Displaying publications 61 - 80 of 705 in total

Abstract:
Sort:
  1. Dzun Noraini Jimat, Istisyhad Mohamad, Azura Amid, Azlin Suhaida Azmi, Mohd Firdaus Abd. Wahab
    MyJurnal
    Cellulose facial masks have gained a huge interest in the cosmetic industry. Cellulose can be extracted from plant biomass, bacteria and algae. In this study, several formulated PVA-based facial masks (F1, F2, F3, F4) incorporated with microfibrillated cellulose extracted from sugarcane bagasse (MFC-SCB) were prepared. The concentration of polyvinyl alcohol (PVA) was varied (5%–20% (w/w)) while the concentration of microfibrillated cellulose of sugarcane bagasse (MFC-SCB) was fixed at 5% (w/w) to get the appropriate composition of the facial masks. The MFC-SCB was
    extracted through chemical treatment assisted with ultrasonication. Sensory tests in terms of adhesion to the skin, spreadability, color, odor, and drying time were performed. These tests were carried out by requesting the volunteers to rate the performance of the masks. The results showed that the formulated facial mask F3 (15% [w/w] of PVA and 5% [w/w] of MFC-SCB) has the highest average score (13.9) which is 82% from the total score compared to other formulated masks. However, the standard formulation mask F5 (15% [w/w] of PVA and 5% [w/w] of sodium carboxylmethyl cellulose, CMC) achieved the highest score (13.5) compared to F3 (12.5). The findings of this study proved that the presence of MFC-SCB with PVA has a competitive performance with the standard facial mask formulation.
    Matched MeSH terms: Biomass
  2. Chan LK, Koay SS, Boey PL, Bhatt A
    Biol Res, 2010;43(1):127-35.
    PMID: 21157639 DOI: /S0716-97602010000100014
    Plant cell cultures could be used as an important tool for biochemical production, ranging from natural coloring (pigments) to pharmaceutical products. Anthocyanins are becoming a very important alternative to synthetic dyes because of increased public concern over the safety of artificial food coloring agents. Several factors are responsible for the production of anthocyanin in cell cultures. In the present study, we investigate the effects of different environmental factors, such as light intensity, irradiance (continuous irradiance or continuous darkness), temperature and medium pH on cell biomass yield and anthocyanin production in cultures of Melastoma malabathricum. Moderate light intensity (301 - 600 lux) induced higher accumulation of anthocyanins in the cells. The cultures exposed to 10-d continuous darkness showed the lowest pigment content, while the cultures exposed to 10-d continuous irradiance showed the highest pigment content. The cell cultures incubated at a lower temperature range (20 ± 2 ºC) grew better and had higher pigment content than those grown at 26 ± 2 ºC and 29 ± 2 ºC. Different medium pH did not affect the yield of cell biomass but anthocyanin accumulation was highest at pH 5.25 - 6.25.
    Matched MeSH terms: Biomass*
  3. Oslan SNH, Shoparwe NF, Yusoff AH, Rahim AA, Chang CS, Tan JS, et al.
    Biomolecules, 2021 02 10;11(2).
    PMID: 33578851 DOI: 10.3390/biom11020256
    As the most recognizable natural secondary carotenoid astaxanthin producer, the green microalga Haematococcus pluvialis cultivation is performed via a two-stage process. The first is dedicated to biomass accumulation under growth-favoring conditions (green stage), and the second stage is for astaxanthin evolution under various stress conditions (red stage). This mini-review discusses the further improvement made on astaxanthin production by providing an overview of recent works on H. pluvialis, including the valuable ideas for bioprocess optimization on cell growth, and the current stress-exerting strategies for astaxanthin pigment production. The effects of nutrient constituents, especially nitrogen and carbon sources, and illumination intensity are emphasized during the green stage. On the other hand, the significance of the nitrogen depletion strategy and other exogenous factors comprising salinity, illumination, and temperature are considered for the astaxanthin inducement during the red stage. In short, any factor that interferes with the cellular processes that limit the growth or photosynthesis in the green stage could trigger the encystment process and astaxanthin formation during the red stage. This review provides an insight regarding the parameters involved in bioprocess optimization for high-value astaxanthin biosynthesis from H. pluvialis.
    Matched MeSH terms: Biomass
  4. Salehmin MN, Annuar MS, Chisti Y
    Bioprocess Biosyst Eng, 2013 Nov;36(11):1527-43.
    PMID: 23539203 DOI: 10.1007/s00449-013-0943-1
    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.
    Matched MeSH terms: Biomass
  5. Hadibarata T, Kristanti RA
    Bioprocess Biosyst Eng, 2013 Apr;36(4):461-8.
    PMID: 22893180 DOI: 10.1007/s00449-012-0803-4
    Armillaria sp. F022 is a white-rot fungus isolated from a tropical rain forest in Indonesia that is capable of utilizing pyrene as a source of carbon and energy. Enzymes production during the degradation process by Armillaria sp. F022 was certainly related to the increase in biomass. In the first week after incubation, the growth rate rapidly increased, but enzyme production decreased. After 7 days of incubation, rapid growth was observed, whereas, the enzymes were produced only after a good amount of biomass was generated. About 63 % of pyrene underwent biodegradation when incubated with this fungus in a liquid medium on a rotary shaker (120 rpm, 25 °C) for 30 days; during this period, pyrene was transformed to five stable metabolic products. These metabolites were extracted in ethyl acetate, isolated by column chromatography, and then identified using thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS). 1-Hydroxypyrene was directly identified by GC-MS, while 4-phenanthroic acid, 1-hydroxy-2-naphthoic acid, phthalic acid, and protocatechuic acid were identified to be present in their derivatized forms (methylated forms and silylated forms). Protocatechuic acid was the end product of pyrene degradation by Armillaria sp. F022. Dynamic profiles of two key enzymes, namely laccase and 1,2-dioxygenase, were revealed during the degradation process, and the results indicated the presence of a complicated mechanism in the regulation of pyrene-degrading enzymes. In conclusion, Armillaria sp. F022 is a white-rot fungus with potential for application in the degradation of polycyclic aromatic hydrocarbons such as pyrene in the environment.
    Matched MeSH terms: Biomass
  6. Hadibarata T, Zubir MM, Rubiyatno, Chuang TZ
    Bioprocess Biosyst Eng, 2013 Sep;36(9):1229-33.
    PMID: 23135490 DOI: 10.1007/s00449-012-0850-x
    Armillaria sp. F022, a white-rot fungus isolated from decayed wood in tropical rain forest was used to biodegrade anthracene in cultured medium. The percentage of anthracene removal by Armillaria sp. F022 reached 13 % after 7 days and at the end of the experiment, anthracene removal level was at 87 %. The anthracene removal through sorption and transformation was investigated. 69 % of eliminated anthracene was transformed by Armillaria sp. F022 to form other organic structure, while only 18 % was absorbed in the mycelia. In the kinetic experiment, anthracene dissipation will not stop even though the biomass had stopped growing. Anthracene removal by Armillaria sp. F022 was correlated with protein concentration (whole biomass) in the culture. The production of enzyme was affected by biomass production. Anthracene was transformed to two stable metabolic products. The metabolites were extracted in ethyl-acetate, isolated by column chromatography, and then identified using gas chromatography-mass spectrometry (GC-MS).
    Matched MeSH terms: Biomass*
  7. Jenol MA, Ibrahim MF, Kamal Bahrin E, Abd-Aziz S
    Bioprocess Biosyst Eng, 2020 Nov;43(11):2027-2038.
    PMID: 32572569 DOI: 10.1007/s00449-020-02391-9
    Sago hampas is a starch-based biomass from sago processing industries consisted of 58% remaining starch. This study has demonstrated the bioconversion of sago hampas to volatile fatty acids (VFAs) by Clostridium beijerinckii SR1 via anaerobic digestion. Higher total VFAs were obtained from sago hampas (5.04 g/L and 0.287 g/g) as compared to commercial starch (5.94 g/L and 0.318 g/g). The physical factors have been investigated for the enhancement of VFAs production using one-factor-at-a-time (OFAT). The optimum condition; 3% substrate concentration, 3 g/L of yeast extract concentration and 2 g/L of ammonium nitrate enhanced the production of VFAs by 52.6%, resulted the total VFAs produced is 7.69 g/L with the VFAs yield of 0.451 g/g. VFAs hydrolysate produced successfully generated 273.4 mV of open voltage circuit and 61.5 mW/m2 of power density in microbial fuel cells. It was suggested that sago hampas provide as an alternative carbon feedstock for bioelectricity generation.
    Matched MeSH terms: Biomass
  8. Chen JH, Liu L, Lim PE, Wei D
    Bioprocess Biosyst Eng, 2019 Jul;42(7):1129-1142.
    PMID: 30919105 DOI: 10.1007/s00449-019-02110-z
    Microalgal lipid production by Chlorella protothecoides using sugarcane bagasse hydrolysate was investigated in this study. First, maximum glucose and reducing sugar concentrations of 15.2 and 27.0 g/L were obtained in sugarcane bagasse hydrolysate (SCBH), and the effects of different percentages of glucose and xylose on algal cultivation were investigated. Afterwards, SCBH was used as a carbon source for the cultivation of C. protothecoides and higher biomass concentration of 10.7 g/L was achieved. Additionally, a large amount of fatty acids, accounting up to 16.8% of dry weight, were accumulated in C. protothecoides in the nitrogen-limited (0.1-1 mmol/L) culture. Although SCBH inhibited fatty acid accumulation to a certain degree and the inhibition was aggravated by nitrogen starvation, SCBH favored microalgal cell growth and fatty acid production. The present study is of significance for the integration of cost-effective feedstocks production for biodiesel with low-cost SCBH as well as environmentally friendly disposal of lignocellulosic wastes.
    Matched MeSH terms: Biomass*
  9. Fan S, Ji B, Abu Hasan H, Fan J, Guo S, Wang J, et al.
    Bioprocess Biosyst Eng, 2021 Aug;44(8):1733-1739.
    PMID: 33772637 DOI: 10.1007/s00449-021-02556-0
    Microalgal-bacterial granular sludge (MBGS) process has become a focal point in treating municipal wastewater. However, it remains elusive whether the emerging process can be applied for the treatment of aquaculture wastewater, which contains considerable concentrations of nitrate and nitrite. This study evaluated the feasibility of MBGS process for aquaculture wastewater treatment. Result showed that the MBGS process was competent to remove respective 64.8%, 84.9%, 70.8%, 50.0% and 84.2% of chemical oxygen demand, ammonia-nitrogen, nitrate-nitrogen, nitrite-nitrogen and phosphate-phosphorus under non-aerated conditions within 8 h. The dominant microalgae and bacteria were identified to be Coelastrella and Rhodobacteraceae, respectively. Further metagenomics analysis implied that microbial assimilation was the main contributor in organics, nitrogen and phosphorus removal. Specifically, considerable nitrate and nitrite removals were also obtained with the synergy between microalgae and bacteria. Consequently, this work demonstrated that the MBGS process showed a prospect of becoming an environmentally friendly and efficient alternative in aquaculture wastewater treatment.
    Matched MeSH terms: Biomass
  10. Zambry NS, Rusly NS, Awang MS, Md Noh NA, Yahya ARM
    Bioprocess Biosyst Eng, 2021 Jul;44(7):1577-1592.
    PMID: 33687550 DOI: 10.1007/s00449-021-02543-5
    The present study focused on lipopeptide biosurfactant production by Streptomyces sp. PBD-410L in batch and fed-batch fermentation in a 3-L stirred-tank reactor (STR) using palm oil as a sole carbon source. In batch cultivation, the impact of bioprocessing parameters, namely aeration rate and agitation speed, was studied to improve biomass growth and lipopeptide biosurfactant production. The maximum oil spreading technique (OST) result (45 mm) which corresponds to 3.74 g/L of biosurfactant produced, was attained when the culture was agitated at 200 rpm and aeration rate of 0.5 vvm. The best aeration rate and agitation speed obtained from the batch cultivation was adopted in the fed-batch cultivation using DO-stat feeding strategy to further improve the lipopeptide biosurfactant production. The lipopeptide biosurfactant production was enhanced from 3.74 to 5.32 g/L via fed-batch fermentation mode at an initial feed rate of 0.6 mL/h compared to that in batch cultivation. This is the first report on the employment of fed-batch cultivation on the production of biosurfactant by genus Streptomyces.
    Matched MeSH terms: Biomass
  11. Hui GT, Meng TK, Kassim MA
    Bioprocess Biosyst Eng, 2023 Oct;46(10):1499-1512.
    PMID: 37580470 DOI: 10.1007/s00449-023-02917-x
    Conventionally, microalgal lipid extraction uses volatile organic compounds as an extraction solvent. However, these solvents are harmful to human and environmental health. Therefore, this study evaluated the feasibility of alternative green solvents, namely, ethanol, dimethyl carbonate (DMC), cyclopentyl methyl ether (CPME), and 2-methyltetrahydrofuran (2-MeTHF) in lipid extraction from Chlorella sp. via ultrasound-assisted extraction (UAE). This study indicated that extraction parameters, such as ethanol-to-2-MeTHF ratio, solvent-to-biomass ratio, temperature, and time, significantly affected the crude lipid yield (P biomass ratio of 20:1 (v/w) at 60 °C for 25 min accompanying 100 W and 40 kHz. Ethanol-2-MeTHF-extracted lipids showed dominance in linoleic acid, α-linolenic acid, and palmitic acid. Overall this findings supported UAE using ethanol and 2-MeTHF as extraction solvents is a promising green alternative to conventional solvent extraction of lipids from microalgae.
    Matched MeSH terms: Biomass
  12. Zakaria MR, Hirata S, Hassan MA
    Bioresour Technol, 2015 Jan;176:142-8.
    PMID: 25460995 DOI: 10.1016/j.biortech.2014.11.027
    The present works investigate hydrothermal pretreatment of oil palm empty fruit bunch and oil palm frond fiber in a batch tube reactor system with temperature and time range from 170 to 250°C and 10 to 20min, respectively. The behavior of soluble sugars, acids, furans, and phenols dramatically changed over treatment severities as determined by HPLC. The cellulose-rich treated solids were analyzed by SEM, WAXD, and BET surface area. Enzymatic hydrolysis was performed from both pretreated slurries and washed solid, and data obtained suggested that tannic acid derived from lignin degradation was a potential cellulase inhibitor. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused structural changes on the cellulose-hemicellulose-lignin matrix, resulting in the opening and expansion of specific surface area and pore volume. The current results provided important factors that maximize conversion of cellulose to glucose from oil palm biomass by hydrothermal process.
    Matched MeSH terms: Biomass
  13. Islam MA, Asif M, Hameed BH
    Bioresour Technol, 2015 Mar;179:227-233.
    PMID: 25545092 DOI: 10.1016/j.biortech.2014.11.115
    The pyrolysis of karanj fruit hulls (KFH) and karanj fruit hull hydrothermal carbonization (KFH-HTC) hydrochar was thermogravimetrically investigated under a nitrogen environment at 5 °C/min, 10 °C/min, and 20 °C/min. The pyrolysis decomposition of KFH biomass was faster than that of KFH-HTC hydrochar because of the high volatility and fixed carbon of KFH biomass. Weight loss percentage was also affected by the heating rates. The kinetic data were evaluated with the Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa methods. The activation energy values obtained with these two methods were 61.06 and 68.53 kJ/mol for KFH biomass and 130.49 and 135.87 kJ/mol for KFH-HTC hydrochar, respectively. The analysis of kinetic process mechanisms was verified with the Coats-Redfern method. KFH-HTC hydrochar may play a potential role in transforming biomass to energy-rich feedstock for thermochemical applications because of its high heating value, high fixed carbon, and low ash and sulfur contents.
    Matched MeSH terms: Biomass
  14. Dahalan FA, Abdullah N, Yuzir A, Olsson G, Salmiati, Hamdzah M, et al.
    Bioresour Technol, 2015 Apr;181:291-6.
    PMID: 25661308 DOI: 10.1016/j.biortech.2015.01.062
    Aerobic granulation is increasingly used in wastewater treatment due to its unique physical properties and microbial functionalities. Granule size defines the physical properties of granules based on biomass accumulation. This study aims to determine the profile of size development under two physicochemical conditions. Two identical bioreactors namely Rnp and Rp were operated under non-phototrophic and phototrophic conditions, respectively. An illustrative scheme was developed to comprehend the mechanism of size development that delineates the granular size throughout the granulation. Observations on granules' size variation have shown that activated sludge revolutionised into the form of aerobic granules through the increase of biomass concentration in bioreactors which also determined the changes of granule size. Both reactors demonstrated that size transformed in a similar trend when tested with and without illumination. Thus, different types of aerobic granules may increase in size in the same way as recommended in the aerobic granule size development scheme.
    Matched MeSH terms: Biomass
  15. Teo CL, Idris A, Zain NAM, Taisir M
    Bioresour Technol, 2014 Dec;173:284-290.
    PMID: 25310864 DOI: 10.1016/j.biortech.2014.09.110
    In the study, the relationship between the quality and intensity of LED illumination with FAMEs produced were investigated. Nannochloropsis sp. was cultivated for 14 days under different intensities of 100, 150 and 200 μmol photons m(-2) s(-1) of red, blue and mixed red blue LED. The findings revealed that suitable combination of LED wavelengths and intensity; (red LED: 150, blue: 100 and mixed red blue: 200 μmol photons m(-2) s(-1)) produced maximum biomass growth and lipid content. It was observed that the quality and intensity of LED significantly influenced the composition of FAMEs. FAMEs produced under blue LED has high degree of unsaturation (DU) and low cetane number while those under red LED has low DU but higher CN. The combination of red blue LED has produced FAMEs with high ignition and lubricating property and also good oxidation stability indicated by the DU and CN values which lies midway between the red and blue.
    Matched MeSH terms: Biomass
  16. Thangalazhy-Gopakumar S, Al-Nadheri WM, Jegarajan D, Sahu JN, Mubarak NM, Nizamuddin S
    Bioresour Technol, 2015 Feb;178:65-9.
    PMID: 25278112 DOI: 10.1016/j.biortech.2014.09.068
    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products.
    Matched MeSH terms: Biomass
  17. Ashokkumar V, Agila E, Salam Z, Ponraj M, Din MFM, Ani FN
    Bioresour Technol, 2014 Nov;172:186-193.
    PMID: 25262427 DOI: 10.1016/j.biortech.2014.08.100
    The study explores on upstream and downstream process in Microcystis aeruginosa for biodiesel production. The alga was isolated from temple tank, acclimatized and successfully mass cultivated in open raceway pond at semi-continuous mode. A two step combined process was designed and harvested 99.3% of biomass, the daily dry biomass productivity was recorded up to 28gm(-2)day(-1). The lipid extraction was optimized and achieved 21.3%; physicochemical properties were characterized and found 11.7% of FFA, iodine value 72% and 99.2% of ester content. The lipid was transesterified by a two step simultaneous process and produced 90.1% of biodiesel; the calorific value of the biodiesel was 38.8MJ/kg. Further, the physicochemical properties of biodiesel was characterized and found to be within the limits of American ASTM D6751. Based on the areal and volumetric biomass productivity estimation, M. aeruginosa can yield 84.1 tons of dry biomass ha(-1)year(-1).
    Matched MeSH terms: Biomass
  18. Imaizumi Y, Nagao N, Yusoff FM, Taguchi S, Toda T
    Bioresour Technol, 2014 Jun;162:53-9.
    PMID: 24747382 DOI: 10.1016/j.biortech.2014.03.123
    To determine the optimum light intensity per cell required for rapid growth regardless of cell density, continuous cultures of the microalga Chlorella zofingiensis were grown with a sufficient supply of nutrients and CO2 and were subjected to different light intensities in the range of 75-1000 μE m(-2) s(-1). The cell density of culture increased over time for all light conditions except for the early stage of the high light condition of 1000 μE m(-2) s(-1). The light intensity per cell required for the high specific growth rate of 0.5 day(-1) was determined to be 28-45 μE g-ds(-1) s(-1). The specific growth rate was significantly correlated to light intensity (y=0.721×x/(66.98+x), r(2)=0.85, p<0.05). A high specific growth rate was maintained over a range of light intensities (250-1000 μE m(-2) s(-1)). This range of light intensities suggested that effective production of C. zofingiensis can be maintained outdoors under strong light by using the optimum specific light intensity.
    Matched MeSH terms: Biomass
  19. Anis S, Zainal ZA
    Bioresour Technol, 2014 Jan;151:183-90.
    PMID: 24231266 DOI: 10.1016/j.biortech.2013.10.065
    Kinetic model parameters for toluene conversion under microwave thermocatalytic treatment were evaluated. The kinetic rate constants were determined using integral method based on experimental data and coupled with Arrhenius equation for obtaining the activation energies and pre-exponential factors. The model provides a good agreement with the experimental data. The kinetic model was also validated with standard error of 3% on average. The extrapolation of the model showed a reasonable trend to predict toluene conversion and product yield both in thermal and catalytic treatments. Under microwave irradiation, activation energy of toluene conversion was lower in the range of 3-27 kJ mol(-1) compared to those of conventional heating reported in the literatures. The overall reaction rate was six times higher compared to conventional heating. As a whole, the kinetic model works better for tar model removal in the absence of gas reforming within a level of reliability demonstrated in this study.
    Matched MeSH terms: Biomass*
  20. Atta M, Idris A, Bukhari A, Wahidin S
    Bioresour Technol, 2013 Nov;148:373-8.
    PMID: 24063820 DOI: 10.1016/j.biortech.2013.08.162
    Light quality and the intensity are key factors which render microalgae as a potential source of biodiesel. In this study the effects of various intensities of blue light and its photoperiods on the growth and lipid content of Chlorella vulgaris were investigated by using LED (Light Emitting Diode) in batch culture. C. vulgaris was grown for 13 days at three different light intensities (100, 200 and 300 μmol m(-2)s(-1)). Effect of three different light and dark regimes (12:12, 16:08 and 24:00 h Light:Dark) were investigated for each light intensity at 25°C culture temperature. Maximum lipid content (23.5%) was obtained due to high efficiency and deep penetration of 200 μmol m(-2)s(-1) of blue light (12:12 L:D) with improved specific growth (1.26 d(-1)) within reduced cultivation time of 8 days. White light could produce 20.9% lipid content in 10 days at 16:08 h L:D.
    Matched MeSH terms: Biomass*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links