Displaying publications 61 - 80 of 142 in total

Abstract:
Sort:
  1. Yuejun He, Changhong Jiang, Hao Yang, Yongjian Wang, Zhangcheng Zhong
    Sains Malaysiana, 2017;46:1701-1708.
    How the composition of the arbuscular mycorrhizal (AM) fungal community affects plant traits of different plant species in karst environments is poorly understood. Broussonetia papyrifera (a woody shrub) and Bidens pilosa (a herbaceous plant) growing in pots in limestone soil were inoculated with an AM fungus, either Funneliformis mosseae (FM), Diversispora versiformis (DV) or Glomus diaphanum (GD) or with an inoculum mixture of all three AM fungi (bn). B. papyrifera and B. pilosa seedlings inoculated with AM fungi showed a significant increase in biomass and nitrogen and phosphorus acquisition compared with the controls, which lacked mycorrhiza. Mixed fungal inoculations significantly enhanced biomass and nitrogen and phosphorus acquisition by B. papyrifera seedlings compared with single fungal inoculations. Nitrogen and phosphorus acquisition by B. papyrifera mycorrhizal seedlings was significantly greater than that of B. pilosa mycorrhizal seedlings. Fungal composition significantly influenced the mycorrhizal benefits of biomass and phosphorus acquisition and mixed fungal inoculations enhanced nitrogen acquisition. Plant species significantly affected nitrogen acquisition but did not have an effect on biomass and phosphorus benefits. We concluded that AM fungal associations increased plant growth and nutrient absorption and that in general a mixed inoculation of AM fungi enhanced biomass and nutrient acquisition more than a single AM fungal inoculation. In addition, a mycorrhizal association was more beneficial for B. papyrifera seedlings in terms of biomass and nutrient acquisition than for B. pilosa seedlings.
    Matched MeSH terms: Calcium Carbonate
  2. Tan K, Lu T, Ren MX
    PhytoKeys, 2020;157:7-26.
    PMID: 32934445 DOI: 10.3897/phytokeys.157.34032
    Based on an updated taxonomy of Gesneriaceae, the biogeography and evolution of the Asian Gesneriaceae are outlined and discussed. Most of the Asian Gesneriaceae belongs to Didymocarpoideae, except Titanotrichum was recently moved into Gesnerioideae. Most basal taxa of the Asian Gesneriaceae are found in the Indian subcontinent and Indo-China Peninsula, suggesting Didymocarpoideae might originate in these regions. Four species diversification centers were recognized, i.e. Sino-Vietnam regions, Malay Peninsula, North Borneo and Northwest Yunnan (Hengduan Mountains). The first three regions are dominated by limestone landscapes, while the Northwest Yunnan is well-known for its numerous deep gorges and high mountains. The places with at least 25% species are neoendemics (newly evolved and narrowly endemic) which were determined as evolutionary hotspots, including Hengduan Mountains, boundary areas of Yunnan-Guizhou-Guangxi in Southwest China, North Borneo, Pahang and Terengganu in Malay Peninsula, and mountainous areas in North Thailand, North Sulawesi Island. Finally, the underlying mechanisms for biogeographical patterns and species diversification of the Asian Gesneriaceae are discussed.
    Matched MeSH terms: Calcium Carbonate
  3. Ng PKL
    Zookeys, 2021;1031:133-141.
    PMID: 33958910 DOI: 10.3897/zookeys.1031.63134
    A new species of semi-terrestrial crab of the genus Geosesarma (Sesarmidae) is described from a limestone cave in central Sarawak, Malaysian Borneo. Geosesarma sodalissp. nov. is characterised by its quadrate carapace, absence of a flagellum on the exopod of the third maxilliped, presence of 10 or 11 sharp tubercles on the dactylus of the chela and a diagnostic male first gonopod structure. This is the sixth species of Geosesarma reported from Sarawak, and the first member of the genus collected from inside caves.
    Matched MeSH terms: Calcium Carbonate
  4. Ahmed T, Ya HH, Khan R, Hidayat Syah Lubis AM, Mahadzir S
    Materials (Basel), 2020 Jul 27;13(15).
    PMID: 32726965 DOI: 10.3390/ma13153333
    Polymeric materials such as High density polyethylene(HDPE) are ductile in nature, having very low strength. In order to improve strength by non-treated rigid fillers, polymeric materials become extremely brittle. Therefore, this work focuses on achieving pseudo-ductility (high strength and ductility) by using a combination of rigid filler particles (CaCO3 and bentonite) instead of a single non-treated rigid filler particle. The results of all tensile-tested (D638 type i) samples signify that the microstructural features and surface properties of rigid nano fillers can render the required pseudo-ductility. The maximum value of tensile strength achieved is 120% of the virgin HDPE, and the value of elongation is retained by 100%. Furthermore, the morphological and fractographic analysis revealed that surfactants are not always going to obtain polymer-filler bonding, but the synergistic effect of filler particles can carry out sufficient bonding for stress transfer. Moreover, pseudo-ductility was achieved by a combination of rigid fillers (bentonite and CaCO3) when the content of bentonite dominated as compared to CaCO3. Thus, the achievement of pseudo-ductility by the synergistic effect of rigid particles is the significance of this study. Secondly, this combination of filler particles acted as an alternative for the application of surfactant and compatibilizer so that adverse effect on mechanical properties can be avoided.
    Matched MeSH terms: Calcium Carbonate
  5. Fahimizadeh M, Diane Abeyratne A, Mae LS, Singh RKR, Pasbakhsh P
    Materials (Basel), 2020 Aug 22;13(17).
    PMID: 32842561 DOI: 10.3390/ma13173711
    Crack formation in concrete is one of the main reasons for concrete degradation. Calcium alginate capsules containing biological self-healing agents for cementitious materials were studied for the self-healing of cement paste and mortars through in vitro characterizations such as healing agent survivability and retention, material stability, and biomineralization, followed by in situ self-healing observation in pre-cracked cement paste and mortar specimens. Our results showed that bacterial spores fully survived the encapsulation process and would not leach out during cement mixing. Encapsulated bacteria precipitated CaCO3 when exposed to water, oxygen, and calcium under alkaline conditions by releasing CO32- ions into the cement environment. Capsule rupture is not required for the initiation of the healing process, but exposure to the right conditions are. After 56 days of wet-dry cycles, the capsules resulted in flexural strength regain as high as 39.6% for the cement mortar and 32.5% for the cement paste specimens. Full crack closure was observed at 28 days for cement mortars with the healing agents. The self-healing system acted as a biological CO32- pump that can keep the bio-agents retained, protected, and active for up to 56 days of wet-dry incubation. This promising self-healing strategy requires further research and optimization.
    Matched MeSH terms: Calcium Carbonate
  6. Mohammed, M.A.A., Salmiaton, A., Wan Azlina, W.A.K.G., Mohamad Amran, M.S., Omar, R., Taufiq-Yap, Y.H., et al.
    MyJurnal
    Oil palm is widely grown in Malaysia. There has been interest in the utilization of oil palm biomass for production of environmental friendly biofuels. The gasification of empty fruit bunches (EFB), a waste of the palm oil industry, was investigated in this study to effectively and economically convert low value and highly distribution solid biomass to a uniform gaseous mixture mainly hydrogen (H2). The effects of temperature, equivalence ratio (ER) and catalyst adding on the yields and distribution of hydrogen rich gas products were also investigated. The main gas species generated, as identified by GC, were H2, CO, CO2, CH4 and trace amounts of C2H4 and C2H6. With temperature increasing from 700 to 1000 °C, the total gas yield was enhanced greatly and reached the maximum value (~ 90 wt. % ) at 1000°C with a big portion of H2 (38.02 vol. %) and CO (36.36 vol. %). Equivalence ratio (ER) showed a significant influence on the upgrading of hydrogen production and product distribution. The optimum ER (0.25) was found to attain a higher H2 yield (27.42 vol. %) at 850°C. The effect of adding catalysts (Malaysian dolomite1, P1), Malaysian dolomite2 (GML), NaOH, NaCl, CaO, ZnO, NiO) as a primary catalyst on gas product yield was investigated, and it was found that adding dolomite showed the greatest effect with the maximum H2 yield achieved (28.18 vol.%) at 850°C.
    Matched MeSH terms: Calcium Carbonate
  7. Fadhlia Zafarina Zakaria, Fauziah Abdul Aziz, Thevarajah, Nahulan
    MyJurnal
    Some cortical bone specimens from the femurs of adult cows and sea coral of Porites species were studied by using Fourier Transform Infrared Spectroscopy, FTIR. Carbonate were shown to be present by indication of C-O stretch found between 1510-1410 cm -1 in both cortical bone and Porites. Based on the comparison of the relative intensity of CO3 2- bands with respect to the PO4 3- bands, peak intensity of Porites was found to be higher than peak intensity of cortical bone at carbonate band. This explains that Porites skeleton is made up of CaCO3 while bone consists of a mineral, hydroxyapatite Ca5(PO4)3OH with the present of carbonate ions, typically from 3 to 7 wt%.
    Matched MeSH terms: Calcium Carbonate
  8. Jamuna, K., Noorsal, K., Zakaria, F.A., Hussin, Z.H.
    ASM Science Journal, 2010;4(1):41-47.
    MyJurnal
    Introducing CO2 flux as the carbonate source had an effect on the carbonate content of carbonate apatite (CAp) synthesized by solid state reaction. The reactants were CaCO3 and beta-tricalcium phosphate (β-TCP) and the heat treatment in air was performed at 1250ºC followed by instant cooling in CO2 flux for temperatures ranging from 800ºC room temperature (RT) . The influence of CO2 flux at various temperature drop differences in the cooling process (1250ºC RT, 1250ºC–500ºC, 1250ºC–600ºC, 1250ºC–700ºC, and 1250ºC–800ºC) was tested to optimize the carbonation degree and subsequent effects on the physical and mechanical properties of CAp. Thermally treated samples revealed an increasing degree of carbonation, achieving a maximum of 5.2 wt% at the highest (1250ºC RT) and a minimum of 2.7 wt% at the lowest (1250ºC–800ºC) temperature drop differences, respectively. This showed that the carbonate content was correlated with the increase in exposure to CO2 flux. However, consistent compressive strength, tensile strength, density and porosity were observed against increasing temperature drop differences which indicated that the degree of carbonation exerted no influence on the physical and mechanical properties of CAp. This method enabled the synthesis of solid state CAp simply by exposing calcium phosphate mixtures to CO2 flux. It also allowed the control of carbonate content for desired medical applications.
    Matched MeSH terms: Calcium Carbonate
  9. Muhammad SN, Kusin FM, Md Zahar MS, Mohamat Yusuff F, Halimoon N
    Environ Technol, 2017 Aug;38(16):2003-2012.
    PMID: 27745113 DOI: 10.1080/09593330.2016.1244568
    Passive bioremediation of metal- and sulfate-containing acid mine drainage (AMD) has been investigated in a batch study. Multiple substrates were used in the AMD remediation using spent mushroom compost (SMC), limestone, activated sludge (AS), and woodchips (WC) under anoxic conditions suitable for bacterial sulfate reduction (BSR). Limestones used were of crushed limestone (CLS) and uncrushed limestone, provided at two different ratios in mixed substrates treatment and varied by the proportion of SMC and limestone. The SMC greatly assisted the removals of sulfate and metals and also acted as an essential carbon source for BSR. The mixed substrate composed of 40% CLS, 30% SMC, 20% AS, and 10% WC was found to be effective for metal removal. Mn, Cu, Pb, and Zn were greatly removed (89-100%) in the mixed substrates treatment, while Fe was only removed at 65%. Mn was found to be removed at a greatly higher rate than Fe, suggesting important Mn adsorption onto organic materials, that is, greater sorption affinity to the SMC. Complementary with multiple treatment media was the main mechanism assisting the AMD treatment through microbial metal reduction reactions.
    Matched MeSH terms: Calcium Carbonate
  10. Umar Hamzah, Abd. Rahim Samsudin
    Identification of a possible source of engineering geological hazard in the limestone area such as cavities, sinkholes and an underground cavern have become necessity for site investigation before any construction of roads, bridges and buildings are carried out. The study is also necessary for tunneling and underground mining works where knowledge of the engineering properties of the rock mass is very important in order to assess the suitability and safety of a proposed building. Geophysical techniques have been widely used in engineering geological study to deal with such problems that normally arise at construction sites with limestone bedrock. In this study, shallow seismic reflection technique and dipole-dipole geoelectrical methods were used to detect the presence of cavity in lime stone area of Batu Cave, Kuala Lumpur. The exact location and depth of cavities in the area were determined from the existing borehole data and report provided by the Geological Survey Department of Malaysia. Based on the borehole data, several cavities that were filled-up with water and fine silt are encountered at depths of 15.7m to 17.8m, 20.2m to 21.1m and 21.4m to 25.7m. Three shallow seismic reflection profiles were established on the cavity area and the results show that the cavities in the limestone occur in the form of 20 to 30m long subterranean channel of 15 to 30 m depth. Dipole-dipole resistivity survey conducted on seismic lines one and three also indicates the presence of the channel and cavities in the limestone.
    Pengecaman punca bencana geologi kejuruteraan di kawasan batu kapur seperti lohong batu kapur, kewujudan lubang benam dan gua-gua batu kapur telah menjadi amat penting dalam penyiasatan tapak sebelum sesuatu pembinaan seperti jalan raya, jambatan dan bangunan dilakukan. Begitu juga dalam kerja-kerja penerowongan dan perlombongan, pengetahuan asas sifat kejuruteraan jasad batuan amat perlu diketahui untuk menitai kesesuaian dan keselamatan bangunan yang bakal dibina. Teknik geofizik telah digunakan secara meluas dalam kajian geologi kejuruteraan untuk menangani masalah yang terdapat di tapak-tapak binaan yang mempunyai batu kapur sebagai batuan dasar. Dalam kajian ini teknik seismos pantulan cetek dan kaedah geoelektrik dwikutub-dwikutub telah digunakan untuk mengesan rongga batu kapur yang terdapat di kawasan Batu Caves, Kuala Lumpur. Kedudukan dan kedalaman rongga batu kapur di kawasan kajian telah ditentukan melalui data lubang gerudi dan laporan yang diperoleh daripada Jabatan Kajibumi Malaysia. Berdasarkan data lubang gerudi tersebut terdapat beberapa rongga yang terisi air dan pasir halus berlodak di kedalaman 15.7 m hingga 17.8 m, 20.2 m hingga 21.1 m dan 21.4 m hingga 25.7 m. Tiga profil seismos pantulan cetek telah dibuat di kawasan berongga tersebut dan hasil survei menunjukkan rongga dalam batu kapur tersebut membentuk palung sepanjang hampir 20 - 30 m pada kedalaman antara 15 m hingga 30 m. Rentisan survei geoelektrik dwikutub yang dilakukan pada profil seismos satu dan tiga juga memperlihatkan kehadiran lohong dan palung dalam batu kapur tersebut.
    Matched MeSH terms: Calcium Carbonate
  11. Shamshuddin J, Panhwar Q, Shazana M, Elisa A, Fauziah C, Naher U
    Sains Malaysiana, 2016;45:383-392.
    Acid sulfate soils are generally not suitable for the crop production unless they are efficiently improved. A study was conducted to improve the productivity of acid sulfate soils for rice cultivation using ground magnesium limestone (GML), basalt and organic fertilizer. The study was conducted on rice in laboratory, glasshouse and field. The pH of acid sulfate soils was low and exchangeable Al was very high which affected rice growth. The application of GML and basalt increased soil pH and reduced Al toxicity. GML required to ameliorate the soils for rice cultivation was 4 t ha-1. Basalt in combination with organic fertilizer was a good soil amendment, but required to be applied a few months ahead of rice cultivation. Due to GML or basalt application, rice plants grew well even though water pH was below 5. The highest rice yield obtained was 4.0 t ha-1 season-1 for Sulfaquepts and it was 7.5 t ha-1 season-1 for Sulfosaprists. In general, the application of GML or basalt in combination with organic fertilizer improved the productivity of acid sulfate soils and consequently enhanced rice yield.
    Matched MeSH terms: Calcium Carbonate
  12. Komala T, Tan. C. Khun
    Sains Malaysiana, 2014;43:1149-1156.
    Bacillus pumilis was isolated and identified from limestone and the ability towards carbon dioxide (CO) sequestration was demonstrated. B . pumilus (S3 SC_1), isolated from Gua Tempurung, Gopeng, Perak was able to form calcite in the presence of calcium ions. B. pumilus was successfully characterized by using conventional biochemical characterization and 16s rDNA sequencing. Three types of experimental systems with B. pumilus, without B. pumilus and without continuous supply of CO2 with the presence of B. pumilus which could produce extracellular carbonic were studied to determine the effects of bacterially produced carbonic anhydrase (CA) by B. pumilus in removing CO2 as calcite. Through our current study, CO2 sequestration ability of B . pumilus was proven.
    Matched MeSH terms: Calcium Carbonate
  13. Mustapha M, Lihan T, Khalid L
    Sains Malaysiana, 2014;43:1363-1371.
    Coral reefs are rich in biodiversity and ecosystem services. However increase in degradation are still occurring at an alarming rate. In management of this ecosystem, determination of its spatial distribution is of importance. Satellite imageries can be used to map distribution extent using spectral characteristics which is a fundamental parameter in mapping. The aims of this study were to determine the spectral characteristics of corals and associated habitats and to map its spatial distribution using 2009 ALOS advanced visible and near infrared radiometer type 2 (AVNIR-2) satellite imagery. Results indicated that coral and habitats surrounding the area display variation in the spectral characteristics magnitude but displays similar spectral curve. Spectral characteristics from the corals and surrounding habitats were determined by presence of benthic microalgae and calcium carbonate. Maximum likelihood classification on the image produced five main classes. Spatial distribution of coral and associated habitats indicated five main zones which are sandy shore zone, sandy intertidal zone, seagrass zone, coral/submerged sandy zone and rocky zone. Distribution of live corals indicated coverage of 0.54 km2, sea grass (0.94 km2), sandy bottom (1.31 km2) and rocky shores (0.19 km2). The results of this study indicated that ALOS satellite data was able to determine variation in spectral characteristics of coral reefs and other habitats thus is capable of mapping the ecosystems spatial distribution.
    Matched MeSH terms: Calcium Carbonate
  14. Miklós Kázmér, Mohd Shafeea Leman & Kamal Roslan Mohamed, Che Aziz Ali, Danko Taboroši
    Sains Malaysiana, 2015;44:921-929.
    The purpose of this paper was to provide a practical guide assisting field workers in identification and interpretation of frequently occurring bioerosional textures created in limestone by intertidal organisms along the coasts of Langkawi Islands, Malaysia. The discussion follows the textural succession from the supratidal down to the lower intertidal zone. Traces left by lichens, boring sponges, molluscs (littorinid snails, the chiton Acanthopleura, the bivalve Lithophaga) and the echinoid Echinometra are illustrated. Products of bioconstructing organisms, specifically oysters and barnacle are also described. Ecological tolerance of each group is given.
    Matched MeSH terms: Calcium Carbonate
  15. Melek Zeng?n, Semra Sayg?n, Nazm? Polat
    Sains Malaysiana, 2015;44:657-662.
    Otoliths, which can be used for the evaluation of relationships between the environment and organisms, are structures
    consisting of calcium carbonate. The aim of this study was to realize the shape analysis. In addition, it is to detect the
    characteristics of otolith biometrics in order to determine the relationship between the fish size of Engraulis encrasicolus
    L. from the Black and Marmara Seas. The samples were obtained from the Black and Marmara Seas between December
    2013 and February 2014. The relationships between the TL (Total length) and OL (Otolith length), TL and OB (Otolith
    breadth), and TL and OW (Otolith weight) were determined using the linear regression equation. Form factor, roundness,
    circularity and rectangularity were used for shape analyses. According to the data, there was no difference between
    localities (p>0.05). Moreover, there was no difference between the left and right otoliths of the individuals sampled from
    the same locality (p>0.05). According to the regression coefficient for relationships of TL-OL, TL-OB and TL-OW, otolith
    length was identified as the best index for estimating fish length (r
    2
    >0.70). It showed that index values were statistically
    different between two populations (p<0.001).
    Matched MeSH terms: Calcium Carbonate
  16. Azimi EA, Abdullah MMAB, Vizureanu P, Salleh MAAM, Sandu AV, Chaiprapa J, et al.
    Materials (Basel), 2020 Feb 24;13(4).
    PMID: 32102345 DOI: 10.3390/ma13041015
    A geopolymer has been reckoned as a rising technology with huge potential for application across the globe. Dolomite refers to a material that can be used raw in producing geopolymers. Nevertheless, dolomite has slow strength development due to its low reactivity as a geopolymer. In this study, dolomite/fly ash (DFA) geopolymer composites were produced with dolomite, fly ash, sodium hydroxide, and liquid sodium silicate. A compression test was carried out on DFA geopolymers to determine the strength of the composite, while a synchrotron Micro-Xray Fluorescence (Micro-XRF) test was performed to assess the elemental distribution in the geopolymer composite. The temperature applied in this study generated promising properties of DFA geopolymers, especially in strength, which displayed increments up to 74.48 MPa as the optimum value. Heat seemed to enhance the strength development of DFA geopolymer composites. The elemental distribution analysis revealed exceptional outcomes for the composites, particularly exposure up to 400 °C, which signified the homogeneity of the DFA composites. Temperatures exceeding 400 °C accelerated the strength development, thus increasing the strength of the DFA composites. This appears to be unique because the strength of ordinary Portland Cement (OPC) and other geopolymers composed of other raw materials is typically either maintained or decreases due to increased heat.
    Matched MeSH terms: Calcium Carbonate
  17. Jun Zhao, Feifei Wang, Yifan Lu
    Sains Malaysiana, 2017;46:2223-2229.
    Formation lithology identification is an indispensable link in oil and gas exploration. Precision of the traditional recognition method is difficult to guarantee when trying to identify lithology of particular formation with strong heterogeneity and complex structure. In order to remove this defect, multivariate membership function discrimination method is proposed, which regard to lithology identification as a linear model in the fuzzy domain and obtain aimed result with the multivariate membership function established. It is indicated by the test on lower carboniferous Bachu group bioclastic limestone section and Donghe sandstone section reservoir on T Field H area that satisfactory accuracy can be achieved in both clastic rock and carbonate formation and obvious advantages are unfold when dealing with complex formations, which shows a good application prospect and provides a new thought to solve complex problems on oilfield exploration and development with fuzzy theory.
    Matched MeSH terms: Calcium Carbonate
  18. Nor Shafizah I, Irmawati R, Omar H, Yahaya M, Alia Aina A
    Food Chem, 2022 Mar 30;373(Pt B):131668.
    PMID: 34848088 DOI: 10.1016/j.foodchem.2021.131668
    In this study, potassium oxide supported on dolomite adsorbent was used as an adsorbent for free fatty acids (FFAs) treatment in crude palm oil (CPO). The characteristics of the adsorbent were determined by TGA, XRD, SEM, BET and TPD-CO2. Taguchi method was utilized for experimental design and optimum condition determination. There were four parameters and three levels involved in this study: time (30, 60, 90 min), stirring rate (300, 500, 700 rpm), adsorbent dosage (1, 3, 5 wt%) and K2O concentration (5, 10, 15 wt%). The adsorbent had a larger pore size, higher basic strength, and more basic sites in greater efficiency (63%) in FFAs removal from CPO. The optimum conditions were at 30 min time, 700 rpm stirring rate, 5 wt% adsorbent dosage and 15 wt% K2O concentration. Taguchi method simplified determination of experimental parameters and minimized the operating costs.
    Matched MeSH terms: Calcium Carbonate
  19. Foon JK, Clements GR, Liew TS
    Zookeys, 2017.
    PMID: 28769723 DOI: 10.3897/zookeys.682.12999
    Limestone hills are now gaining global conservation attention as hotspots for short-range endemic species. Levels of land snail endemism can be high at limestone hills, especially at hill clusters that are geographically isolated. In the State of Perak, Peninsular Malaysia, limestone hills have been opportunistically surveyed for land snails in the past, but the majority have yet to be surveyed. To address this knowledge gap, we systematically surveyed the terrestrial malacofauna of 12 limestone hills that, based on our opinion, are a representation of the limestone land snail assemblages within the State. Our inventory yielded high sampling completeness (>85%). We found 122 species of land snails, of which 34 species were unique to one of the surveyed hills. We identified 30 species that are potentially new to science. The number of land snail species recorded at each hill ranged between 39 and 63 species. Four of the sampled limestone hills namely, Prk 01 G. Tempurung, Prk 55 G. Pondok, Prk 47 Kanthan, and Prk 64 Bt Kepala Gajah, have high levels of species richness and unique species, representing 91% of the total species recorded in this study. We identified two clusters of limestone hills in central Perak with distinct differences in land snail species composition - a northern hill cluster on elevated granite bedrock and southern hill cluster in a low-lying valley surrounded by alluvial soils. As limestone hills continue to be quarried to meet the cement demand, the four identified limestone hills, along with other hills from the two clusters, warrant urgent conservation attention in order to maintain high species diversity within Perak's terrestrial malacofauna.
    Matched MeSH terms: Calcium Carbonate
  20. Chung KF, Leong WC, Rubite RR, Repin R, Kiew R, Liu Y, et al.
    Bot Stud, 2014 Dec;55(1):1.
    PMID: 28510906 DOI: 10.1186/1999-3110-55-1
    BACKGROUND: The picturesque limestone karsts across the Sino-Vietnamese border are renowned biodiversity hotspot, distinguished for extremely high endemism of calciphilous plants restricted to caves and cave-like microhabitats that have functioned as biological refugia on the otherwise harsh habitats. To understand evolutionary mechanisms underlying the splendid limestone flora, dated phylogeny is reconstructed for Asian Begonia, a species-rich genus on limestone substrates represented by no less than 60 species in southern China, using DNA sequences of nrITS and chloroplast rpL16 intron. The sampling includes 94 Begonia species encompassing most major Asian clades with a special emphasized on Chinese species.

    RESULTS: Except for two tuberous deciduous species and a species with upright stems, a majority of Sino-Vietnamese limestone Begonia (SVLB), including sect. Coelocentrum (19 species sampled) and five species of sect. Diploclinium, Leprosae, and Petermannia, are rhizomatous and grouped in a strongly supported and yet internally poorly resolved clade (Clade SVLB), suggesting a single evolutionary origin of the adaptation to limestone substrates by rhizomatous species, subsequent species radiation, and a strong tendency to retain their ancestral niche. Divergence-time estimates indicate a late Miocene diversification of Clade SVLB, coinciding with the onset of the East Asian monsoon and the period of extensive karstification in the area.

    CONCLUSIONS: Based on our phylogenetic study, Begonia sect. Coelocentrum is recircumscribed and expanded to include other members of the Clade SVLB (sect. Diploclinium: B. cavaleriei, B. pulvinifera, and B. wangii; sect. Leprosae: B. cylindrica and B. leprosa; sect. Petermannia: B. sinofloribunda). Because species of Clade SVLB have strong niche conservatism to retain in their ancestral habitats in cave-like microhabitats and Begonia are generally poor dispersers prone to diversify allopatrically, we propose that extensive and continuous karstification of the Sino-Vietnamese limestone region facilitated by the onset of East Asian monsoon since the late Miocene has been the major driving force for species accumulation via geographic isolation in Clade SVLB. Morphologically species of Clade SVLB differ mainly in vegetative traits without apparent adaptive value, suggesting that limestone Begonia radiation is better characterized as non-adaptive, an underappreciated speciation mode crucial for rapid species accumulations in organisms of low vagility and strong niche conservatism.

    Matched MeSH terms: Calcium Carbonate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links