Displaying publications 61 - 80 of 330 in total

Abstract:
Sort:
  1. Rasul RM, Tamilarasi Muniandy M, Zakaria Z, Shah K, Chee CF, Dabbagh A, et al.
    Carbohydr Polym, 2020 Dec 15;250:116800.
    PMID: 33049807 DOI: 10.1016/j.carbpol.2020.116800
    Chitosan, as a biodegradable and biocompatible polymer, is characterized by anti-microbial and anti-cancer properties. It lately has received a widespread interest for use as the pulmonary particulate backbone materials of drug carrier for the treatment of infectious disease and cancer. The success of chitosan as pulmonary particulate drug carrier is a critical interplay of their mucoadhesive, permeation enhancement and site/cell-specific attributes. In the case of nanocarriers, various microencapsulation and micro-nano blending systems have been devised to equip them with an appropriate aerodynamic character to enable efficient pulmonary aerosolization and inhalation. The late COVID-19 infection is met with acute respiratory distress syndrome and cancer. Chitosan and its derivatives are found useful in combating HCoV and cancer as a function of their molecular weight, substituent type and its degree of substitution. The interest in chitosan is expected to rise in the next decade from the perspectives of drug delivery in combination with its therapeutic performance.
    Matched MeSH terms: Biocompatible Materials/chemistry
  2. Taguchi K, Chuang VTG, Hashimoto M, Nakayama M, Sakuragi M, Enoki Y, et al.
    Chem Pharm Bull (Tokyo), 2020;68(8):766-772.
    PMID: 32741918 DOI: 10.1248/cpb.c20-00222
    Lactoferrin (Lf) nanoparticles have been developed as a carrier of drugs and gene. Two main methods, desolvation technique and emulsification method, for preparation of protein nanoparticles have been reported so far, but most of the previous reports of Lf nanoparticles preparation are limited to emulsification method. In this study, we investigated the optimal conditions by desolvation technique for the preparation of glutaraldehyde-crosslinked bovine Lf (bLf) nanoparticles within the size range of 100-200 nm, and evaluated their properties as a carrier for oral and intravenous drug delivery. The experimental results of dynamic light scattering and Transmission Electron Microscope suggested that glutaraldehyde-crosslinked bLf nanoparticles with 150 nm in size could be produced by addition of 2-propanol as the desolvating solvent into the bLf solution adjusted to pH 6, followed by crosslinking with glutaraldehyde. These cross-linked bLf nanoparticles were found to be compatible to blood components and resistant against rapid degradation by pepsin. Thus, cross-linked bLf nanoparticles prepared by desolvation technique can be applied as a drug carrier for intravenous administration and oral delivery.
    Matched MeSH terms: Biocompatible Materials/pharmacology; Biocompatible Materials/chemistry
  3. Ansar R, Saqib S, Mukhtar A, Niazi MBK, Shahid M, Jahan Z, et al.
    Chemosphere, 2022 Jan;287(Pt 1):131956.
    PMID: 34523459 DOI: 10.1016/j.chemosphere.2021.131956
    Hydrogel is the most emblematic soft material which possesses significantly tunable and programmable characteristics. Polymer hydrogels possess significant advantages including, biocompatible, simple, reliable and low cost. Therefore, research on the development of hydrogel for biomedical applications has been grown intensely. However, hydrogel development is challenging and required significant effort before the application at an industrial scale. Therefore, the current work focused on evaluating recent trends and issues with hydrogel development for biomedical applications. In addition, the hydrogel's development methodology, physicochemical properties, and biomedical applications are evaluated and benchmarked against the reported literature. Later, biomedical applications of the nano-cellulose-based hydrogel are considered and critically discussed. Based on a detailed review, it has been found that the surface energy, intermolecular interactions, and interactions of hydrogel adhesion forces are major challenges that contribute to the development of hydrogel. In addition, compared to other hydrogels, nanocellulose hydrogels demonstrated higher potential for drug delivery, 3D cell culture, diagnostics, tissue engineering, tissue therapies and gene therapies. Overall, nanocellulose hydrogel has the potential for commercialization for different biomedical applications.
    Matched MeSH terms: Biocompatible Materials*
  4. Wan Mahari WA, Waiho K, Fazhan H, Necibi MC, Hafsa J, Mrid RB, et al.
    Chemosphere, 2022 Mar;291(Pt 2):133036.
    PMID: 34822867 DOI: 10.1016/j.chemosphere.2021.133036
    The recurrent environmental and economic issues associated with the diminution of fossil fuels are the main impetus towards the conversion of agriculture, aquaculture and shellfish biomass and the wastes into alternative commodities in a sustainable approach. In this review, the recent progress on recovering and processing these biomass and waste feedstocks to produce a variety of value-added products via various valorisation technologies, including hydrolysis, extraction, pyrolysis, and chemical modifications are presented, analysed, and discussed. These technologies have gained widespread attention among researchers, industrialists and decision makers alike to provide markets with bio-based chemicals and materials at viable prices, leading to less emissions of CO2 and sustainable management of these resources. In order to echo the thriving research, development and innovation, bioresources and biomass from various origins were reviewed including agro-industrial, herbaceous, aquaculture, shellfish bioresources and microorganisms that possess a high content of starch, cellulose, lignin, lipid and chitin. Additionally, a variety of technologies and processes enabling the conversion of such highly available bioresources is thoroughly analysed, with a special focus on recent studies on designing, optimising and even innovating new processes to produce biochemicals and biomaterials. Despite all these efforts, there is still a need to determine the more cost-effective and efficient technologies to produce bio-based commodities.
    Matched MeSH terms: Biocompatible Materials*
  5. Baharuddin A, Go BT, Firdaus MN, Abdullah J
    Clin Neurol Neurosurg, 2002 Sep;104(4):342-4.
    PMID: 12140102
    Bovine pericardium has widely been used for grafts in cardiac surgery and seems to have suitable properties for use as a dural graft. We report our experience of using locally processed bovine pericardium for dural grafts in 22 patients undergoing cranial operations.
    Matched MeSH terms: Biocompatible Materials
  6. Kamari A, Ngah WS
    Colloids Surf B Biointerfaces, 2009 Oct 15;73(2):257-66.
    PMID: 19556114 DOI: 10.1016/j.colsurfb.2009.05.024
    The kinetic and thermodynamic adsorption and adsorption isotherms of Pb(II) and Cu(II) ions onto H(2)SO(4) modified chitosan were studied in a batch adsorption system. The experimental results were fitted using Freundlich, Langmuir and Dubinin-Radushkevich isotherms; the Langmuir isotherm showed the best conformity to the equilibrium data. The pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were employed to analyze the kinetic data. The adsorption behavior of Pb(II) and Cu(II) was best described by the pseudo-second order model. Thermodynamic parameters such as free energy change (DeltaG degrees ), enthalpy change (DeltaH degrees ) and entropy change (DeltaS degrees ) were determined; the adsorption process was found to be both spontaneous and exothermic. No physical damage to the adsorbents was observed after three cycles of adsorption/desorption using EDTA and HCl as eluents. The mechanistic pathway of the Pb(II) and Cu(II) uptake was examined by means of Fourier transform infrared (FTIR) and Energy dispersive X-ray (EDX) spectroscopy. The equilibrium parameter (R(L)) indicated that chitosan-H(2)SO(4) was favorable for Pb(II) and Cu(II) adsorption.
    Matched MeSH terms: Biocompatible Materials/metabolism
  7. Rehan F, Ahemad N, Gupta M
    Colloids Surf B Biointerfaces, 2019 Jul 01;179:280-292.
    PMID: 30981063 DOI: 10.1016/j.colsurfb.2019.03.051
    Casein nanomicelles, a major fraction of milk protein, are emerging as a novel drug delivery system owing to their various structural and functional properties. Casein is further divided into α-, β- and κ-casein, and to date various models have been proposed to describe casein structure, but still no definite structure presenting a detailed assembly of the casein micelle has been found. Thus far, the submicellar model and Horne and Holt model are the most accepted models. This article presents a detailed review of casein micelles and their fractions, and the physicochemical properties that account for their numerous applications in nutraceutics, pharmaceutics and cosmetics. Due to their nanosize and self-assembling nature, casein nanomicelles are considered as excellent delivery carriers to provide better bioavailability and stability of various compounds such as vitamins, oils, polyphenols, fattyacids and minerals. Their amphiphilic nature also provides a great opportunity to deliver hydrophobic bioactives in various drug delivery systems such as nanoparticles, nanomicelles, nanogels and nanoemulsions to improve drug binding and targeting.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  8. Lee WH, Rohanizadeh R, Loo CY
    Colloids Surf B Biointerfaces, 2021 Oct;206:111938.
    PMID: 34198233 DOI: 10.1016/j.colsurfb.2021.111938
    This study developed a novel bioactive bone substitute (hydroxyapatite, HA) with improved anti-biofilm activity by functionalizing with curcumin (anti-biofilm compound) which provide sufficient flux of curcumin concentration for 14 days. The released curcumin acts to inhibit biofilm formation and control the number of viable planktonic cells simultaneously. To prepare curcumin-functionalized HA, different concentrations of curcumin (up to 3% w/v) were added simultaneously during the precipitation process of HA. The highest loading (50 mg/g HA) of curcumin onto HA was achieved with 2% w/v of curcumin. Physicochemical characterizations of curcumin-functionalized HA composites revealed that curcumin was successfully incorporated onto HA. Curcumin was sustainably released over 14 days, while higher curcumin release was observed in acidic condition (pH 4.4) compared to physiological (pH 7.4). The cytotoxicity assays revealed that no significant difference on bone cells growth on curcumin-functionalized HA and non-functionalized HA. Curcumin-functionalized HA was effective to inhibit bacterial cell attachment and subsequent biofilm maturation stages. The anti-biofilm effect was stronger against Staphylococcus aureus compared to Pseudomonas aeruginosa. The curcumin-functionalized HA composite significantly delayed the maturation of S. aureus compared to non-functionalized HA in which microcolonies of cells only begin to appear at 96 h. Up to 3.0 log reduction in colony forming unit (CFU)/mL of planktonic cells was noted at 24 h of incubation for both microorganisms. Thus, in this study we have suggested that curcumin loaded HA could be an alternative antimicrobial agent to control the risk of infections in post-surgical implants.
    Matched MeSH terms: Biocompatible Materials/pharmacology
  9. Tan HL, Kai D, Pasbakhsh P, Teow SY, Lim YY, Pushpamalar J
    Colloids Surf B Biointerfaces, 2020 Apr;188:110713.
    PMID: 31884080 DOI: 10.1016/j.colsurfb.2019.110713
    Electrospinning is a common method to prepare nanofiber scaffolds for tissue engineering. One of the common cellulose esters, cellulose acetate butyrate (CAB), has been electrospun into nanofibers and studied. However, the intrinsic hydrophobicity of CAB limits its application in tissue engineering as it retards cell adhesion. In this study, the properties of CAB nanofibers were improved by fabricating the composite nanofibers made of CAB and hydrophilic polyethylene glycol (PEG). Different ratios of CAB to PEG were tested and only the ratio of 2:1 resulted in smooth and bead-free nanofibers. The tensile test results show that CAB/PEG composite nanofibers have 2-fold higher tensile strength than pure CAB nanofibers. The hydrophobicity of the composite nanofibers was also reduced based on the water contact angle analysis. As the hydrophilicity increases, the swelling ability of the composite nanofiber increases by 2-fold with more rapid biodegradation. The biocompatibility of the nanofibers was tested with normal human dermal fibroblasts (NHDF). The cell viability assay results revealed that the nanofibers are non-toxic. In addition to that, CAB/PEG nanofibers have better cell attachment compared to pure CAB nanofibers. Based on this study, CAB/PEG composite nanofibers could potentially be used as a nanofiber scaffold for applications in tissue engineering.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  10. Kuan CY, Yee-Fung W, Yuen KH, Liong MT
    Crit Rev Food Sci Nutr, 2012;52(1):55-71.
    PMID: 21991990 DOI: 10.1080/10408398.2010.494259
    Nanotechnology is seeing higher propensity in various industries, including food and bioactives. New nanomaterials are constantly being developed from both natural biodegradable polymers of plant and animal origins such as polysaccharides and derivatives, peptides and proteins, lipids and fats, and biocompatible synthetic biopolyester polymers such as polylactic acid (PLA), polyhydroxyalkonoates (PHA), and polycaprolactone (PCL). Applications in food industries include molecular synthesis of new functional food compounds, innovative food packaging, food safety, and security monitoring. The relevance of bioactives includes targeted delivery systems with improved bioavailability using nanostructure vehicles such as association colloids, lipid based nanoencapsulator, nanoemulsions, biopolymeric nanoparticles, nanolaminates, and nanofibers. The extensive use of nanotechnology has led to the need for parallel safety assessment and regulations to protect public health and adverse effects to the environment. This review covers the use of biopolymers in the production of nanomaterials and the propensity of nanotechnology in food and bioactives. The exposure routes of nanoparticles, safety challenges, and measures undertaken to ensure optimal benefits that outweigh detriments are also discussed.
    Matched MeSH terms: Biocompatible Materials/analysis
  11. Li G, Li P, Chen Q, Thu HE, Hussain Z
    Curr Drug Deliv, 2019;16(2):94-110.
    PMID: 30360738 DOI: 10.2174/1567201815666181024142354
    BACKGROUND: Owing to their great promise in the spinal surgeries, bone graft substitutes have been widely investigated for their safety and clinical potential. By the current advances in the spinal surgery, an understanding of the precise biological mechanism of each bone graft substitute is mandatory for upholding the induction of solid spinal fusion.

    OBJECTIVE: The aim of the present review is to critically discuss various surgical implications and level of evidence of most commonly employed bone graft substitutes for spinal fusion.

    METHOD: Data was collected via electronic search using "PubMed", "SciFinder", "ScienceDirect", "Google Scholar", "Web of Science" and a library search for articles published in peer-reviewed journals, conferences, and e-books.

    RESULTS: Despite having exceptional inherent osteogenic, osteoinductive, and osteoconductive features, clinical acceptability of autografts (patient's own bone) is limited due to several perioperative and postoperative complications i.e., donor-site morbidities and limited graft supply. Alternatively, allografts (bone harvested from cadaver) have shown great promise in achieving acceptable bone fusion rate while alleviating the donor-site morbidities associated with implantation of autografts. As an adjuvant to allograft, demineralized bone matrix (DBM) has shown remarkable efficacy of bone fusion, when employed as graft extender or graft enhancer. Recent advances in recombinant technologies have made it possible to implant growth and differentiation factors (bone morphogenetic proteins) for spinal fusion.

    CONCLUSION: Selection of a particular bone grafting biotherapy can be rationalized based on the level of spine fusion, clinical experience and preference of orthopaedic surgeon, and prevalence of donor-site morbidities.

    Matched MeSH terms: Biocompatible Materials*
  12. Hussain Z, Thu HE, Shuid AN, Katas H, Hussain F
    Curr Drug Targets, 2018;19(5):527-550.
    PMID: 28676002 DOI: 10.2174/1389450118666170704132523
    BACKGROUND: Diabetic foot ulcers (DFUs) are the chronic, non-healing complications of diabetic mellitus which compels a significant burden to the patients and the healthcare system. Peripheral vascular disease, diabetic neuropathy, and abnormal cellular and cytokine/chemokine activity are among the prime players which exacerbate the severity and prevent wound repair. Unlike acute wounds, DFUs impose a substantial challenge to the conventional wound dressings and demand the development of novel and advanced wound healing modalities. In general, an ideal wound dressing should provide a moist wound environment, offer protection from secondary infections, eliminate wound exudate and stimulate tissue regeneration.

    OBJECTIVE: To date, numerous conventional wound dressings are employed for the management of DFUs but there is a lack of absolute and versatile choice. The current review was therefore aimed to summarize and critically discuss the available evidences related to pharmaceutical and therapeutic viability of polymer-based dressings for the treatment of DFUs.

    RESULTS: A versatile range of naturally-originated polymers including chitosan (CS), hyaluronic acid (HA), cellulose, alginate, dextran, collagen, gelatin, elastin, fibrin and silk fibroin have been utilized for the treatment of DFUs. These polymers have been used in the form of hydrogels, films, hydrocolloids, foams, membranes, scaffolds, microparticles, and nanoparticles. Moreover, the wound healing viability and clinical applicability of various mutually modified, semi-synthetic or synthetic polymers have also been critically discussed.

    CONCLUSION: In summary, this review enlightens the most recent developments in polymer-based wound dressings with special emphasis on advanced polymeric biomaterials, innovative therapeutic strategies and delivery approaches for the treatment of DFUs.

    Matched MeSH terms: Biocompatible Materials/pharmacology*; Biocompatible Materials/therapeutic use
  13. Busra MFM, Lokanathan Y
    Curr Pharm Biotechnol, 2019;20(12):992-1003.
    PMID: 31364511 DOI: 10.2174/1389201020666190731121016
    Tissue engineering focuses on developing biological substitutes to restore, maintain or improve tissue functions. The three main components of its application are scaffold, cell and growthstimulating signals. Scaffolds composed of biomaterials mainly function as the structural support for ex vivo cells to attach and proliferate. They also provide physical, mechanical and biochemical cues for the differentiation of cells before transferring to the in vivo site. Collagen has been long used in various clinical applications, including drug delivery. The wide usage of collagen in the clinical field can be attributed to its abundance in nature, biocompatibility, low antigenicity and biodegradability. In addition, the high tensile strength and fibril-forming ability of collagen enable its fabrication into various forms, such as sheet/membrane, sponge, hydrogel, beads, nanofibre and nanoparticle, and as a coating material. The wide option of fabrication technology together with the excellent biological and physicochemical characteristics of collagen has stimulated the use of collagen scaffolds in various tissue engineering applications. This review describes the fabrication methods used to produce various forms of scaffolds used in tissue engineering applications.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  14. Muhamad II, Zulkifli N, Selvakumaran SA, Lazim NAM
    Curr Pharm Des, 2019;25(11):1147-1162.
    PMID: 31258069 DOI: 10.2174/1381612825666190618152133
    BACKGROUND: In recent decades, there has been an increased interest in the utilization of polysaccharides showing biological activity for various novel applications owing to their biocompatibility, biodegradability, non-toxicity, and some specific therapeutic activities. Increasing studies have started in the past few years to develop algal polysaccharides-based biomaterials for various applications.

    METHODS: Saccharide mapping or enzymatic profiling plays a role in quality control of polysaccharides. Whereby, in vitro and in vivo tests as well as toxicity level discriminating polysaccharides biological activities. Extraction and purification methods are performed in obtaining algal derived polysaccharides followed by chromatographic profiles of their active compounds, structural features, physicochemical properties, and reported biological activities.

    RESULTS: Marine algae are capable of synthesizing Glycosaminoglycans (GAGs) and non-GAGs or GAG mimetics such as sulfated glycans. The cell walls of algae are rich in sulfated polysaccharides, including alginate, carrageenan, ulvan and fucoidan. These biopolymers are widely used algal-derived polysaccharides for biological and biomedical applications due to their biocompatibility and availability. They constitute biochemical compounds that have multi-functionalization, therapeutic potential and immunomodulatory abilities, making them promising bioactive products and biomaterials with a wide range of biomedical applications.

    CONCLUSION: Algal-derived polysaccharides with clearly elucidated compositions/structures, identified cellular activities, as well as desirable physical properties have shown the potential that may create new opportunities. They could be maximally exploited to serve as therapeutic tools such as immunoregulatory agents or drug delivery vehicles. Hence, novel strategies could be applied to tailor multi-functionalization of the polysaccharides from algal species with vast biomedical application potentials.

    Matched MeSH terms: Biocompatible Materials*
  15. Malhotra N
    Curr Stem Cell Res Ther, 2019;14(4):351-366.
    PMID: 30636614 DOI: 10.2174/1574888X14666190111105504
    OBJECTIVES: A variety of bioreactors and related approaches have been applied to dental tissues as their use has become more essential in the field of regenerative dentistry and dental tissue engineering. The review discusses the various types of bioreactors and their potential application in dentistry.

    METHODS: Review of the literature was conducted using keywords (and MeSH) like Bioreactor, Regenerative Dentistry, Fourth Factor, Stem Cells, etc., from the journals published in English. All the searched abstracts, published in indexed journals were read and reviewed to further refine the list of included articles. Based on the relevance of abstracts pertaining to the manuscript, full-text articles were assessed.

    RESULTS: Bioreactors provide a prerequisite platform to create, test, and validate the biomaterials and techniques proposed for dental tissue regeneration. Flow perfusion, rotational, spinner-flask, strain and customize-combined bioreactors have been applied for the regeneration of bone, periodontal ligament, gingiva, cementum, oral mucosa, temporomandibular joint and vascular tissues. Customized bioreactors can support cellular/biofilm growth as well as apply cyclic loading. Center of disease control & dip-flow biofilm-reactors and micro-bioreactor have been used to evaluate the biological properties of dental biomaterials, their performance assessment and interaction with biofilms. Few case reports have also applied the concept of in vivo bioreactor for the repair of musculoskeletal defects and used customdesigned bioreactor (Aastrom) to repair the defects of cleft-palate.

    CONCLUSIONS: Bioreactors provide a sterile simulated environment to support cellular differentiation for oro-dental regenerative applications. Also, bioreactors like, customized bioreactors for cyclic loading, biofilm reactors (CDC & drip-flow), and micro-bioreactor, can assess biological responses of dental biomaterials by simultaneously supporting cellular or biofilm growth and application of cyclic stresses.

    Matched MeSH terms: Biocompatible Materials
  16. Ikumapayi OM, Akinlabi ET
    Data Brief, 2019 Feb;22:537-545.
    PMID: 30627604 DOI: 10.1016/j.dib.2018.12.067
    Coconut Shell (CS) as agricultural lignocellulosic biomaterial and agro-waste is predominantly available in India, Malaysia, Nigeria, Thailand, Sri Lanka, and Indonesia. It has proven to have effective durability characteristic, good abstractive resistance, high toughness, and good adsorption properties, and is most suitable for long standing use in many applications such as reinforcement, source of energy, fillers as well as activated carbon and its performance, efficiency and effectiveness depend wholly on whether is in form of nano-, micro-, and macro- particles. In this data, effects of milling time on morphological characteristics was experimented using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and X-Ray Fluorescence (XRF) analyses. The SEM images were taken at magnifications of 1.00kx, 2.00kx and 5.00kx which gives respective 50 µm, 20 µm and 10 µm in different milling time of 0, 20, 40 and 60 mins. Digital Vibratory Disc Milling Machine (VDMM) rated 380 V/50 Hz at 940 rpm was employed for the grinding and the morphology of the milled nanoparticles were characterised. It was revealed from the data collected that 0 min (i.e. 75 µm sieved) has the highest mean area value of 16.105 µm2 and area standard deviation of 200.738 µm2 with least value of a number of particle size distribution of 809 µm. In contrast, 60 mins milled has the lowest values for mean area and area standard deviation of 8.945 µm2 and 115.851 µm2 respectively with the highest number of particle size distribution of 2032 µm. It was observed that milling time increases the number of particle sizes distributions and reduces the area of particle size.
    Matched MeSH terms: Biocompatible Materials
  17. Sharif Hossain ABM, Uddin MM, Fawzi M, Veettil VN
    Data Brief, 2018 Apr;17:1245-1252.
    PMID: 29845096 DOI: 10.1016/j.dib.2018.02.053
    The nano-cellulose derived nano-biofilm keeps a magnificent role in medical, biomedical, bioengineering and pharmaceutical industries. Plant biomaterial is naturally organic and biodegradable. This study has been highlighted as one of the strategy introducing biomass based nano-bioplastic (nanobiofilm) to solve dependency on petroleum and environment pollution because of non-degradable plastic. The data study was carried out to investigate the nano-biopolymer (nanocellulose) based nano-biofilm data from corn leaf biomass coming after bioprocess technology without chemicals. Corn leaf biomass was used to produce biodegradable nano-bioplastic for medical and biomedical and other industrial uses. Data on water absorption, odor, pH, cellulose content, shape and firmness, color coating and tensile strength test have been exhibited under standardization of ASTM (American standard for testing and materials). Moreover, the chemical elements of nanobiofilm like K+, CO3--, Cl-, Na+ showed standard data using the EN (166).
    Matched MeSH terms: Biocompatible Materials
  18. Sharif Hossain ABM, Uddin MM, Veettil VN, Fawzi M
    Data Brief, 2018 Apr;17:162-168.
    PMID: 29877503 DOI: 10.1016/j.dib.2017.12.046
    The nanocellulose derived biodegradable plant biomaterial as nano-coating can be used in the medical, biomedical cosmetics, and bioengineering products. Bio-plastic and some synthetic derived materials are edible and naturally biodegradable. The study was conducted to investigate edible nano-biopolymer based nano-coating of capsules and drugs or other definite biomedical materials from corn leaf biomass. Corn leaf biomass was used as an innovative sample to produce edible nano-coating bioplastic for drug and capsule coating and other industrial uses. The data show the negligible water 0.01% absorbed by bio-plastic nanocoating. Odor represented by burning test was under the completely standard based on ASTM. Moreover, data on color coating, tensile strength, pH, cellulose content have been shown under standard value of ASTM (American standard for testing and materials) standard. In addition to that data on the chemical element test like K+,


    CO


    3


    -
    -


    , Cl-, Na+ exhibited positive data compared to the synthetic plastic in the laboratory using the EN (166)) standardization. Therefore, it can be concluded that both organic (cellulose and starch) based edible nano-coating bioplastic may be used for drug and capsule coating as biomedical and medical components in the pharmaceutical industries.
    Matched MeSH terms: Biocompatible Materials
  19. Sohail M, Mudassir, Minhas MU, Khan S, Hussain Z, de Matas M, et al.
    Drug Deliv Transl Res, 2019 04;9(2):595-614.
    PMID: 29611113 DOI: 10.1007/s13346-018-0512-x
    Ulcerative colitis (UC) is an inflammatory disease of the colon that severely affects the quality of life of patients and usually responds well to anti-inflammatory agents for symptomatic relief; however, many patients need colectomy, a surgical procedure to remove whole or part of the colon. Though various types of pharmacological agents have been employed for the management of UC, the lack of effectiveness is usually predisposed to various reasons including lack of target-specific delivery of drugs and insufficient drug accumulation at the target site. To overcome these glitches, many researchers have designed and characterized various types of versatile polymeric biomaterials to achieve target-specific delivery of drugs via oral route to optimize their targeting efficiency to the colon, to improve drug accumulation at the target site, as well as to ameliorate off-target effects of chemotherapy. Therefore, the aim of this review was to summarize and critically discuss the pharmaceutical significance and therapeutic feasibility of a wide range of natural and synthetic biomaterials for efficient drug targeting to colon and rationalized treatment of UC. Among various types of biomaterials, natural and synthetic polymer-based hydrogels have shown promising targeting potential due to their innate pH responsiveness, sustained and controlled release characteristics, and microbial degradation in the colon to release the encapsulated drug moieties. These characteristic features make natural and synthetic polymer-based hydrogels superior to conventional pharmacological strategies for the management of UC.
    Matched MeSH terms: Biocompatible Materials/administration & dosage*
  20. Wong TW, Nurulaini H
    Drug Dev Ind Pharm, 2012 Dec;38(12):1417-27.
    PMID: 22309449 DOI: 10.3109/03639045.2011.653364
    Alginate-chitosan pellets prepared by extrusion-spheronization technique exhibited fast drug dissolution.
    Matched MeSH terms: Biocompatible Materials/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links