Displaying publications 61 - 80 of 506 in total

Abstract:
Sort:
  1. Mahenthiran AV, Jawad ZA, Chin BLF
    Environ Sci Pollut Res Int, 2023 Dec;30(60):124654-124676.
    PMID: 35655021 DOI: 10.1007/s11356-022-20168-3
    The carbon dioxide (CO2) separation technology has become a focus recently, and a developed example is the membrane technology. It is an alternative form of enhanced gas separation performance above the Robeson upper bound line resulting in the idea of mixed matrix membranes (MMMs). With attention given to membrane technologies, the MMMs were fabricated to have the most desirable gas separation performance. In this work, blend MMMs were synthesised by using two polymers, namely, poly(ether sulfone) (PES) and poly (ethylene glycol) (PEG). These polymers were dissolved in blend N-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF) solvents with the functionalised multi-walled carbon nanotubes (MWCNTs-F) fillers by using the mixing solution method. The embedding of the pristine MWCNTs and MWCNTs-F within the new synthesised MMM was then studied towards CO2/N2 separation. In addition, the optimisation of the loading of MWCNTs-F for blend MMM for CO2/N2 separation was also studied. The experimental results showed that the functionalised MWCNTs (MWCNTs-F) were a better choice at enhancing gas separation compared to the pristine MWCNTs (MWCNTs-P). Additionally, the effects of MWCNTs-F at loadings 0.01 to 0.05% were studied along with the polymer compositions for PES:PEG of 10:20, 20:20 and 30:10. Both these parameters of study affect the manner of gas separation performance in the blend MMMs. Overall, the best performing membrane showed a selectivity value of 1.01 + 0.05 for a blend MMM (MMM-0.03F) fabricated with 20 wt% of PES, 20 wt% of PEG and 0.03 wt% of MWCNTs-F. The MMM-0.03F was able to withstand a pressure of 2 bar, illustrating its mechanical strength and ability to be used in the post combustion carbon capture application industries where the flue gas pressure is at 1.01 bar.
    Matched MeSH terms: Carbon Dioxide*
  2. Abdul Rahman SNS, Chai YH, Lam MK
    J Environ Manage, 2024 Mar;355:120447.
    PMID: 38460326 DOI: 10.1016/j.jenvman.2024.120447
    This research explicitly investigates the utilization of Chlorella Vulgaris sp. microalgae as a renewable source for lipid production, focusing on its application in bioplastic manufacturing. This study employed the supercritical fluid extraction technique employing supercritical CO2 (sCO2) as a green technology to selectively extract and produce PHA's precursor utilizing CO2 solvent as a cleaner solvent compared to conventional extraction method. The study assessed the effects of three extraction parameters, namely temperature (40-60 °C), pressure (15-35 MPa), and solvent flow rate (4-8 ml/min). The pressure, flowrate, and temperature were found to be the most significant parameters affecting the sCO2 extraction. Through Taguchi optimization, the optimal parameters were determined as 60 °C, 35 MPa, and 4 ml/min with the highest lipid yield of 46.74 wt%; above-average findings were reported. Furthermore, the pretreatment process involved significant effects such as crumpled and exhaustive structure, facilitating the efficient extraction of total lipids from the microalgae matrix. This study investigated the microstructure of microalgae biomatrix before and after extraction using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Fourier-transform infrared spectroscopy (FTIR) was utilized to assess the potential of the extracted material as a precursor for biodegradable plastic production, with a focus on reduced heavy metal content through inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis. The lipid extracted from Chlorella Vulgaris sp. microalgae was analysed using gas chromatography-mass spectrometry (GC-MS), identifying key constituents, including oleic acid (C18H34O2), n-Hexadecanoic acid (C16H32O2), and octadecanoic acid (C18H36O2), essential for polyhydroxyalkanoate (PHA) formation.
    Matched MeSH terms: Carbon Dioxide/chemistry
  3. Chew TL, Ahmad AL, Bhatia S
    Adv Colloid Interface Sci, 2010 Jan 15;153(1-2):43-57.
    PMID: 20060956 DOI: 10.1016/j.cis.2009.12.001
    Separation of carbon dioxide (CO(2)) from gaseous mixture is an important issue for the removal of CO(2) in natural gas processing and power plants. The ordered mesoporous silicas (OMS) with uniform pore structure and high density of silanol groups, have attracted the interest of researchers for separation of carbon dioxide (CO(2)) using adsorption process. These mesoporous silicas after functionalization with amino groups have been studied for the removal of CO(2). The potential of functionalized ordered mesoporous silica membrane for separation of CO(2) is also recognized. The present paper reviews the synthesis of mesoporous silicas and important issues related to the development of mesoporous silicas. Recent studies on the CO(2) separation using ordered mesoporous silicas (OMS) as adsorbent and membrane are highlighted. The future prospectives of mesoporous silica membrane for CO(2) adsorption and separation are also presented and discussed.
    Matched MeSH terms: Carbon Dioxide/isolation & purification*; Carbon Dioxide/chemistry
  4. Abdul-Latif NS, Ong MY, Nomanbhay S, Salman B, Show PL
    Bioengineered, 2020 12;11(1):154-164.
    PMID: 32013677 DOI: 10.1080/21655979.2020.1718471
    Carbon dioxide (CO2) emission will increase due to the increasing global plastic demand. Statistical data shows that plastic production alone will contribute to at least 20% of the annual global carbon budget in the near future. Hence, several alternative methods are recommended to overcome this problem, such as bio-product synthesis. Algae consist of diverse species and have huge potential to be a promising biomass feedstock for a range of purposes, including bio-oil production. The convenient cultivation method of algae could be one of the main support for algal biomass utilization. The aim of this study is to forecast and outline the strategies in order to meet the future demand (year 2050) of plastic production and, at the same time, reduce CO2 emission by replacing the conventional plastic with bio-based plastic. In this paper, the analysis for 25%, 50% and 75% CO2 reduction has been done by using carbon emission pinch analysis. The strategies of biomass utilization in Malaysia are also enumerated in this study. This study suggested that the algal biomass found in Malaysia coastal areas should be utilized and cultivated on a larger scale in order to meet the increasing plastic demand and, at the same time, reduce carbon footprint. Some of the potential areas for macroalgae sea-farming cultivation in Sabah coastline (Malaysia), comprised of about 3885 km2 (388,500 ha) in total, have been highlighted. These potential areas have the potential to produce up to 14.5 million tonnes (Mt)/y of macroalgae in total, which can contribute 370 Mt of phenol for bioplastic production.
    Matched MeSH terms: Carbon Dioxide/analysis*; Carbon Dioxide/metabolism
  5. Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M
    Bioresour Technol, 2014 Apr;158:193-200.
    PMID: 24607454 DOI: 10.1016/j.biortech.2014.02.015
    CO2 gasification of oil palm shell (OPS) char to produce CO through the Boudouard reaction (C + CO2 ↔ 2CO) was investigated under microwave irradiation. A microwave heating system was developed to carry out the CO2 gasification in a packed bed of OPS char. The influence of char particle size, temperature and gas flow rate on CO2 conversion and CO evolution was considered. It was attempted to improve the reactivity of OPS char in gasification reaction through incorporation of Fe catalyst into the char skeleton. Very promising results were achieved in our experiments, where a CO2 conversion of 99% could be maintained during 60 min microwave-induced gasification of iron-catalyzed char. When similar gasification experiments were performed in conventional electric furnace, the superior performance of microwave over thermal driven reaction was elucidated. The activation energies of 36.0, 74.2 and 247.2 kJ/mol were obtained for catalytic and non-catalytic microwave and thermal heating, respectively.
    Matched MeSH terms: Carbon Dioxide/chemistry*
  6. Firdaus MS, Husni MH
    ScientificWorldJournal, 2012;2012:405084.
    PMID: 22545018 DOI: 10.1100/2012/405084
    A study was carried out to assess carbon emission and carbon loss caused from land use change (LUC) of converting a wasteland into a Jatropha curcas plantation. The study was conducted for 12 months at a newly established Jatropha curcas plantation in Port Dickson, Malaysia. Assessments of soil carbon dioxide (CO(2)) flux, changes of soil total carbon and plant biomass loss and growth were made on the wasteland and on the established plantation to determine the effects of land preparation (i.e., tilling) and removal of the wasteland's native vegetation. Overall soil CO(2) flux showed no significant difference (P < 0.05) between the two plots while no significant changes (P < 0.05) on soil total carbon at both plots were detected. It took 1.5 years for the growth of Jatropha curcas to recover the biomass carbon stock lost during land conversion. As far as the present study is concerned, converting wasteland to Jatropha curcas showed no adverse effects on the loss of carbon from soil and biomass and did not exacerbate soil respiration.
    Matched MeSH terms: Carbon Dioxide/analysis
  7. Nasir NM, Sthaneshwar P, Yunus PJ, Yap SF
    Malays J Pathol, 2010 Jun;32(1):21-6.
    PMID: 20614722 MyJurnal
    The objective of the study is to determine the level of agreement between measured total carbon dioxide (TCO2) and calculated bicarbonate (HCO3-) in our laboratory.
    Matched MeSH terms: Carbon Dioxide/blood*
  8. Adinata D, Wan Daud WM, Aroua MK
    Bioresour Technol, 2007 Jan;98(1):145-9.
    PMID: 16380249
    Palm shell was used to prepare activated carbon using potassium carbonate (K2CO3) as activating agent. The influence of carbonization temperatures (600-1000 degrees C) and impregnation ratios (0.5-2.0) of the prepared activated carbon on the pore development and yield were investigated. Results showed that in all cases, increasing the carbonization temperature and impregnation ratio, the yield decreased, while the adsorption of CO2 increased, progressively. Specific surface area of activated carbon was maximum about 1170 m2/g at 800 degrees C with activation duration of 2 h and at an impregnation ratio of 1.0.
    Matched MeSH terms: Carbon Dioxide/chemistry
  9. Chiroma H, Abdul-kareem S, Khan A, Nawi NM, Gital AY, Shuib L, et al.
    PLoS One, 2015;10(8):e0136140.
    PMID: 26305483 DOI: 10.1371/journal.pone.0136140
    Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC) CO2 emissions from petroleum consumption have motivated this research.
    Matched MeSH terms: Carbon Dioxide/analysis*
  10. Salleh SF, Kamaruddin A, Uzir MH, Mohamed AR, Shamsuddin AH
    Prep Biochem Biotechnol, 2017 Feb 07;47(2):111-115.
    PMID: 27143318 DOI: 10.1080/10826068.2016.1181085
    Hydrogen production by cyanobacteria could be one of the promising energy resources in the future. However, there is very limited information regarding the kinetic modeling of hydrogen production by cyanobacteria available in the literature. To provide an in-depth understanding of the biological system involved during the process, the Haldane's noncompetitive inhibition equation has been modified to determine the specific hydrogen production rate (HPR) as a function of both dissolved CO2 concentration (CTOT) and oxygen production rate (OPR). The highest HPR of 15 [Formula: see text] was found at xCO2 of 5% vol/vol and the rate consequently decreased when the CTOT and OPR were 0.015 k mol m(-3) and 0.55 mL h(-1), respectively. The model provided a fairly good estimation of the HPR with respect to the experimental data collected.
    Matched MeSH terms: Carbon Dioxide/metabolism*
  11. Vythilingam I, Chiang GL, Chan ST
    PMID: 1359652
    CDC Light traps were used to study the attractant effect of CO2 and 1-octen-3-ol on trap catches of mosquito populations at three different locations in Malaysia. There was a significant increase in the number of mosquitos caught in traps baited with CO2 and CO2 with 1-octen-3-ol. The number of mosquitos caught in the CDC light trap and in the CDC light trap baited with 1-octen-3-ol alone were very few. 1-octen-3-ol and CO2 acted synergistically in attracting significantly greater numbers of Culex tritaeniorhynchus. However Anopheles sp. were not very attracted to light traps even with attractants added to them.
    Matched MeSH terms: Carbon Dioxide*
  12. Natusch DJD, Aust PW, Khadiejah S, Ithnin H, Isa A, Zamzuri CK, et al.
    PLoS One, 2020;15(10):e0240176.
    PMID: 33022690 DOI: 10.1371/journal.pone.0240176
    The use of carbon dioxide (CO2) exposure as a means of animal euthanasia has received considerable attention in mammals and birds but remains virtually untested in reptiles. We measured the behavioral responses of four squamate reptile species (Homalopsis buccata, Malayopython reticulatus, Python bivitattus, and Varanus salvator) to exposure to 99.5% CO2 for durations of 15, 30, or 90 minutes. We also examined alterations in plasma corticosterone levels of M. reticulatus and V. salvator before and after 15 minutes of CO2 exposure relative to control individuals. The four reptile taxa showed consistent behavioral responses to CO2 exposure characterized by gaping and minor movements. The time taken to lose responsiveness to stimuli and cessation of movements varied between 240-4260 seconds (4-71 minutes), with considerable intra- and inter-specific variation. Duration of CO2 exposure influenced the likelihood of recovery, which also varied among species (e.g., from 0-100% recovery after 30-min exposure). Plasma corticosterone concentrations increased after CO2 exposure in both V. salvator (18%) and M. reticulatus (14%), but only significantly in the former species. Based on our results, CO2 appears to be a mild stressor for reptiles, but the relatively minor responses to CO2 suggest it may not cause considerable distress or pain. However, our results are preliminary, and further testing is required to understand optimal CO2 delivery mechanisms and interspecific responses to CO2 exposure before endorsing this method for reptile euthanasia.
    Matched MeSH terms: Carbon Dioxide/toxicity*
  13. Godil DI, Sharif A, Ali MI, Ozturk I, Usman R
    J Environ Manage, 2021 May 01;285:112208.
    PMID: 33618139 DOI: 10.1016/j.jenvman.2021.112208
    The aim of this research is to explore the association between financial development, research and development (R&D) expenditures, globalization, institutional quality, and energy consumption in India by using the quarterly data of 1995-2018. Quantile Autoregressive Distributed Lag (QARDL) approach is employed to examine the relationship. An application of the QARDL approach suggests that the R&D, financial development, globalization, and institutional quality significantly influence energy utilization in India. R&D and institutional quality have a negative effect on energy utilization which shows that due to the increase in the quality of institutions and R&D in the country, energy utilization is likely to decrease. However, globalization and financial performance have a positive influence on energy which depicts that due to the increase in financial performance and globalization in India the energy consumption is likely to increase. According to the outcomes of this research, India should make a policy to ease the penalties of energy utilization by monitoring resource transfer by means of globalization and by implementing energy conversation procedures through the advancement of the financial sector.
    Matched MeSH terms: Carbon Dioxide/analysis
  14. McDowell N, Allen CD, Anderson-Teixeira K, Brando P, Brienen R, Chambers J, et al.
    New Phytol, 2018 08;219(3):851-869.
    PMID: 29451313 DOI: 10.1111/nph.15027
    Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change.
    Matched MeSH terms: Carbon Dioxide/metabolism
  15. Koondhar MA, Tan Z, Alam GM, Khan ZA, Wang L, Kong R
    J Environ Manage, 2021 Oct 15;296:113242.
    PMID: 34271346 DOI: 10.1016/j.jenvman.2021.113242
    China is the world's largest fossil fuel consumer and carbon emitter country. In September 2020, China pledged to reduce carbon emissions, and achieve carbon neutrality by 2060. Therefore, this study aimed to contribute to the literature and show the pictorial nexus of bioenergy and fossil fuel consumption, carbon emission, and agricultural bioeconomic growth, a new pathway towards carbon neutrality. For this study, time-series data from 1971 to 2019 were used to analyze the autoregressive distributed lag (ARDL) bound testing and novel dynamic autoregressive distributed lag (DYNARDL) simulation models. Initially, the unit root tests results showed that all variables were stationarity at the level and first difference. The presence of cointegration between selected variables was confirmed by the results from ARDL bound test. In addition, the results of long-run and short-run nexus show an increase in bioenergy consumption that caused an increase in agricultural bioeconomic growth both in the long and short-run nexus. A decrease in fossil fuel consumption was shown to result in increased agricultural bioeconomic growth with respect to both long- and short-term effects. Furthermore, the results of the novel dynamic ARDL simulation model demonstrated that a 10% positive shock from bioenergy consumption caused an increase in agricultural bioeconomic growth, while at the same time, a 10% negative shock in bioenergy consumption led to a decrease. A 10% negative shock from fossil fuels caused an increase in agricultural bioeconomic growth, whereas a 10% positive shock from fossil fuels led to a decrease. Therefore, this study suggests that China needs to switch from fossil fuel and other non-renewable energy consumption to sources of bioenergy and other renewable energy consumption to achieve carbon neutrality by 2060.
    Matched MeSH terms: Carbon Dioxide/analysis
  16. Chien F, Sadiq M, Nawaz MA, Hussain MS, Tran TD, Le Thanh T
    J Environ Manage, 2021 Nov 01;297:113420.
    PMID: 34333309 DOI: 10.1016/j.jenvman.2021.113420
    Environmental degradation is significantly studied both in the past and the current literature; however, steps towards reducing the environmental pollution in carbon emission and haze pollution like PM2.5 are not under rational attention. This study tries to cover this gap while considering the carbon emission and PM2.5 through observing the role of renewable energy, non-renewable energy, environmental taxes, and ecological innovation for the top Asian economies from 1990 to 2017. For analysis purposes, this research considers cross-sectional dependence analysis, unit root test with and without structural break (Pesaran, 2007), slope heterogeneity analysis, Westerlund and Edgerton (2008) panel cointegration analysis, Banerjee and Carrion-i-Silvestre (2017) cointegration analysis, long-short run CS-ARDL results, as well as AMG and CCEMG for robustness check. The empirical evidence in both the short- and long-run has confirmed the negative and significant effect of renewable energy sources, ecological innovation, and environmental taxes on carbon emissions and PM2.5. Whereas, non-renewable energy sources are causing environmental degradation in the targeted economies. Finally, various policy implications related to carbon emission and haze pollution like PM2.5 are also provided to control their harmful effect on the natural environment.
    Matched MeSH terms: Carbon Dioxide/analysis
  17. Goli A, Shamiri A, Talaiekhozani A, Eshtiaghi N, Aghamohammadi N, Aroua MK
    J Environ Manage, 2016 Dec 01;183:41-58.
    PMID: 27576148 DOI: 10.1016/j.jenvman.2016.08.054
    The extensive amount of available information on global warming suggests that this issue has become prevalent worldwide. Majority of countries have issued laws and policies in response to this concern by requiring their industrial sectors to reduce greenhouse gas emissions, such as CO2. Thus, introducing new and more effective treatment methods, such as biological techniques, is crucial to control the emission of greenhouse gases. Many studies have demonstrated CO2 fixation using photo-bioreactors and raceway ponds, but a comprehensive review is yet to be published on biological CO2 fixation. A comprehensive review of CO2 fixation through biological process is presented in this paper as biological processes are ideal to control both organic and inorganic pollutants. This process can also cover the classification of methods, functional mechanisms, designs, and their operational parameters, which are crucial for efficient CO2 fixation. This review also suggests the bio-trickling filter process as an appropriate approach in CO2 fixation to assist in creating a pollution-free environment. Finally, this paper introduces optimum designs, growth rate models, and CO2 fixation of microalgae, functions, and operations in biological CO2 fixation.
    Matched MeSH terms: Carbon Dioxide/metabolism
  18. Akhtar M, Hannan MA, Begum RA, Basri H, Scavino E
    Waste Manag, 2017 Mar;61:117-128.
    PMID: 28153405 DOI: 10.1016/j.wasman.2017.01.022
    Waste collection is an important part of waste management that involves different issues, including environmental, economic, and social, among others. Waste collection optimization can reduce the waste collection budget and environmental emissions by reducing the collection route distance. This paper presents a modified Backtracking Search Algorithm (BSA) in capacitated vehicle routing problem (CVRP) models with the smart bin concept to find the best optimized waste collection route solutions. The objective function minimizes the sum of the waste collection route distances. The study introduces the concept of the threshold waste level (TWL) of waste bins to reduce the number of bins to be emptied by finding an optimal range, thus minimizing the distance. A scheduling model is also introduced to compare the feasibility of the proposed model with that of the conventional collection system in terms of travel distance, collected waste, fuel consumption, fuel cost, efficiency and CO2 emission. The optimal TWL was found to be between 70% and 75% of the fill level of waste collection nodes and had the maximum tightness value for different problem cases. The obtained results for four days show a 36.80% distance reduction for 91.40% of the total waste collection, which eventually increases the average waste collection efficiency by 36.78% and reduces the fuel consumption, fuel cost and CO2 emission by 50%, 47.77% and 44.68%, respectively. Thus, the proposed optimization model can be considered a viable tool for optimizing waste collection routes to reduce economic costs and environmental impacts.
    Matched MeSH terms: Carbon Dioxide/analysis
  19. Prananto JA, Minasny B, Comeau LP, Rudiyanto R, Grace P
    Glob Chang Biol, 2020 08;26(8):4583-4600.
    PMID: 32391633 DOI: 10.1111/gcb.15147
    Tropical peatlands are vital ecosystems that play an important role in global carbon storage and cycles. Current estimates of greenhouse gases from these peatlands are uncertain as emissions vary with environmental conditions. This study provides the first comprehensive analysis of managed and natural tropical peatland GHG fluxes: heterotrophic (i.e. soil respiration without roots), total CO2 respiration rates, CH4 and N2 O fluxes. The study documents studies that measure GHG fluxes from the soil (n = 372) from various land uses, groundwater levels and environmental conditions. We found that total soil respiration was larger in managed peat ecosystems (median = 52.3 Mg CO2  ha-1  year-1 ) than in natural forest (median = 35.9 Mg CO2  ha-1  year-1 ). Groundwater level had a stronger effect on soil CO2 emission than land use. Every 100 mm drop of groundwater level caused an increase of 5.1 and 3.7 Mg CO2  ha-1  year-1 for plantation and cropping land use, respectively. Where groundwater is deep (≥0.5 m), heterotrophic respiration constituted 84% of the total emissions. N2 O emissions were significantly larger at deeper groundwater levels, where every drop in 100 mm of groundwater level resulted in an exponential emission increase (exp(0.7) kg N ha-1  year-1 ). Deeper groundwater levels induced high N2 O emissions, which constitute about 15% of total GHG emissions. CH4 emissions were large where groundwater is shallow; however, they were substantially smaller than other GHG emissions. When compared to temperate and boreal peatland soils, tropical peatlands had, on average, double the CO2 emissions. Surprisingly, the CO2 emission rates in tropical peatlands were in the same magnitude as tropical mineral soils. This comprehensive analysis provides a great understanding of the GHG dynamics within tropical peat soils that can be used as a guide for policymakers to create suitable programmes to manage the sustainability of peatlands effectively.
    Matched MeSH terms: Carbon Dioxide/analysis
  20. Kong Y, Ma NL, Yang X, Lai Y, Feng Z, Shao X, et al.
    Environ Pollut, 2020 Oct;265(Pt A):114951.
    PMID: 32554093 DOI: 10.1016/j.envpol.2020.114951
    Greenhouse gases (GHGs) carbon dioxide (CO2) and nitrous oxide (N2O), contribute significantly to global warming, and they have increased substantially over the years. Reforestation is considered as an important forestry application for carbon sequestration and GHGs emission reduction, however, it remains unknown whether reforestation may instead produce too much CO2 and N2O contibuting to GHGs pollution. This study was performed to characterize and examine the CO2 and N2O emissions and their controlling factors in different species and types of pure and mixture forest used for reforestation. Five soil layers from pure forest Platycladus orientalis (PO), Robinia pseudoacacia (RP), and their mixed forest P-R in the Taihang mountains of central China were sampled and incubated aerobically for 11 days. The P-R soil showed lower CO2 and N2O production potentials than those of the PO soils (P 
    Matched MeSH terms: Carbon Dioxide/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links