Displaying publications 61 - 80 of 199 in total

Abstract:
Sort:
  1. Shudirman S, Abang Kassim A, Shamsol Anuar NS, Utsumi M, Shimizu K, Muhammad Yuzir MA, et al.
    J Gen Appl Microbiol, 2021 Jul 31;67(3):92-99.
    PMID: 33642451 DOI: 10.2323/jgam.2020.08.001
    Musty odor production by actinomycetes is usually related to the presence of geosmin and 2-methylisoborneol (2-MIB), which are synthesized by enzymes encoded by the geoA and tpc genes, respectively. Streptomyces spp. strain S10, which was isolated from a water reservoir in Malaysia, has the ability to produce geosmin when cultivated in a basal salt (BS) solid medium, but no 2-MIB production occurred during growth in BS medium. Strain S10 could produce higher levels of geosmin when the phosphate concentration was limited to 0.05 mg/L, with a yield of 17.53 ± 3.12 ✕ 105 ng/L, compared with growth in BS medium. Interestingly, 2-MIB production was suddenly detected when the nitrate concentration was limited to 1.0 mg/L, with a yield of 1.4 ± 0.11 ✕ 105 ng/L. Therefore, it was concluded that phosphate- and nitrate-limiting conditions could induce the initial production of geosmin and 2-MIB by strain S10. Furthermore, a positive amplicon of geoA was detected in strain S10, but no tpc amplicon was detected by PCR analysis. Draft genome sequence analysis showed that one open reading frame (ORF) contained a conserved motif of geosmin synthase with 95% identity with geoA in Streptomyces coelicolor A3 (2). In the case of the tpc genes, it was found that one ORF showed 23% identity to the known tpc gene in S. coelicolor A3(2), but strain S10 lacked one motif in the N-terminus.
    Matched MeSH terms: Bacterial Proteins/metabolism
  2. Sim PF, Furusawa G, Teh AH
    Sci Rep, 2017 10 20;7(1):13656.
    PMID: 29057942 DOI: 10.1038/s41598-017-13288-1
    AlyQ from Persicobacter sp. CCB-QB2 is an alginate lyase with three domains - a carbohydrate-binding domain modestly resembling family 16 carbohydrate-binding module (CBM16), a family 32 CBM (CBM32) domain, and an alginate lyase domain belonging to polysaccharide lyase family 7 (PL7). Although AlyQ can also act on polyguluronate (poly-G) and polymannuronate (poly-M), it is most active on alginate. Studies with truncated AlyQ showed that the CBM32 domain did not contribute to enhancing AlyQ's activity under the assayed conditions. Nevertheless, it could bind to cleaved but not intact alginate, indicating that the CBM32 domain recognises alginate termini. The crystal structure containing both CBM32 and catalytic domains show that they do not interact with one another. The CBM32 domain contains a conserved Arg that may bind to the carboxyl group of alginate. The catalytic domain, meanwhile, shares a conserved substrate-binding groove, and the presence of two negatively charged Asp residues may dictate substrate specificity especially at subsite +1. As Persicobacter sp. CCB-QB2 was unable to utilise alginate, AlyQ may function to help the bacterium degrade cell walls more efficiently.
    Matched MeSH terms: Bacterial Proteins/metabolism*
  3. Shokryazdan P, Jahromi MF, Liang JB, Sieo CC, Kalavathy R, Idrus Z, et al.
    J Food Sci, 2017 Nov;82(11):2734-2745.
    PMID: 29023714 DOI: 10.1111/1750-3841.13921
    Twelve previously isolated Lactobacillus strains were investigated for their in vitro bioactivities, including bile salt hydrolase (BSH), cholesterol-reducing and antioxidant activities, cytotoxic effects against cancer cells, enzyme activity, and biogenic amine production. Among them, only 4 strains showed relatively high BSH activity, whereas the rest exhibited low BSH activity. All 12 strains showed cholesterol-reducing and antioxidant activities, especially in their intact cells, which in most of the cases, the isolated strains were stronger in these activities than the tested commercial reference strains. None of the tested strains produced harmful enzymes (β-glucosidase and β-glucuronidase) or biogenic amines. Among the 12 strains, 3 strains were tested for their cytotoxic effects against 3 cancer cell lines, which exhibited strong cytotoxic effects, and they also showed selectivity in killing cancer cells when compared to normal cells. Hence, all 12 Lactobacillus strains could be considered good potential probiotic candidates because of their beneficial functional bioactivities.

    PRACTICAL APPLICATION: The Lactobacillus strains tested in this study could be considered good potential probiotic candidates for food/feed industry because of their beneficial functional bioactivities such as good cholesterol-reducing ability, high antioxidant activity, and good and selective cytotoxic effect against cancer cells.

    Matched MeSH terms: Bacterial Proteins/metabolism
  4. Ser HL, Tan WS, Ab Mutalib NS, Yin WF, Chan KG, Goh BH, et al.
    Braz J Microbiol, 2017 09 06;49(1):13-15.
    PMID: 28927873 DOI: 10.1016/j.bjm.2017.01.013
    As the largest genus in Actinobacteria family, Streptomyces species have the ability to synthesize numerous compounds of diverse structures with bioactivities. Streptomyces mangrovisoli MUSC 149T was previously isolated as a novel streptomycete from mangrove forest in east coast of Peninsular Malaysia. The high quality draft genome of MUSC 149T comprises 9,165,825bp with G+C content of 72.5%. Through bioinformatics analysis, 21 gene clusters identified in the genome were associated with the production of bioactive secondary metabolites. The presence of these biosynthetic gene clusters in MUSC 149T suggests the potential exploitation of the strain for production of medically important compounds.
    Matched MeSH terms: Bacterial Proteins/metabolism
  5. Veno J, Ahmad Kamarudin NH, Mohamad Ali MS, Masomian M, Raja Abd Rahman RNZ
    Int J Mol Sci, 2017 Nov 04;18(11).
    PMID: 29113034 DOI: 10.3390/ijms18112202
    In the industrial processes, lipases are expected to operate at temperatures above 45 °C and could retain activity in organic solvents. Hence, a C-terminal truncated lipase from Staphylococcus epidermis AT2 (rT-M386) was engineered by directed evolution. A mutant with glycine-to-cysteine substitution (G210C) demonstrated a remarkable improvement of thermostability, whereby the mutation enhanced the activity five-fold when compared to the rT-M386 at 50 °C. The rT-M386 and G210C lipases were purified concurrently using GST-affinity chromatography. The biochemical and biophysical properties of both enzymes were investigated. The G210C lipase showed a higher optimum temperature (45 °C) and displayed a more prolonged half-life in the range of 40-60 °C as compared to rT-M386. Both lipases exhibited optimal activity and stability at pH 8. The G210C showed the highest stability in the presence of polar organic solvents at 50 °C compared to the rT-M386. Denatured protein analysis presented a significant change in the molecular ellipticity value above 60 °C, which verified the experimental result on the temperature and thermostability profile of G210C.
    Matched MeSH terms: Bacterial Proteins/metabolism*
  6. Rahman MT, Karim MM
    Biol Trace Elem Res, 2018 Mar;182(1):1-13.
    PMID: 28585004 DOI: 10.1007/s12011-017-1061-8
    Nutritional immunity describes mechanisms for withholding essential transition metals as well as directing the toxicity of these metals against infectious agents. Zinc is one of these transition elements that are essential for both humans and microbial pathogens. At the same time, Zn can be toxic both for man and microbes if its concentration is higher than the tolerance limit. Therefore a "delicate" balance of Zn must be maintained to keep the immune cells surveilling while making the level of Zn either to starve or to intoxicate the pathogens. On the other hand, the invading pathogens will exploit the host Zn pool for its survival and replication. Apparently, different sets of protein in human and bacteria are involved to maintain their Zn need. Metallothionein (MT)-a group of low molecular weight proteins, is well known for its Zn-binding ability and is expected to play an important role in that Zn balance at the time of active infection. However, the differences in structural, functional, and molecular control of biosynthesis between human and bacterial MT might play an important role to determine the proper use of Zn and the winning side. The current review explains the possible involvement of human and bacterial MT at the time of infection to control and exploit Zn for their need.
    Matched MeSH terms: Bacterial Proteins/metabolism*
  7. Nahi A, Othman R, Omar D, Ebrahimi M
    Pol J Microbiol, 2016 Aug 26;65(3):377-382.
    PMID: 29334074 DOI: 10.5604/17331331.1215618
    A study was carried out to determine the effects of paraquat, pretilachlor and 2, 4-D on growth and nitrogen fixing activity of Stenotrophomonas maltophilia (Sb16) and pH of Jensen's N-free medium. The growth of Sb16 and pH of medium were significantly reduced with full (X) and double (2X) doses of tested herbicides, but nitrogen fixing activity was decreased by 2X doses. The nitrogenase activity had the highest value in samples treated with 1/2X of 2, 4-D on fifth incubation day, but 2X of 2, 4-D had the most adverse effect. An inhibition in the growth and nitrogenase activity was recovered on the last days of incubation.
    Matched MeSH terms: Bacterial Proteins/metabolism
  8. Wong EHJ, Ng CG, Goh KL, Vadivelu J, Ho B, Loke MF
    Sci Rep, 2018 01 23;8(1):1409.
    PMID: 29362474 DOI: 10.1038/s41598-018-19697-0
    The biofilm-forming-capability of Helicobacter pylori has been suggested to be among factors influencing treatment outcome. However, H. pylori exhibit strain-to-strain differences in biofilm-forming-capability. Metabolomics enables the inference of spatial and temporal changes of metabolic activities during biofilm formation. Our study seeks to examine the differences in metabolome of low and high biofilm-formers using the metabolomic approach. Eight H. pylori clinical strains with different biofilm-forming-capability were chosen for metabolomic analysis. Bacterial metabolites were extracted using Bligh and Dyer method and analyzed by Liquid Chromatography/Quadrupole Time-of-Flight mass spectrometry. The data was processed and analyzed using the MassHunter Qualitative Analysis and the Mass Profiler Professional programs. Based on global metabolomic profiles, low and high biofilm-formers presented as two distinctly different groups. Interestingly, low-biofilm-formers produced more metabolites than high-biofilm-formers. Further analysis was performed to identify metabolites that differed significantly (p-value 
    Matched MeSH terms: Bacterial Proteins/metabolism
  9. Yap PS, Cheng WH, Chang SK, Lim SE, Lai KS
    Cells, 2022 Sep 26;11(19).
    PMID: 36230959 DOI: 10.3390/cells11192995
    There has been a resurgence in the clinical use of polymyxin antibiotics such as colistin due to the limited treatment options for infections caused by carbapenem-resistant Enterobacterales (CRE). However, this last-resort antibiotic is currently confronted with challenges which include the emergence of chromosomal and plasmid-borne colistin resistance. Colistin resistance in Klebsiella pneumoniae is commonly caused by the mutations in the chromosomal gene mgrB. MgrB spans the inner membrane and negatively regulates PhoP phosphorylation, which is essential for bacterial outer membrane lipid biosynthesis. The present review intends to draw attention to the role of mgrB chromosomal mutations in membrane permeability in K. pneumoniae that confer colistin resistance. With growing concern regarding the global emergence of colistin resistance, deciphering physical changes of the resistant membrane mediated by mgrB inactivation may provide new insights for the discovery of novel antimicrobials that are highly effective at membrane penetration, in addition to finding out how this can help in alleviating the resistance situation.
    Matched MeSH terms: Bacterial Proteins/metabolism
  10. Hassan RA, Heng LY, Ahmad A, Tan LL
    PLoS One, 2019;14(4):e0214580.
    PMID: 30990847 DOI: 10.1371/journal.pone.0214580
    A potentiometric whole cell biosensor based on immobilized marine bacterium, Pseudomonas carrageenovora producing κ-carrageenase and glycosulfatase enzymes for specific and direct determination of κ-carrageenan, is described. The bacterial cells were immobilized on the self-plasticized hydrogen ion (H+)-selective acrylic membrane electrode surface to form a catalytic layer. Hydrogen ionophore I was incorporated in the poly(n-butyl acrylate) [poly(nBA)] as a pH ionophore. Catalytic decomposition of κ-carrageenan by the bienzymatic cascade reaction produced neoagarobiose, an inorganic sulfate ion and a proton. The latter was detectable by H+ ion transducer for indirect potentiometric quantification of κ-carrageenan concentration. The use of a disposable screen-printed Ag/AgCl electrode (SPE) provided no cleaning requirement and enabled κ-carrageenan detection to be carried out conveniently without cross contamination in a complex food sample. The SPE-based microbial biosensor response was found to be reproducible with high reproducibility and relative standard deviation (RSD) at 2.6% (n = 3). The whole cell biosensor demonstrated a broad dynamic linear response range to κ-carrageenan from 0.2-100 ppm in 20 mM phosphate buffer saline (PBS) at pH 7.5 with a detection limit at 0.05 ppm and a Nernstian sensitivity of 58.78±0.87 mV/decade (R2 = 0.995). The biosensor showed excellent selectivity towards κ-carrageenan compared to other types of carrageenans tested e.g. ι-carrageenan and λ-carrageenan. No pretreatment to the food sample was necessary when the developed whole cell biosensor was employed for direct assay of κ-carrageenan in dairy product.
    Matched MeSH terms: Bacterial Proteins/metabolism
  11. Budiman C, Goh CKW, Arief II, Yusuf M
    Cell Stress Chaperones, 2021 Mar;26(2):377-386.
    PMID: 33247372 DOI: 10.1007/s12192-020-01183-0
    FKBP22 of a psychrophilic bacterium, Shewanella sp. SIB1 (SIB1 FKBP22), is a member of peptidyl-prolyl cis-trans isomerase (PPIase) and consists of N- and C-domains responsible for chaperone-like and PPIase catalytic activities, respectively. The chaperone-like activity of SIB1 FKBP22 was previously evidenced by its ability to prevent dithiothreitol (DTT)-induced insulin aggregation. Nevertheless, the mechanism by which this protein inhibits the aggregation remains unclear. To address this, the binding affinity of SIB1 FKBP22 to the native or reduced states of insulin was examined using surface plasmon resonance (SPR). The native and reduced states refer to insulin in the absence or DTT presence, respectively. The SPR sensorgram showed that SIB1 FKBP22 binds specifically to the reduced state of insulin, with a KD value of 37.31 ± 3.20 μM. This binding was facilitated by the N-domain, as indicated by the comparable KD values of the N-domain and SIB1 FKBP22. Meanwhile, the reduced state of insulin was found to have no affinity towards the C-domain. The KD value of SIB1 FKBP22 was slightly decreased by NaCl but was not severely affected by FK506, a specific FKBP inhibitor. Similarly, the prevention of DTT-induced aggregation by SIB1 FKBP22 was also modulated by the N-domain and was not affected by FK506. Further, the reduced and native states of insulin had no effect on the catalytic efficiency (kcat/KM) of SIB1 FKBP22 towards a peptide substrate. Nevertheless, the reduced state of insulin slightly reduced the catalytic efficiency towards refolding RNase T1, at up to 1.5-fold lower than in the absence of insulin. These results suggested that the binding event was mainly facilitated by hydrophobic interaction and was independent from its PPIase activity. Altogether, a possible mechanism by which SIB1 FKBP22 prevents DTT-induced insulin aggregation was proposed.
    Matched MeSH terms: Bacterial Proteins/metabolism
  12. Azura Azami N, Ira Aryani W, Aik-Hong T, Amirul AA
    Protein Expr Purif, 2019 03;155:35-42.
    PMID: 30352276 DOI: 10.1016/j.pep.2018.10.008
    Depolymerase is an enzyme that plays an important role in the hydrolysis of polyhydroxyalkanoates [PHAs]. In the current study, Burkholderia cepacia DP1 was obtained from Penang, Malaysia in which the enzyme was purified using ion exchange and gel filtration (Superdex-75) column chromatography. The molecular mass of the enzyme was estimated to be 53.3 kDa using SDS-PAGE. The enzyme activity was increased to 36.8 folds with the recovery of 16.3% after purification. The enzyme activity was detected between pH 6.0-10 and at 35-55 °C with pH 6.0 and 45 °C facilitating the maximum activity. Depolymerase was inactivated by Tween-20, Tween-80, SDS and PMSF, but insensitive to metal ions (Mg2+, Ca2+, K+, Na2+, Fe3+) and organic solvents (methanol, ethanol, and acetone). The apparent Km values of the purified P(3HB) depolymerase enzyme for P(3HB) and P(3HB-co-14%3HV) were 0.7 mg/ml and 0.8 mg/ml, respectively. The Vmax values of the purified enzyme were 10 mg/min and 8.89 mg/min for P(3HB) and P(3HB-co-14%3HV), respectively. The current study discovered a new extracellular poly(3-hydroxybutyrate) [P(3HB)] depolymerase enzyme from Burkholderia cepacia DP1 isolated and purified to homogeneity from the culture supernatant. To the best of our knowledge, this is the first report demonstrating the purification and biochemical characterization of P(3HB) depolymerase enzyme from genus Burkholderia.
    Matched MeSH terms: Bacterial Proteins/metabolism*
  13. Ang SS, Salleh AB, Chor AL, Normi YM, Tejo BA, Rahman MB
    Comput Biol Chem, 2015 Jun;56:19-29.
    PMID: 25766878 DOI: 10.1016/j.compbiolchem.2015.02.015
    Cytochrome P450s are a superfamily of heme monooxygenases which catalyze a wide range of biochemical reactions. The reactions involve the introduction of an oxygen atom into an inactivated carbon of a compound which is essential to produce an intermediate of a hydroxylated product. The diversity of chemical reactions catalyzed by cytochrome P450s has led to their increased demand in numerous industrial and biotechnology applications. A recent study showed that a gene sequence encoding a CYP was found in the genome of Bacillus lehensis G1, and this gene shared structural similarity with the bacterial vitamin D hydroxylase (Vdh) from Pseudonocardia autotrophica. The objectives of present study was to mine, for a novel CYP from a new isolate B. lehensis G1 alkaliphile and determine the biological properties and functionalities of CYP in this bacterium. Our study employed the usage of computational methods to search for the novel CYP from CYP structural databases to identify the conserved pattern, functional domain and sequence properties of the uncharacterized CYP from B. lehensis G1. A computational homology model of the protein's structure was generated and a docking analysis was performed to provide useful structural knowledge on the enzyme's possible substrate and their interaction. Sequence analysis indicated that the newly identified CYP, termed CYP107CB2, contained the fingerprint heme binding sequence motif FxxGxxxCxG at position 336-345 as well as other highly conserved motifs characteristic of cytochrome P450 proteins. Using docking studies, we identified Ser-79, Leu-81, Val-231, Val-279, Val-383, Ala-232, Thr-236 and Thr-283 as important active site residues capable of stabilizing interactions with several potential substrates, including vitamin D3, 25-hydroxyvitamin D3 and 1α-hydroxyvitamin D3, in which all substrates docked proximally to the enzyme's heme center. Biochemical analysis indicated that CYP107CB2 is a biologically active protein to produce 1α,25-dihydroxyvitamin D3 from 1α-hydroxyvitamin D3. Based on these results, we conclude that the novel CYP107CB2 identified from B. lehensis G1 is a putative vitamin D hydroxylase which is possibly capable of catalyzing the bioconversion of parental vitamin D3 to calcitriol, or related metabolic products.
    Matched MeSH terms: Bacterial Proteins/metabolism*
  14. Al-Maleki AR, Mariappan V, Vellasamy KM, Shankar EM, Tay ST, Vadivelu J
    J Proteomics, 2014 Jun 25;106:205-20.
    PMID: 24742602 DOI: 10.1016/j.jprot.2014.04.005
    Colony morphology variation is a characteristic of Burkholderia pseudomallei primary clinical isolates, associated with variations in expression of virulence factors. Here, we performed comparative investigations on adhesion, invasion, plaque-forming abilities and protein profiles of B. pseudomallei wild-type (WT) and a small colony variant (SCV). The percentage of SCV adherence to A549 cells was significantly higher (2.73%) than WT (1.91%). In contrast, WT was significantly more efficient (0.63%) than SCV (0.31%) in invasiveness and in inducing cellular damage. Using 2-DE and MALDI TOF/TOF, 263 and 258 protein spots were detected in WT and SCV, respectively. Comparatively, 49 proteins were differentially expressed in SCV when compared with WT. Of these, 31 proteins were up-regulated, namely, nucleoside diphosphate kinase (Ndk), phosphoglycerate kinase (Pgk), thioredoxin (TrxA), putative ferritin DPS-family DNA-binding protein (DPS) and oxidoreductase (AhpC) that are known to be involved in adhesion, intracellular survival and persistence. However, among the 18 down-regulated proteins, enolase (Eno), elongation factor (EF-Tu) and universal stress-related proteins were associated with invasion and virulence. Differences observed in these protein profiles provide ample clues to their association with the morphotypic and phenotypic characteristics of colony variants, providing additional insights into the potential association of B. pseudomallei colony morphotypes with disease pathogenesis.
    Matched MeSH terms: Bacterial Proteins/metabolism
  15. Chieng S, Carreto L, Nathan S
    BMC Genomics, 2012;13:328.
    PMID: 22823543 DOI: 10.1186/1471-2164-13-328
    Burkholderia pseudomallei is a facultative intracellular pathogen of phagocytic and non-phagocytic cells. How the bacterium interacts with host macrophage cells is still not well understood and is critical to appreciate the strategies used by this bacterium to survive and how intracellular survival leads to disease manifestation.
    Matched MeSH terms: Bacterial Proteins/metabolism
  16. Ruslan R, Abd Rahman RN, Leow TC, Ali MS, Basri M, Salleh AB
    Int J Mol Sci, 2012;13(1):943-60.
    PMID: 22312296 DOI: 10.3390/ijms13010943
    Mutant D311E and K344R were constructed using site-directed mutagenesis to introduce an additional ion pair at the inter-loop and the intra-loop, respectively, to determine the effect of ion pairs on the stability of T1 lipase isolated from Geobacillus zalihae. A series of purification steps was applied, and the pure lipases of T1, D311E and K344R were obtained. The wild-type and mutant lipases were analyzed using circular dichroism. The T(m) for T1 lipase, D311E lipase and K344R lipase were approximately 68.52 °C, 70.59 °C and 68.54 °C, respectively. Mutation at D311 increases the stability of T1 lipase and exhibited higher T(m) as compared to the wild-type and K344R. Based on the above, D311E lipase was chosen for further study. D311E lipase was successfully crystallized using the sitting drop vapor diffusion method. The crystal was diffracted at 2.1 Å using an in-house X-ray beam and belonged to the monoclinic space group C2 with the unit cell parameters a = 117.32 Å, b = 81.16 Å and c = 100.14 Å. Structural analysis showed the existence of an additional ion pair around E311 in the structure of D311E. The additional ion pair in D311E may regulate the stability of this mutant lipase at high temperatures as predicted in silico and spectroscopically.
    Matched MeSH terms: Bacterial Proteins/metabolism*
  17. Alexeev D, Kostrjukova E, Aliper A, Popenko A, Bazaleev N, Tyakht A, et al.
    J Proteome Res, 2012 Jan 1;11(1):224-36.
    PMID: 22129229 DOI: 10.1021/pr2008626
    To date, no genome of any of the species from the genus Spiroplasma has been completely sequenced. Long repetitive sequences similar to mobile units present a major obstacle for current genome sequencing technologies. Here, we report the assembly of the Spiroplasma melliferum KC3 genome into 4 contigs, followed by proteogenomic annotation and metabolic reconstruction based on the discovery of 521 expressed proteins and comprehensive metabolomic profiling. A systems approach allowed us to elucidate putative pathogenicity mechanisms and to discover major virulence factors, such as Chitinase utilization enzymes and toxins never before reported for insect pathogenic spiroplasmas.
    Matched MeSH terms: Bacterial Proteins/metabolism
  18. Lam MK, Lee KT, Mohamed AR
    Biotechnol Adv, 2010 Jul-Aug;28(4):500-18.
    PMID: 20362044 DOI: 10.1016/j.biotechadv.2010.03.002
    In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.
    Matched MeSH terms: Bacterial Proteins/metabolism
  19. Momynaliev K, Klubin A, Chelysheva V, Selezneva O, Akopian T, Govorun V
    Res. Microbiol., 2007 May;158(4):371-8.
    PMID: 17363224
    Ureaplasma parvum colonizes human mucosal surfaces, primarily in the respiratory and urogenital tracts, causing a wide spectrum of diseases, from non-gonococcal urethritis to pneumonitis in immunocompromised hosts. Although the basis for these diverse clinical outcomes is not yet understood, more severe disease may be associated with strains harboring a certain set of strain-specific genes. To investigate this, whole genome DNA macroarrays were constructed and used to assess genomic diversity in 10 U. parvum clinical strains. We found that 7.6% of U. parvum genes were dispersed into one or more strains, thus defining a minimal functional core of 538 U. parvum genes. Most of the strain-specific genes (79%) were of unknown function and were unique to U. parvum. Four hypervariable plasticity regions were identified in the genome containing 93% of the variability in the gene pool (UU32-UU33, UU145-UU170, UU440-UU447 and UU527-UU529). We hypothesized that one of them (UU145-UU170) was a pathogenicity island in U. parvum and we characterized it. Thus, we propose that the clinical outcome of U. parvum infection is probably associated with this newly identified pathogenicity island.
    Matched MeSH terms: Bacterial Proteins/metabolism
  20. Nadarajah VD, Chai SH, Mohammed SM, Chan KK, Kanakeswary K
    PMID: 16771215
    The objective of this study is to determine the role of carbohydrates on the toxic effect of parasporal inclusion proteins isolated from Malaysian mosquitocidal Bacillus thuringiensis (Bt) strains on erythrocytes (human and rat). Dose response analyses on the effect of these parasporal inclusions on human and rat erythrocytes suggest that toxin action is selective depending on bacterial strains and source of erythrocytes. Results from this study suggest Bt toxin is a lectin which recognizes specific plasma membrane glycoconjugate receptor(s) with a terminal residue of either D-mannose (Man), N-acetyl-D-galactosamine (GalNAc), N-acetyl-D-glucosamine (GlcNAc) or even a combination of these monosaccharides.
    Matched MeSH terms: Bacterial Proteins/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links