Displaying publications 61 - 80 of 1082 in total

Abstract:
Sort:
  1. Lim SS, Chai CY, Loh HS
    Mater Sci Eng C Mater Biol Appl, 2017 Jul 01;76:144-152.
    PMID: 28482510 DOI: 10.1016/j.msec.2017.03.075
    Hydrothermally synthesized TiO2nanotubes (TNTs) were first used as a filler for chitosan scaffold for reinforcement purpose. Chitosan-TNTs (CTNTs) scaffolds prepared via direct blending and freeze drying retained cylindrical structure and showed enhanced compressive modulus and reduced degradation rate compared to chitosan membrane which experienced severe shrinkage after rehydration with ethanol. Macroporous interconnectivity with pore size of 70-230μm and porosity of 88% were found in CTNTs scaffolds. Subsequently, the functionalization of CTNTs scaffolds with CaCl2solutions (0.5mM-40.5mM) was conducted at physiological pH. The adsorption isotherm of Ca2+ions onto CTNTs scaffolds fitted well with Freundlich isotherm. CTNTs scaffolds with Ca2+ions showed high biocompatibility by promoting adhesion, proliferation and early differentiation of MG63 in a non-dose dependent manner. CTNTs scaffolds with Ca2+ions can be an alternative for bone regeneration.
    Matched MeSH terms: Cell Proliferation
  2. Nur Sazwi Nordin, Lokman Mohammad Isa, Syed Zahir Idid, Widya Lestari, Basma Ezzat Mustafa, Solachuddin Jauhari Arief Ikhwan, et al.
    MyJurnal
    Flaxseeds offer a wide range of pharmacological properties including antioxidant,
    antibacterial and anticancer. However its effect on mesenchymal stem cells has not been
    elucidated. Thus, this study aimed to determine the effects of flaxseed crude extract on stem cell
    from human exfoliated deciduous teeth (SHED) in terms of cell viability, morphology and
    proliferation activity. (Copied from article).
    Matched MeSH terms: Cell Proliferation
  3. Rima Melati Mat Satar, Zed Zakari Abdul Hamid, Hartini Yusuf, Maimunah Mustakim
    MyJurnal
    Ki-67 expression is strongly correlated with tumour cell proliferation and growth. It is widely used as a proliferation marker in the routine pathological investigation. The nuclear protein Ki- 67 (pKi67) is recognised prognostic and predictive indicator for the biopsies assessment for cancer patients. Clinically, pKi67 has been revealed to associate with metastasis and the clinical stage of tumours. Furthermore, it has been presented that the expression of Ki-67 is significantly higher in malignant tissues with poorly differentiated tumour cells, as compared with normal tissue. The Ki-67 labelling index plays a vital role as an independent prognostic factor for survival rate, which includes all stages and grade categories. There is an association between the ratios of Ki-67 positive malignant cells and patient survival. This review provides an overview of recent advances in detecting Ki-67 in ovarian carcinoma.
    Matched MeSH terms: Cell Proliferation
  4. Leung AKC, Leong KF, Lam JM
    Case Rep Pediatr, 2019;2019:9542857.
    PMID: 31772809 DOI: 10.1155/2019/9542857
    Crusted scabies (also known as Norwegian scabies) is a highly contagious variant of scabies characterized by profuse proliferation of mites in the skin and widespread, crusted, hyperkeratotic papules, plaques, and nodules. Typically, pruritus is minimal or absent. The condition usually occurs in immunocompromised individuals. Occurrence in healthy infants has rarely been reported. We report an 11-month-old healthy Malay boy who presented with crusted scabies.
    Matched MeSH terms: Cell Proliferation
  5. Das, P., Naing, N.N., Wan-Arfah, N., Noorjan, K., Kueh, Y.C., Rasalingam, K.
    JUMMEC, 2019;22(2):31-38.
    MyJurnal
    Background: Astrocytic gliomas are the most common primary brain tumors that developed from glial origin.
    The angiogenic cell population from brain tumor enhances the recruitment of circulating cancer stem cells
    homing towards tumor site.

    Objectives: This study aimed to investigate the tumor angiogenic cell population that stained with CD133+
    and VEGFA+ markers and its association with circulating cancer stem cell (CD133+/VEGFR2-) population in the
    peripheral blood mononuclear cells (PBMCs) of astrocytic glioma patients.

    Methods: A total of 22 astrocytic glioma patients from Hospital Universiti Sains Malaysia who consented to
    the study were included. Tumors (n=22) were sliced and stained with CD133+ and VEGFA+ angiogenic markers
    and counter stained with DAPI. The circulating cancer stem cells (CD133+/VEGFR2-) in PBMCs (n=22) were
    quantified using FACS based on the expression of CD133 and VEGFR2 markers. The paired t-test and Pearson
    correlation were used for the data analysis.

    Results: The percentage of angiogenic cell population was significantly higher in brain tumor compared to
    adjacent normal brain tissue (1.25 ± 0.96% vs. 0.74 ± 0.68%; paired t-test=2.855; df=21, p = 0.009). Positive
    correlation was found between the angiogenic cells of brain tumor tissue and adjacent normal brain tissue
    (Pearson correlation, r = 0.53, p = 0.011). Significant positive correlation was found between angiogenic cells
    in glioma tumor and cancer stem cells in peripheral circulating systems of astrocytic glioma patients (Pearson
    correlation, r = 0.42, p = 0.049).

    Conclusion: Angiogenic cells in the brain tumor resident promote the recruitment of circulating cancer stem cells
    homing to the tumor site and induce the proliferation and growth of the tumor in astrocytic glioma patients.
    Matched MeSH terms: Cell Proliferation
  6. Ahmed Asrity S, Tsan FY, Ding P, Syed Aris S
    Sains Malaysiana, 2014;43:1471-1475.
    Phaleria macrocarpa seeds are rapidly killed with desiccation to moisture content (MC) below 20%. Desiccation tolerance of their embryonic axes was studied for storage and germplasm conservation purposes. Embryonic axes were extracted aseptically from fresh seeds obtained from fully ripe fruits in a horizontal laminar air flow cabinet. They were then desiccated under aseptic condition for periods ranging from 0-8 h. For each desiccation treatment, embryonic axes were drawn randomly for the determination of MC according to ISTA, electrolyte leakage and proliferation on Murashige and Skoog (MS) media supplemented with 1 mg/l 6-benzylaminopurine (BAP) and 1 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D). The results obtained from this study indicated that the embryonic axes could tolerate dehydration down to 13.6% with desiccation for 8 h while retaining relatively high viability of 76.7%. This was supported by only gradual increment of electrolyte leakage with the desiccated embryonic axes. All non-desiccated embryonic axes with MC of 52.5% were capable to grow into normal plantlets in vitro but dehydration to MC of 36.0% and further down to 13.6% generally resulted in callus formation with up to 16.7% of the embryonic axes while at least 60.0% of the other embryonic axes were still capable to proliferate as normal plantlets in vitro.
    Matched MeSH terms: Cell Proliferation
  7. Sotoodehnia P, Mazlan N, Mohd Saud H, Samsuri WA, Habib SH, Soltangheisi A
    PeerJ, 2019;7:e6418.
    PMID: 30918747 DOI: 10.7717/peerj.6418
    Background: Plant growth-promoting rhizobacteria (PGPR) are highly promising biofertilizers that contribute to eco-friendly sustainable agriculture. There have been many reports on the anti-microbial properties of nanoparticles (NPs). Toxic effects of NPs under laboratory conditions have also reported; however, there is a lack of information about their uptake and mobility in organisms under environmental conditions. There is an urgent need to determine the highest concentration of NPs which is not detrimental for growth and proliferation of PGPR.

    Methods: Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to measure the size and shape of NPs. Minimum inhibitory concentrations (MIC) of nano-silver on selected beneficial microbes and Ralstonia solanacearum were measured using the microdilution broth method. The percentage of seed germination was measured under in vitro conditions.

    Results: NPs were spherical with a size of 16 ± 6 nm. Nano-silver at 12-40 mg l-1 inhibited the growth of bacteria. Seed application at 40 mg l-1 protected seeds from R. solanacearum and improved the rate of seed germination.

    Matched MeSH terms: Cell Proliferation
  8. Siti ZS, Seoparjoo AMI, Shahrul H
    Heliyon, 2019 Apr;5(4):e01573.
    PMID: 31183434 DOI: 10.1016/j.heliyon.2019.e01573
    Background: Drug resistance remains as a challenge in the treatment of HER2-overexpressed breast cancer. Emerging evidence from clinical studies show relation of oxidized low density lipoprotein (LDL) and very low density lipoprotein (VLDL) level with drug resistance. However, the underlying molecular mechanisms for this effect remain unclear. Therefore, the aim of this study was to determine the effects of oxidized-LDL and VLDL in drug-resistant HER2-overexpressed breast cancer cells.

    Methods: An in vitro cell model for tamoxifen-resistant HER2 overexpressed UACC732 cells was created using the pulse method. Cells were exposed to oxidized LDL (oxLDL) and very low density lipoprotein (VLDL) separately. Effects on cell morphology was studied using phase contrast microscopic changes. Percentage of cell viability was measured using proliferation assay kit. Development of tamoxifen resistance was determined based on P-gp expression with flow cytometry. Further analysis includedcell death measurement with flow cytometry method.

    Results: UACC732 cells exposed to VLDL exhibited fibroblast-like morphology. This was further supported by proliferation assay, where the percentage of cell viability achieved more than 100% with 100 μg/ml of VLDL exposure, indicating cell proliferation. Findings also showed that VLDL caused reduction in expression of Pgp in resistant cells compared to resistant cells alone (p = 0.02).

    Conclusion: Results of this study suggest that VLDL may play a role in growth of drug-resistant HER2-overexpressing cells. Lower expression of P-gp in presence of VLDL need to be investigated further.

    Matched MeSH terms: Cell Proliferation
  9. Razali MH, Ismail NA, Amin KAM
    Data Brief, 2020 Jun;30:105478.
    PMID: 32346560 DOI: 10.1016/j.dib.2020.105478
    Gellan gum incorporating titanium dioxide nanoparticles biofilm was synthesized and characterized using UV, FTIR and XRD to study their physical and chemical properties. The mechanical properties were measured using universal mechanical testing. Meanwhile, the biological properties were investigated towards for antibacterial and cell proliferation. This comprehensive data are relevant with the research article entitled "Gellan gum incorporating titanium dioxide nanoparticles biofilm as wound dressing: Physicochemical, mechanical, antibacterial properties and wound healing studies" [1].
    Matched MeSH terms: Cell Proliferation
  10. Pius Owoh N, Mahinderjit Singh M
    Sensors (Basel), 2020 Jun 09;20(11).
    PMID: 32526843 DOI: 10.3390/s20113280
    The proliferation of mobile devices such as smartphones and tablets with embedded sensors and communication features has led to the introduction of a novel sensing paradigm called mobile crowd sensing. Despite its opportunities and advantages over traditional wireless sensor networks, mobile crowd sensing still faces security and privacy issues, among other challenges. Specifically, the security and privacy of sensitive location information of users remain lingering issues, considering the "on" and "off" state of global positioning system sensor in smartphones. To address this problem, this paper proposes "SenseCrypt", a framework that automatically annotates and signcrypts sensitive location information of mobile crowd sensing users. The framework relies on K-means algorithm and a certificateless aggregate signcryption scheme (CLASC). It incorporates spatial coding as the data compression technique and message query telemetry transport as the messaging protocol. Results presented in this paper show that the proposed framework incurs low computational cost and communication overhead. Also, the framework is robust against privileged insider attack, replay and forgery attacks. Confidentiality, integrity and non-repudiation are security services offered by the proposed framework.
    Matched MeSH terms: Cell Proliferation
  11. Al-Jadi AM, Kanyan Enchang F, Mohd Yusoff K
    Turk J Med Sci, 2014;44(5):733-40.
    PMID: 25539538
    BACKGROUND/AIM: To examine, for the first time, the effect of a selected Malaysian honey and its major components on the proliferation of cultured fibroblasts.

    MATERIALS AND METHODS: Honey and some of its components, which include the sugars, the proteins, the hydrogen peroxide produced, and the phenolics, were exposed to cultured fibroblasts. The MTT colorimetric assay was used to assess cell viability and proliferation.

    RESULTS: The stimulatory effect of honey on fibroblast proliferation was observed to be time- and dose-dependent. The continuous production of hydrogen peroxide by the honey-glucose oxidase system also acts to stimulate cell proliferation in a time- and dose-dependent manner. The presence of phenolics with antioxidant properties, on the other hand, renders protection to the cells against the toxic effect of hydrogen peroxide. However, the presence of a growth factor-like substance in honey could not be ascertained.

    CONCLUSION: For the first time, honey and its major components were shown to exert stimulatory effects on cultured fibroblasts. Honey is therefore potentially useful in medicinal practices.

    Matched MeSH terms: Cell Proliferation
  12. Tang W, Liu H, Li X, Ooi TC, Rajab NF, Cao H, et al.
    Aging (Albany NY), 2022 Nov 14;14(21):8688-8699.
    PMID: 36375474 DOI: 10.18632/aging.204380
    BACKGROUND: A complex of Zn and carnosine, called Zinc-L-carnosine (ZnC), enjoys a wide application as part of a Zn supplement therapeutic method as well as in treating peptic ulcers. However, researches fail to confirm the biological functions possessed by ZnC as well as tumor immune microenvironment in colorectal cancer (CRC).

    METHODS: Cell counting kit 8(CCK8), 5-ethynyl-2'-deoxyuridine (EdU), transwell and wound healing assays were conducted to study the influence of ZnC in the proliferating, invading and migrating processes of CRC cell lines (HCT116, LOVO) in vitro. The antitumor activity ZnC as well as its effects on tumor immune microenvironment were then assessed using CRC subcutaneous tumors in the C57BL/6 mouse model.

    RESULTS: According to CCK8, EdU, transwell and wound healing assays, ZnC inhibited CRC cell lines in terms of proliferation, invasion and migration. ZnC could inhibit miR-570 for up-regulating PD-L1 expression. In vivo experiments showed that gavage (100 mg/kg, once every day) of ZnC inhibited the tumor growth of CRC, and the combination of ZnC and anti-PD1 therapy significantly improved the efficacy exhibited by anti-PD1 in treating CRC. In addition, mass cytometry results showed that immunosuppressive cells including regulatory T cells (tregs), bone marrow-derived suppressor cells (MDSC), and M2 macrophages decreased whereas CD8+ T cells elevated after adding ZnC.

    CONCLUSIONS: The present study reveals that ZnC slows the progression of CRC by inhibiting CRC cells in terms of proliferation, invasion and migration, meanwhile up-regulating PD-L1 expression via inhibiting miR-570. The ZnC-anti-PD1 co-treatment assists in synergically increasing anti-tumor efficacy in CRC therapy.

    Matched MeSH terms: Cell Proliferation
  13. Tran-Nguyen TM, Le KT, Nguyen LT, Tran TT, Hoang-Thai PC, Tran TL, et al.
    Growth Factors, 2020 12;38(5-6):282-290.
    PMID: 34415815 DOI: 10.1080/08977194.2021.1967342
    Fibroblast growth factor 2 (FGF-2) is a multifunctional protein that has major roles in wound healing, tissue repair, and regeneration. This therapeutic protein is widely used for burn treatment because it can stimulate cell proliferation and differentiation, angiogenesis, and extracellular matrix remodeling. In this study, we developed a simple method using a controlled heated brass rod to create a homogenous third-degree burn murine model and evaluated the treatment using recombinant human FGF-2 (rhFGF-2). The results indicated that the wound area was 0.83 ± 0.05 cm2 and wound depth was 573.42 ± 147.82 μm. Mice treated with rhFGF-2 showed higher rates of wound closure, granulation tissue formation, angiogenesis, and re-epithelialization than that of phosphate-buffered saline (PBS)-treated group. In conclusion, our lab-made rhFGF-2 could be a potentially therapeutic protein for burn treatment as well as a bioequivalent drug for other commercial applications using FGF-2.
    Matched MeSH terms: Cell Proliferation
  14. Safdar MH, Hussain Z, Abourehab MAS, Hasan H, Afzal S, Thu HE
    Artif Cells Nanomed Biotechnol, 2018 Dec;46(8):1967-1980.
    PMID: 29082766 DOI: 10.1080/21691401.2017.1397001
    This review aims to overview and critically analyses recent developments in achieving tumour-specific delivery of anticancer agents, maximizing anticancer efficacy, and mitigating tumour progression and off-target effects. Stemming from critical needs to develop target-specific delivery vehicles in cancer therapy, various hyaluronic acid (HA)-conjugated nanomedicines have been fabricated owing to their biocompatibility, safety, tumour-specific targetability of drugs and genes, and proficient interaction with cluster-determinant-44 (CD44) receptors over-expressed on the surface of tumour cells. HA-based conjugation or surface modulation of anticancer drugs encapsulated nanocarriers have shown promising efficacy against the various types of carcinomas of liver, breast, colorectal, pancreatic, lung, skin, ovarian, cervical, head and neck and gastric. The success of this emerging platform is assessed in achieving the rapid internalization of anticancer payloads into the tumour cells, impeding cancer cells division and proliferation, induction of cancer-specific apoptosis and prevention of metastasis (tumour progression). This review extends detailed insight into the engineering of HA-based nanomedicines, characterization, utilization for the diagnosis or treatment of CD44 over-expressing cancer subtypes and emphasizing the transition of nanomedicines to clinical cancer therapy.
    Matched MeSH terms: Cell Proliferation
  15. Pourshahrestani S, Zeimaran E, Kadri NA, Gargiulo N, Jindal HM, Naveen SV, et al.
    ACS Appl Mater Interfaces, 2017 Sep 20;9(37):31381-31392.
    PMID: 28836753 DOI: 10.1021/acsami.7b07769
    Chitosan-based hemostats are promising candidates for immediate hemorrhage control. However, they have some disadvantages and require further improvement to achieve the desired hemostatic efficiency. Here, a series of 1% Ga2O3-containing mesoporous bioactive glass-chitosan composite scaffolds (Ga-MBG/CHT) were constructed by the lyophilization process and the effect of various concentrations of Ga-MBG (10, 30, and 50 wt %) on the hemostatic function of the CHT scaffold was assessed as compared to that of Celox Rapid gauze (CXR), a current commercially available chitosan-coated hemostatic gauze. The prepared scaffolds exhibited >79% porosity and showed increased water uptake compared to that in CXR. The results of coagulation studies showed that pure CHT and composite scaffolds exhibited increased hemostatic performance with respect to CXR. Furthermore, the composite scaffold with the highest Ga-MBG content (50 wt %) had increased capability to enhancing thrombus generation, blood clotting, and platelet adhesion and aggregation than that of the scaffold made of pure CHT. The antibacterial efficacy and biocompatibility of the prepared scaffolds were also assessed by a time-killing assay and an Alamar Blue assay, respectively. Our results show that the antibacterial effect of 50% Ga-MBG/CHT was more pronounced than that of CHT and CXR. The cell viability results also demonstrated that Ga-MBG/CHT composite scaffolds had good biocompatibility, which facilitates the spreading and proliferation of human dermal fibroblast cells even with 50 wt % Ga-MBG loading. These results suggest that Ga-MBG/CHT scaffolds could be a promising hemostatic candidate for improving hemostasis in critical situations.
    Matched MeSH terms: Cell Proliferation
  16. Soliman AM, Das S, Abd Ghafar N, Teoh SL
    Front Genet, 2018;9:38.
    PMID: 29491883 DOI: 10.3389/fgene.2018.00038
    Wound healing is a complex biological process that is generally composed of four phases: hemostasis, inflammation, proliferation, and remodeling. The proliferation phase is crucial for effective healing compared to other phases. Many critical events occur during this phase, i.e., migration of fibroblasts, re-epithelialization, angiogenesis and wound contraction. Chronic wounds are common and are considered a major public health problem. Therefore, there is the increasing need to discover new therapeutic strategies. MicroRNA (miRNA) research in the field of wound healing is in its early phase, but the knowledge of the recent discoveries is essential for developing effective therapies for the treatment of chronic wounds. In this review, we focused on recently discovered miRNAs which are involved in the proliferation phase of wound healing in the past few years and their role in wound healing.
    Matched MeSH terms: Cell Proliferation
  17. Feng J, Xi Z, Jiang X, Li Y, Nik Nabil WN, Liu M, et al.
    Cancer Lett, 2023 Feb 01;554:216011.
    PMID: 36442771 DOI: 10.1016/j.canlet.2022.216011
    Quiescent cancer cells (QCCs), also known as dormant cancer cells, resist and survive chemo- and radiotherapy, resulting in treatment failure and later cancer recurrence when QCCs resume cell cycle progression. However, drugs selectively targeting QCCs are lacking. Saikosaponin A (SSA) derived from Bupleurum DC., is highly potent in eradicating multidrug-resistant prostate QCCs compared with proliferative prostate cancer cells. By further exacerbating the already increased autophagy through inactivation of Akt-mTOR signaling, SSA triggered cell death in QCCs. Contrarily, inhibition of autophagy or activation of Akt signaling pathway prevented SSA-induced cell death. The multicycle of Docetaxel treatments increased the proportion of QCCs, whereas administering SSA at intervals of Docetaxel treatments aggravated cell death in vitro and led to tumor growth arrest and cell death in vivo. In conclusion, SSA is posed as a novel QCCs-eradicating agent by aggravating autophagy in QCCs. In combination with the current therapy, SSA has potential to improve treatment effectiveness and to prevent cancer recurrence.
    Matched MeSH terms: Cell Proliferation
  18. Chiou SH, Ong HKA, Chou SJ, Aldoghachi AF, Loh JK, Verusingam ND, et al.
    Prog Mol Biol Transl Sci, 2023;199:131-154.
    PMID: 37678969 DOI: 10.1016/bs.pmbts.2023.04.002
    Mesenchymal stem cells (MSCs) differentiated from human induced pluripotent stem cells (iPSC) or induced MSC (iMSCs) are expected to address issues of scalability and safety as well as the difficulty in producing homogenous clinical grade MSCs as demonstrated by the promising outcomes from preclinical and clinical trials, currently ongoing. The assessment of iMSCs based in vitro and in vivo studies have thus far showed more superior performance as compared to that of the primary or native human MSCs, in terms of cell proliferation, expansion capacity, immunomodulation properties as well as the influence of paracrine signaling and exosomal influence in cell-cell interaction. In this chapter, an overview of current well-established methods in generating a sustainable source of iMSCs involving well defined culture media is discussed followed by the properties of iMSC as compared to that of MSC and its promising prospects for continuous development into potential clinical grade applications.
    Matched MeSH terms: Cell Proliferation
  19. Imad R, Sheikh Z, Rao Pichika M, Kit-Kay M, Siddiqui RA, Nawaid Shah SN, et al.
    Exp Cell Res, 2023 Sep 01;430(1):113687.
    PMID: 37356748 DOI: 10.1016/j.yexcr.2023.113687
    BACKGROUND: The ability of cancer cells to be invasive and metastasize depend on several factors, of which the action of protease activity takes center stage in disease progression.

    PURPOSE/OBJECTIVE: To analyze function of new K21 molecule in the invasive process of oral squamous cell carcinoma (OSCC) cell line.

    MATERIALS & METHODS: The Fusobacterium (ATCC 23726) streaks were made, and pellets were resuspended in Cal27 (ATCC CRL-2095) OSCC cell line spheroid cell microplate. Cells were seeded and Lysotracker staining performed for CathepsinK red channel. Cell and morphology were evaluated using Transmission Electron microscopy. Thiobarbituric acid assay was performed. OSCC was analyzed for Mic60. Raman spectra were collected from the cancer cell line. L929 dermal fibroblast cells were used for Scratch Assay. ELISA muti arrays were used for cytokines and matrix molecules. Internalization ability of fibroblast cells were also analyzed. Structure of K21 as a surfactant molecule with best docked poses were presented.

    RESULTS: Decrease in lysosomal staining was observed after 15 and 30 min of 0.1% treatment. Tumor clusters were associated with cell membrane destruction in K21 primed cells. There was functional silencing of Mic60 via K21, especially with 1% concentration with reduced cell migration and invasiveness. Raman intensity differences were seen at 700 cm-1, 1200 cm-1 and 1600 cm-1 regions. EVs were detected within presence of fibroblast cells amongst K21 groups. Wound area and wound closure showed the progress of wound healing.

    CONCLUSION: Over expression of CatK can be reduced by a newly developed targeted K21 based drug delivery system leading to reduced migration and adhesion of oral squamous cell carcinoma cells. The K21 drug formulation can have great potential for cancer therapies due to targeting and cytotoxicity effects.

    Matched MeSH terms: Cell Proliferation
  20. Hashemi M, Sabouni E, Rahmanian P, Entezari M, Mojtabavi M, Raei B, et al.
    Cell Mol Biol Lett, 2023 Apr 21;28(1):33.
    PMID: 37085753 DOI: 10.1186/s11658-023-00438-9
    Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial-mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC.
    Matched MeSH terms: Cell Proliferation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links