERIALS AND METHODS: This retrospective study included 30 ovarian epithelial borderline, low and highly malignant tumours' formalin-fixed paraffin-blocks (FFPE) tissue blocks. Tissue sections were subjected to the routine haematoxylin-eosin stain and with the anti-CD117 immunohistochemically.

    RESULTS: There is a high significant difference in CD117 expression between borderline and malignant groups (P = 0.001). Additionally, there was significant difference in expression in relation to histopathological type (serous versus non-serous) in low-grade and the high-grade ovarian surface epithelial tumours (p=0.04, p=0.035 respectively). Tumour grade and stage strongly correlates with CD117 expression (p=0.014, p=0.019 respectively).

    CONCLUSION: We concluded that CD117 expression was significantly correlated with higher ovarian tumour grade and stage.

    Matched MeSH terms: Apoptosis
  6. Yue X, Ling Ma N, Zhong J, Yang H, Chen H, Yang Y, et al.
    Environ Res, 2024 Jan 15;241:117474.
    PMID: 37879390 DOI: 10.1016/j.envres.2023.117474
    Here, we collected 154 plant species in China ancient forests looking for novel efficient bioactive compounds for cancer treatments. We found 600 bioactive phyto-chemicals that induce apoptosis of liver cancer cell in vitro. First, we screen the plant extract's in vitro cytotoxicity inhibition of cancer cell growth using in vitro HepG2 cell lines and MTT cytotoxicity. The results from these initial MTT in vitro cytotoxicity tests show that the most efficient plants towards hepatoma cytoxicity is Cephalotaxus sinensis, mint bush (Elsholtzia stauntonii) and winged spindle tree (Euonymus alatus). We then used in cell-counting kit-8 (CCK-8) to further understand in vivo tumor growth using nude mice and GC-MS and LC-QTOF-MS to analyze the composition of compounds in the extracts. Extracted chemically active molecules analyzed by network pharmacology showed inhibition on the growth of liver cancer cells by acting on multiple gene targets, which is different from the currently used traditional drugs acting on only one target of liver cancer cells. Extracts from Cephalotaxus sinensis, mint bush (Elsholtzia stauntonii) and winged spindle tree (Euonymus alatus) induce apoptosis in hepatoma cancer cell line HepG2 with a killing rate of more than 83% and a tumor size decrease by 62-67% and a killing rate of only 6% of normal hepatocyte LO2. This study highlight efficient candidate species for cancer treatment providing a basis for future development of novel plant-based drugs to help meeting several of the UN SDGs and planetary health.
    Matched MeSH terms: Apoptosis
  7. Li Y, Ye Y, Yuan H, Rihan N, Han M, Liu X, et al.
    Sci Total Environ, 2024 Apr 01;919:170924.
    PMID: 38360329 DOI: 10.1016/j.scitotenv.2024.170924
    Nanoplastics (NPs) are widely distributed environmental pollutants that can disrupt intestinal immunity of crustaceans. In this study, the effects of NPs on gut immune enzyme activities, cell morphology, apoptosis, and microbiota diversity of Litopenaeus vannamei were investigated. L. vannamei was exposed to five concentrations of NPs (0, 0.1, 1, 5, and 10 mg/L) for 28 days. The results showed that higher concentrations of NPs damaged the intestinal villi, promoted formation of autophagosomes, increased intestinal non-specific immunoenzyme activities, and significantly increased apoptosis at 10 mg/L. In response to exposure to NPs, the expression levels of ATG3, ATG4, ATG12, Caspase-3, p53, and TNF initially increased and then decreased. In addition, the concentration of NPs was negatively correlated to the expression levels of the genes of interest and intestinal enzyme activities, suggesting that exposure to NPs inhibited apoptosis and immune function. The five dominant phyla of the gut microbiota (Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria, and Actinomycetes) were similar among groups exposed to different concentrations of NPs, but the abundances tended to differ. Notably, exposure to NPs increased the abundance of pathogenic bacteria. These results confirm that exposure to NPs negatively impacted intestinal immune function of L. vannamei. These findings provide useful references for efficient breeding of L. vannamei.
    Matched MeSH terms: Apoptosis
  8. Yusof YA, Saad SM, Makpol S, Shamaan NA, Ngah WZ
    Clinics (Sao Paulo), 2010;65(12):1371-7.
    PMID: 21340229
    OBJECTIVES: The aim of this study was to determine the antiproliferative and apoptotic effects of hot water extracts of Chlorella vulgaris on hepatoma cell line HepG2.

    INTRODUCTION: The search for food and spices that can induce apoptosis in cancer cells has been a major study interest in the last decade. Chlorella vulgaris, a unicellular green algae, has been reported to have antioxidant and anti-cancer properties. However, its chemopreventive effects in inhibiting the growth of cancer cells have not been studied in great detail.

    METHODS: HepG2 liver cancer cells and WRL68 normal liver cells were treated with various concentrations (0-4 mg/ml) of hot water extract of C. vulgaris after 24 hours incubation. Apoptosis rate was evaluated by TUNEL assay while DNA damage was assessed by Comet assay. Apoptosis proteins were evaluated by Western blot analysis.

    RESULTS: Chlorella vulgaris decreased the number of viable HepG2 cells in a dose dependent manner (p < 0.05), with an IC50 of 1.6 mg/ml. DNA damage as measured by Comet assay was increased in HepG2 cells at all concentrations of Chlorella vulgaris tested. Evaluation of apoptosis by TUNEL assay showed that Chlorella vulgaris induced a higher apoptotic rate (70%) in HepG2 cells compared to normal liver cells, WRL68 (15%). Western blot analysis showed increased expression of pro-apoptotic proteins P53, Bax and caspase-3 in the HepG2 cells compared to normal liver cells WRL68, and decreased expression of the anti-apoptotic protein Bcl-2.

    CONCLUSIONS: Chlorella vulgaris may have anti-cancer effects by inducing apoptosis signaling cascades via an increased expression of P53, Bax and caspase-3 proteins and through a reduction of Bcl-2 protein, which subsequently lead to increased DNA damage and apoptosis.

    Matched MeSH terms: Apoptosis/drug effects*; Apoptosis Regulatory Proteins/metabolism
  9. Vijayarathna S, Sasidharan S
    Asian Pac J Cancer Prev, 2014;15(13):5499-500.
    PMID: 25041025
    Matched MeSH terms: Apoptosis/drug effects*; Apoptosis/genetics*
  10. Lai CS, Mas RH, Nair NK, Mansor SM, Navaratnam V
    J Ethnopharmacol, 2010 Feb 3;127(2):486-94.
    PMID: 19833183 DOI: 10.1016/j.jep.2009.10.009
    Typhonium flagelliforme is an indigenous plant of Malaysia and is used by the local communities to treat cancer. This study aims to identify the chemical constituents of Typhonium flagelliforme particularly those which have antiproliferative properties towards human cancer cell lines.
    Matched MeSH terms: Apoptosis/drug effects; Apoptosis/physiology
  11. Herlambang Devianto, Desiana Radithia, Bagus Soebadi, Adiastuti Endah Parmadiati, Rosnah Zain
    MyJurnal
    Introduction: One of the risk factors for cancer is the habit of smoking. Some carcinogenic substances in ciga-rettes are nicotine and nitrosamine. In cigarette smoke there are free radical molecules or Reactive Oxygen Species (ROS) that can cause DNA mutations that can disrupt the balance of cell metabolism. One of them is the apoptosis, apoptosis is a programmed cell death mechanism. In cancer conditions there are apoptotic disorders and excessive proliferation of cells. The process of apoptosis is influenced by the death receptor, Tumor Necrosis Factor apoptosis inducing ligand R1 (TRAIL R1). This study aims to determine the effect of smoke exposure to expression of TRAIL R1 on the mucosal epithelium of the tongue of the Wistar rat (Rattus Novergicus). Methods: The subjects of this study were 24 male Rattus Novergicus with the age range of 12-14 weeks and weighing ± 170 grams. Divided into 4 groups with 2 control groups 4 weeks (K4), 8 weeks (K8) and 2 treatment groups each given 2 cigarettes / day ex-posure to cigarette smoke for each rat for 4 weeks (P4) and 8 weeks (P8). Results: The results showed that exposure to cigarette smoke can cause interference with TRAIL R1 expression. There was a significant difference in TRAIL R1 expression between the control and treatment groups and there was a significant difference in TRAIL R1 expression between the duration of cigarette smoke exposure (P4 and P8). Conclusion: Exposure to cigarette smoke can interfere with the process of apoptosis.
    Matched MeSH terms: Apoptosis; Apoptosis Inducing Factor; Receptors, TNF-Related Apoptosis-Inducing Ligand
  12. Inayat-Hussain SH, Cohen GM, Cain K
    Cell Biol Toxicol, 1999;15(6):381-7.
    PMID: 10811533
    There is now a wealth of information regarding the apoptotic mode of cell death and its importance in toxicological studies in many mammalian organs including the liver. In this study, we investigated the modulatory effects of the heavy metal Zn2+ on transforming growth factor-beta1 (TGF-beta1)-induced apoptosis in primary rat hepatocytes. Apoptosis induced by TGF-beta1 (1 ng/ml) in hepatocytes was accompanied by nuclear condensation as assessed morphologically by staining with Hoechst 33258 and DNA cleavage as detected biochemically by in situ end-labeling, field inversion and conventional gel electrophoresis. Pretreatment with 100 micromol/L Zn2+ abrogated the nuclear condensation, in situ end-labeling, and DNA laddering in TGF-beta1-treated hepatocytes. Surprisingly, Zn2+ did not inhibit the formation of high-molecular-weight DNA fragments (30-50 kbp to 250-300 kbp). These data provide evidence that Zn2+ exerts its effects on the endonucleases that act downstream in the execution phase of TGF-beta1-induced apoptosis in hepatocytes.
    Matched MeSH terms: Apoptosis/drug effects; Apoptosis/physiology*
  13. Othman N, Nagoor NH
    Biomed Res Int, 2014;2014:318030.
    PMID: 24999473 DOI: 10.1155/2014/318030
    Lung cancer remains to be one of the most common and serious types of cancer worldwide. While treatment is available, the survival rate of this cancer is still critically low due to late stage diagnosis and high frequency of drug resistance, thus highlighting the pressing need for a greater understanding of the molecular mechanisms involved in lung carcinogenesis. Studies in the past years have evidenced that microRNAs (miRNAs) are critical players in the regulation of various biological functions, including apoptosis, which is a process frequently evaded in cancer progression. Recently, miRNAs were demonstrated to possess proapoptotic or antiapoptotic abilities through the targeting of oncogenes or tumor suppressor genes. This review examines the involvement of miRNAs in the apoptotic process of lung cancer and will also touch on the promising evidence supporting the role of miRNAs in regulating sensitivity to anticancer treatment.
    Matched MeSH terms: Apoptosis/drug effects; Apoptosis/genetics*
  14. Barathan M, Gopal K, Mohamed R, Ellegård R, Saeidi A, Vadivelu J, et al.
    Apoptosis, 2015 Apr;20(4):466-80.
    PMID: 25577277 DOI: 10.1007/s10495-014-1084-y
    Persistent hepatitis C virus (HCV) infection appears to trigger the onset of immune exhaustion to potentially assist viral persistence in the host, eventually leading to hepatocellular carcinoma. The role of HCV on the spontaneous expression of markers suggestive of immune exhaustion and spontaneous apoptosis in immune cells of chronic HCV (CHC) disease largely remain elusive. We investigated the peripheral blood mononuclear cells of CHC patients to determine the spontaneous recruitment of cellular reactive oxygen species (cROS), immunoregulatory and exhaustion markers relative to healthy controls. Using a commercial QuantiGenePlex(®) 2.0 assay, we determined the spontaneous expression profile of 80 different pro- and anti-apoptotic genes in persistent HCV disease. Onset of spontaneous apoptosis significantly correlated with the up-regulation of cROS, indoleamine 2,3-dioxygenase (IDO), cyclooxygenase-2/prostaglandin H synthase (COX-2/PGHS), Foxp3, Dtx1, Blimp1, Lag3 and Cd160. Besides, spontaneous differential surface protein expression suggestive of T cell inhibition viz., TRAIL, TIM-3, PD-1 and BTLA on CD4+ and CD8+ T cells, and CTLA-4 on CD4+ T cells was also evident. Increased up-regulation of Tnf, Tp73, Casp14, Tnfrsf11b, Bik and Birc8 was observed, whereas FasLG, Fas, Ripk2, Casp3, Dapk1, Tnfrsf21, and Cflar were moderately up-regulated in HCV-infected subjects. Our observation suggests the spontaneous onset of apoptosis signaling and T cell exhaustion in chronic HCV disease.
    Matched MeSH terms: Apoptosis*; Apoptosis Regulatory Proteins/genetics*; Apoptosis Regulatory Proteins/metabolism
  15. Karimian H, Mohan S, Moghadamtousi SZ, Fadaeinasab M, Razavi M, Arya A, et al.
    Molecules, 2014 Jul 03;19(7):9478-501.
    PMID: 24995928 DOI: 10.3390/molecules19079478
    Tanacetum polycephalum (L.) Schultz-Bip (Mokhaleseh) has been traditionally used in the treatment of headaches, migraines, hyperlipidemia and diabetes. The present study aimed to evaluate its anticancer properties and possible mechanism of action using MCF7 as an in vitro model. T. polycephalum leaves were extracted using hexane, chloroform and methanol solvents and the cytotoxicity was evaluated using the MTT assay. Detection of the early apoptotic cells was investigated using acridine orange/propidium iodide staining. An Annexin-V-FITC assay was carried out to observe the phosphatidylserine externalization as a marker for apoptotic cells. High content screening was applied to analyze the cell membrane permeability, nuclear condensation, mitochondrial membrane potential (MMP) and cytochrome c release. Apoptosis was confirmed by using caspase-8, caspase-9 and DNA laddering assays. In addition, Bax/Bcl-2 expressions and cell cycle arrest also have been investigated. MTT assay revealed significant cytotoxicity of T. Polycephalum hexane extract (TPHE) on MCF7 cells with the IC50 value of 6.42±0.35 µg/mL. Significant increase in chromatin condensation was also observed via fluorescence analysis. Treatment of MCF7 cells with TPHE encouraged apoptosis through reduction of MMP by down-regulation of Bcl-2 and up-regulation of Bax, triggering the cytochrome c leakage from mitochondria to the cytosol. The treated MCF7 cells significantly arrested at G1 phase. The chromatographic analysis elicited that the major active compound in this extract is 8β-hydroxy-4β,15-dihydrozaluzanin C. Taken together, the results presented in this study demonstrated that the hexane extract of T. Polycephalum inhibits the proliferation of MCF7 cells, resulting in the cell cycle arrest and apoptosis, which was explained to be through the mitochondrial pathway.
    Matched MeSH terms: Apoptosis*; Apoptosis Regulatory Proteins/genetics; Apoptosis Regulatory Proteins/metabolism
  16. Azmi NH, Ismail N, Imam MU, Ismail M
    PMID: 23866310 DOI: 10.1186/1472-6882-13-177
    There are reports of improved metabolic outcomes due to consumption of germinated brown rice (GBR). Many of the functional effects of GBR can be linked to its high amounts of antioxidants. Interestingly, dietary components with high antioxidants have shown promise in the prevention of neurodegenerative diseases like Alzheimer's disease (AD). This effect of dietary components is mostly based on their ability to prevent apoptosis, which is believed to link oxidative damage to pathological changes in AD. In view of the rich antioxidant content of GBR, we studied its potential to modulate processes leading up to AD.
    Matched MeSH terms: Apoptosis/drug effects*; Apoptosis Regulatory Proteins/genetics*; Apoptosis Regulatory Proteins/metabolism
  17. Thu HE, Hussain Z, Mohamed IN, Shuid AN
    Curr Drug Targets, 2018;19(10):1109-1126.
    PMID: 28721818 DOI: 10.2174/1389450118666170718151913
    BACKGROUND: Eurycoma longifolia is a well-documented herbal medicine that has gained widespread recognition due to its versatile pharmacological activities including anticancer, antimalarial, antimicrobial, antioxidant, aphrodisiac, anti-inflammatory, anxiolytic, anti-diabetic, antirheumatism and anti-ulcer. Plethora of in vitro and in vivo studies evidenced their excellent antiproliferative and anticancer efficacy against various types of human cancers.

    OBJECTIVE: This review was aimed to critically analyze the therapeutic viability and anticancer efficacy of Eurycoma longifolia in the treatment of cancer and also to propose its molecular and translational mechanism of cytotoxicity against cancerous cells.

    RESULTS: Among a range of medicinally active compounds isolated from various parts (roots, stem, bark and leaves) of Eurycoma longifolia, 16 compounds have shown promising anti-proliferative and anticancer efficacies. Eurycomanone, one of the most active medicinal compounds of Eurycoma longifolia, displayed a strong dose-dependent anticancer efficacy against lung carcinoma (A-549 cells) and breast cancer (MCF-7 cells); however, showed moderate efficacy against gastric (MGC-803 cells) and intestinal carcinomas (HT-29 cells). The prime mode of cytotoxicity of Eurycoma longifolia and its medicinal compounds is the induction of apoptosis (programmed cell death) via the up-regulation of the expression of p53 (tumor suppressor protein) and pro-apoptotic protein (Bax) and downregulation of the expression of anti-apoptotic protein (Bcl-2). A remarkable alleviation in the mRNA expression of various cancer-associated biomarkers including heterogeneous nuclear ribonucleoprotein (hnRNP), prohibitin (PHB), annexin-1 (ANX1) and endoplasmic reticulum protein-28 (ERp28) has also been evidenced.

    CONCLUSION: Eurycoma longifolia and its medicinal constituents exhibit promising anticancer efficacy and thus can be considered as potential complementary therapy for the treatment of various types of human cancers.

    Matched MeSH terms: Apoptosis/drug effects*; Apoptosis Regulatory Proteins/genetics; Apoptosis Regulatory Proteins/metabolism
  18. Ishak DH, Ooi KK, Ang KP, Akim AM, Cheah YK, Nordin N, et al.
    J Inorg Biochem, 2014 Jan;130:38-51.
    PMID: 24176918 DOI: 10.1016/j.jinorgbio.2013.09.018
    The compound with R=CH2CH3 in Bi(S2CNR2)3 (1) is highly cytotoxic against a range of human carcinoma, whereas that with R=CH2CH2OH (2) is considerably less so. Both 1 and 2 induce apoptosis in HepG2 cells with some evidence for necrosis induced by 2. Based on DNA fragmentation, caspase activities and human apoptosis PCR-array analysis, both the extrinsic and intrinsic pathways of apoptosis have been shown to occur. While both compounds activate mitochondrial and FAS apoptotic pathways, compound 1 was also found to induce another death receptor-dependent pathway by induction of CD40, CD40L and TNF-R1 (p55). Further, 1 highly expressed DAPK1, a tumour suppressor, with concomitant down-regulation of XIAP and NF-κB. Cell cycle arrest at the S and G2/M phases correlates with the inhibition of the growth of HepG2 cells. The cell invasion rate of 2 is 10-fold higher than that of 1, a finding correlated with the down-regulation of survivin and XIAP expression by 1. Compounds 1 and 2 interact with DNA through different binding motifs with 1 interacting with AT- or TA-specific sites followed by inhibition of restriction enzyme digestion; 2 did not interfere with any of the studied restriction enzymes.
    Matched MeSH terms: Apoptosis/drug effects; Apoptosis/genetics; X-Linked Inhibitor of Apoptosis Protein/genetics; X-Linked Inhibitor of Apoptosis Protein/metabolism
  19. Chan ZCK, Leong KH, Kareem HS, Norazit A, Noor SM, Ariffin A
    Naunyn Schmiedebergs Arch Pharmacol, 2020 03;393(3):405-417.
    PMID: 31641820 DOI: 10.1007/s00210-019-01730-2
    The rationale of designing compounds containing a (3,4,5-trimethoxybenzyloxy) phenyl moiety is largely due to its potential antioxidant and cytotoxic activities. A previous study focused on its antioxidant mechanism, whereas in this study, we investigated the cytotoxicity of a series of 28 analogues and the mechanism of apoptosis of the most cytotoxic compound against wild-type (HCT-116) and p53 mutant (HT-29) colorectal cancer cell lines. The series of analogues comprise of different families, namely hydrazone, oxadiazole, thiosemicarbazides and triazoles. In the initial cytotoxicity screening, N-(3,4,5-trimethoxybenzylidene)-4-(3,4,5-trimethoxybenzyloxy) benzohydrazide, henceforth known as, P5H, was found to be most cytotoxic against human colorectal cancer cell lines (IC50 for HCT-116 = 11.79 μM and HT-29 = 18.52 μM). Additionally, P5H was found to have some degree of selectivity towards cancer cells compared to normal human colon cells (CCD-112 CoN). Subsequent investigation had brought insight on P5H ability to induce apoptosis in both HCT-116 and HT-29 cell lines. Cell cycle analysis showed both cell lines were arrested at the G2/M phase upon treatment. Our study concluded that P5H induced the death receptor, DR5 in HCT-116 and mitochondria-mediated apoptosis pathway in HT-29. Therefore, P5H may be a promising candidate as a chemotherapy agent against colon cancer. Graphical abstract The apoptotic pathways induced in HT-29 and HCT-116 cells upon P5H treatment.
    Matched MeSH terms: Apoptosis/drug effects; Apoptosis/physiology*; Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics; Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism*
  20. Abdul Rahman SF, Xiang Lian BS, Mohana-Kumaran N
    Future Oncol, 2020 Oct;16(28):2235-2249.
    PMID: 32715755 DOI: 10.2217/fon-2020-0389
    The B-cell lymphoma 2 (BCL-2) anti-apoptotic proteins have become attractive therapeutic targets especially with the development of BH3-mimetics which selectively target these proteins. However, it is important to note that expression levels of the anti-apoptotic proteins and their relevance in inhibiting apoptosis varies between different cell lineages. This addiction to certain anti-apoptotic proteins for survival, can be determined with various techniques and targeted effectively with selective BH3-mimetics. Studies have highlighted that anti-apoptotic proteins BCL-XL and MCL-1 are crucial for cervical cancer cell survival. Co-targeting BCL-XL and MCL-1 with selective BH3-mimetics yielded promising results in cervical cancer cell lines. In this review, we focus on the expression levels of the anti-apoptotic proteins in cervical cancer tissues and how to possibly target them with BH3-mimetics.
    Matched MeSH terms: Apoptosis/drug effects; Apoptosis/genetics; Apoptosis Regulatory Proteins/genetics; Apoptosis Regulatory Proteins/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links